

Optimizing Cloud Service Load Balancing Through Heat Conduction Equation Applications

Hong He* , Li Wang , Jie Liu , Lihua Qin

Department of Software Engineering, Shijiazhuang Information Engineering Vocational College, Shijiazhuang 050000, China

Corresponding Author Email: hh668352@126.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijht.420134

ABSTRACT

Received: 20 September 2023

Revised: 16 December 2023

Accepted: 27 December 2023

Available online: 29 February 2024

 With the rapid development of cloud computing, load balancing technology in cloud

services has become a critical component in ensuring service quality and system stability.

Traditional load balancing methods, often relying on static parameters and preset rules,

face challenges in flexibly responding to the dynamic changes in cloud service demands.

Recent studies have begun to explore the application of machine learning algorithms to

optimize load balancing, aiming to enhance the system's adaptive adjustment capabilities.

This study proposes an innovative approach, applying the solution of the heat conduction

equation to the optimization of cloud service load balancing issues. It simulates and

analyzes the dynamic changes in load distribution, proposing corresponding optimization

strategies. The first part of this research focuses on designing a model that integrates

genetic algorithms and neural networks to solve the inverse problem of the two-

dimensional nonlinear heat conduction equation, namely, the accurate prediction of

thermal physical parameters. By simulating the heat conduction process, this model can

reflect the dynamic distribution characteristics of server loads and guide the adjustment

strategy of weights. Furthermore, an adaptive dynamic load balancing strategy algorithm

is proposed. By optimizing the existing engine x (Nginx) weighted least connections

algorithm, an efficient adaptive algorithm is designed and implemented. This algorithm

adjusts server weights dynamically based on real-time load data, enabling cloud services

to respond more flexibly and efficiently to different service requests. The findings of this

research not only enhance the processing capability and resource utilization rate of cloud

services but also provide more scientific and precise theoretical support for load balancing

through the introduction of new algorithmic models. Additionally, the proposed adaptive

dynamic load balancing strategy algorithm has demonstrated good performance in practical

deployment, offering new perspectives and technical paths for the research and practice of

cloud service load balancing.

Keywords:

cloud services, load balancing, heat

conduction equation, genetic algorithm,

neural networks, adaptive dynamic

algorithm, engine x

1. INTRODUCTION

As cloud computing technology has proliferated and

evolved, the mechanism of load balancing in cloud services

has emerged as one of the key technologies to ensure the

reliability and efficiency of services [1-3]. The core challenge

of load balancing lies in the rational allocation of resources to

address the constantly changing service requests and system

loads [4, 5]. Traditional load balancing strategies, often based

on preset rules and static parameters, lack dynamic

adaptability, making it challenging to cope with the

complexity and time-variability in large-scale distributed

systems [6-8]. Against this backdrop, the application of the

heat conduction equation's solution method is innovatively

proposed for optimizing cloud service load balancing, with the

aim of enhancing the processing capability and resource

utilization efficiency of cloud services.

To date, the optimization research on cloud service load

balancing has not fully explored the possibility and potential

advantages of integrating physical models, such as the heat

conduction equation, with machine learning algorithms [9, 10].

The application of the heat conduction equation's solution

theory to the optimization of service load balancing not only

provides a theoretical basis for the dynamic adjustment of

server weights but also guides the formulation of practical load

distribution strategies [11-13]. This interdisciplinary research

approach offers a new perspective for cloud service load

balancing, contributing to the enhancement of algorithm

intelligence and adaptability, and holds significant research

importance for improving the overall performance of cloud

services.

However, existing research methods face limitations when

addressing dynamic load balancing issues [14-17]. For

instance, algorithms based on static rules struggle to adapt to

the dynamic changes in load, and traditional prediction models

often require extensive historical data, with high

computational complexity and slow response speed [18-20].

Moreover, current methods have difficulty accurately

describing and dealing with the nonlinear interactions between

servers and the time-variability of load changes, limiting their

effectiveness and reliability in practical applications [21-23].

Therefore, the main content of this study focuses on two

International Journal of Heat and Technology
Vol. 42, No. 1, February, 2024, pp. 320-328

Journal homepage: http://iieta.org/journals/ijht

320

https://orcid.org/0009-0007-6166-0300
https://orcid.org/0009-0004-1569-8218
https://orcid.org/0009-0005-2141-7918
https://orcid.org/0009-0003-8209-1072
https://crossmark.crossref.org/dialog/?doi=10.18280/ijht.420134&domain=pdf

innovative research areas. Firstly, a model that combines

genetic algorithms and neural networks is designed to solve

the inverse problem of the two-dimensional nonlinear heat

conduction equation, namely, the accurate prediction of

thermal physical parameters. The solution of the heat

conduction equation is reasonably associated with the

calculation of the weight values of backend servers in the next

period for the application of service load balancing

optimization. Secondly, based on this, an adaptive dynamic

load balancing strategy algorithm is proposed. By integrating

the heat conduction equation solution algorithm, the weighted

least connections algorithm in Nginx has been optimized and

improved, enabling dynamic adjustment of server weights

according to real-time load situations, and achieving adaptive

dynamic load balancing in web server clusters within cloud

services. This strategy not only enhances the flexibility and

efficiency of load balancing but also provides more stable and

reliable service guarantees for cloud services. Through these

two aspects of research, this study aims to offer new solutions

for the theory and practice of cloud service load balancing,

possessing high research value and application potential.

2. DESIGN OF A NEURAL NETWORK MODEL FOR

SOLVING THE TWO-DIMENSIONAL HEAT

CONDUCTION EQUATION

In this work, an efficient distributed parallel algorithm is

applied to address the problem of cloud service load balancing,

aiming to optimize and enhance service quality within cloud

computing environments. The engineering background of this

algorithm extends beyond the traditional scope of solving

outer material characteristics in aerospace vehicle thermal

protection systems, reaching into the domain of resource

allocation and task scheduling for backend servers in cloud

services. Specifically, the solution method of the heat

conduction equation is utilized to simulate and predict the

spatiotemporal distribution of server loads. Through real-time

monitoring of cloud servers' working temperatures and load

situations, the multi-dimensional, nonlinear, and time-varying

thermal conductivity coefficients are analogized as dynamic

adjustment parameters for server weights. The application

prospect is transformed into guiding the next cycle's server

weight distribution by analyzing real-time load data of servers,

using the results of the heat conduction equation solution to

achieve more efficient and balanced resource utilization. This

method ensures that cloud services can optimize resource

allocation in real-time adaptively, enhancing the overall

service response speed and processing capability while

maximizing resource utilization and reducing energy

consumption.

The method involves constructing a two-dimensional,

nonlinear, time-varying heat conduction model to simulate the

load distribution and changes of servers, akin to studying the

thermal conductivity characteristics of functionally graded

materials. A genetic algorithm combined with a neural

network is employed to approximate the solution of this

inverse problem, namely inferring the optimal weight values

of servers from observed load distributions. The numerical

solution of the forward problem, i.e., the expected load

distribution under known weight distribution, is used to

validate the approximate solution of the inverse problem and

conduct error analysis. The virtual boundary prediction

method accelerates the distributed computing process of the

forward problem and employs different prediction techniques

to enhance computational speed and reduce prediction error.

This process is iterated until the error in server weight

adjustment falls within an acceptable range.

Despite progress in solving the inverse heat conduction

problem using genetic algorithms and neural networks, these

achievements have not yet been applied to solving the two-

dimensional non-steady-state variable coefficient

mathematical model, especially in the context of distributed

solving with parallel genetic-neural network algorithms in

high-speed local area network environments. This work

represents the first integration of such parallel algorithms with

the virtual boundary prediction method for the problem of

service load balancing in cloud service environments.

Specifically, a novel algorithm framework is developed,

simulating the heat conduction process to predict and analyze

server load distribution, and then utilizing an improved

genetic-neural network algorithm to dynamically adjust server

weights for load balancing. This algorithm achieves

distributed computing on high-speed local area networks,

significantly enhancing the efficiency of solution finding.

Figure 1 presents the representation of the load balancing

algorithm in the distributed computing model.

Figure 1. Representation of load balancing algorithm in a

distributed computing model

Similar to the numerical computation of traditional heat

transfer problems, a mathematical model for the server load

issue, including control equations and boundary conditions,

must first be established in this study. This model accounts for

the dynamic changes in server load, analogous to the

temperature distribution problem in heat conduction processes.

In the design of thermal protection systems for aerospace

vehicles, solving the characteristics of outer layer materials is

a crucial step to ensure their normal operation and protection

of internal structures under extreme temperatures. Originating

from a Cartesian coordinate system, a two-dimensional heat

conduction control equation is constructed to simulate the load

heat distribution among multiple servers in cloud services. In

this model depicted by the Cartesian coordinate system,

"temperature" represents the server load level, while "heat

flow" corresponds to the inflow and outflow of tasks. On this

basis, corresponding boundary conditions are set, such as the

maximum load capacity of servers and the arrival rate of

service requests, to reflect the actual operation environment of

cloud services. The two-dimensional heat conduction control

equation and its boundary conditions are as follows:

1 2 0 , 1, 0
i i i

j j a b s
s a a b b

       
= +      

       
 (1)

Considering that the thermal conductivity of thermal

protection system materials may vary across different layers in

the thickness direction, the mathematical model is adjusted to

allow for non-uniformity in thermal conductivity in the

thickness direction, i.e., the model is adjusted to allow changes

321

in thermal conductivity (representing the ease of load transfer

between servers) in the "thickness direction" (analogous to

load migration between servers). This implies that the rate of

load transfer between servers can differ, possibly depending

on the servers' configurations, network bandwidth, and other

factors. Such adjustments permit the consideration that load

migration between certain servers in actual cloud services

might be more efficient than between others. The entire

equation can thus be expressed as

∂i/∂s=∂/∂j(j∂i/∂a)+∂/∂b(j∂i/∂b) along with boundary

conditions. Assuming temperature is represented by i, and the

material's thermal conductivity is represented by j, this results

in the following mathematical model:

()

() () ()

() () ()

0 , 1, 0

, ,0 0

0, , 2

1, , 0, ,0, 0, ,1, 0. 0

i i i
j k a b s

s a a b b

i a b

i b s SIN s SIN b

i b s i a s i a s s

 

       
= +      

       
 =
 =

 = = = 

 (2)

To accurately estimate the thermal conductivity

characteristics of thermal protection materials, an objective

function considering temperature errors was constructed in

this study. This objective function evaluates the discrepancies

between experimental data and numerical solutions,

encompassing both measurement and model errors, that is, the

deviation between predicted values based on service load and

actual monitored values. The optimization of this objective

function aims to minimize prediction errors, ensuring that load

distribution closely matches actual demand, thereby

optimizing the overall performance and resource usage

efficiency of servers. Specifically, let j=j(a,i)=(X-a2)(Y-

Zi+Fi2)+a2(R+Di+Hi2) from experience, where X, Y, Z, F, R,

D, and H are unknown parameters, and let ϕ-=(X,Y,Z,F,R,D,H).

Assuming the temperature history at a point o is represented

by Sl(M,s), and the history of the calculated temperature value

at that point is denoted by Sz. Clearly, there is a difference

between Sl(su) and Sz(su). The following objective function

expression is established:

() () ()
22

1

1
,

V

u

K Sl Sz Sl su Sz su
V

 
=

= − = −   (3)

The entire problem is transformed into a nonlinear

optimization problem, that is, under given constraints, the

unknown parameters in the model (such as the position-

dependent thermal conductivity) are adjusted to minimize the

objective function. Using prior knowledge, upper and lower

bounds that give X, Y, Z, F, R, D, and H practical significance

are obtained, denoted as Xm, Xi, Ym, Yi, Zm, Zi, Fm, Fi, Rm, Ri,

Dm, Di, Hm, and Hi, respectively. Thus, the original problem is

transformed, with Xm≤X≤Xu, Ym≤Y≤Yi, Zm≤Z≤Zi, Fm≤F≤Fi,

Rm≤R≤Ri, Dm≤D≤Di, and Hm≤H≤Hi serving as constraints.

In the context of designing thermal protection systems for

aerospace vehicles, the inverse problem involves deducing the

material's thermal conductivity from observed temperature

data. Assuming the sought value of j is of the form: j=(1-

a2)(0.1-0.01i+0.001i2)+a2(1.0+0.1i+0.01i2), then the objective

function is I1=j(iaa+ibb)+ jaia+jbib, or i:=j(iaa+i)+H, where

H=H(a,b,s)=jaia+jbib.

The function for thermal conductivity coefficient is derived

to determine the direction of error reduction on the gradient.

The updating method can adopt gradient descent or other

optimization algorithms. The derivation results in

ja=2x(0.9+0.1mi+0.009i2)+[(1-a2)(0.002i-0.01)+a2(0.1+0.02i)]ia,

and jb=[(1-a2)(0.002i-0.01)+a2(0.1+0.02i)]ib. Further, let the

time step be represented by ∇s and the spatial step by g, then

the objective function is given by:

() () () () () ()1 1 1 1 1

1, 1, , 1 , 14
b b b b b

uk u k u k u k u ki i i i i fuk
+ + + + +

− + − ++ = + + + + (4)

where, ϑ=g2/j∇sfk=ϑi(b)
k+g2/jH, u,k=0,1,2,...,L, v=0,1,2,...,

i(v)
0k=SIN(2π(v))SIN(2πbk)i(v)

Lk=0, and i(v)
0k=0i(v)

u0=0i(v)
uL=0.

3. IMPLEMENTATION OF AN ADAPTIVE DYNAMIC

LOAD BALANCING STRATEGY FOR CLOUD

SERVICES

To enhance the performance status of web servers in

providing cloud services on private cloud platforms, a web

server cluster adaptive dynamic load balancing strategy for

cloud services was designed and implemented. This strategy is

based on the analogy of the heat conduction equation solution

method for calculating the weight values of backend servers

for the next cycle, as outlined in the previous section. The

proposed strategy improves upon the existing Nginx weighted

least connections algorithm by introducing a dynamic weight

adjustment mechanism based on the heat conduction equation,

thereby enhancing its adaptability. Given Nginx's widespread

application in various web service scenarios and its

capabilities for high concurrency handling and high

configurability, the implementation of an adaptive load

balancing strategy within this architecture has a solid practical

foundation.

Figure 2. Implementation method of the adaptive dynamic

load balancing strategy for cloud services

Specifically, this improved strategy takes the current

number of connections and performance indicators of servers

as "temperature" parameters, continuously monitoring and

estimating each server's "temperature change", i.e., the trend

of performance status change, through a numerical method

akin to solving the heat conduction equation. Subsequently,

server weights are dynamically adjusted according to these

trends; servers with lower loads ("colder") receive higher

weights, thus being more likely to accept new connection

requests, while servers with higher loads ("hotter") have their

weights reduced. Furthermore, backend servers periodically

collect and report their performance parameters, such as

Central Processing Unit (CPU) load, memory usage, and

322

network bandwidth usage, to a central computing module.

Employing an algorithm analogous to the heat conduction

equation, this module predicts future performance trends of

servers based on the collected performance parameters and

calculates new weight values for each server accordingly. This

process mimics the transfer of heat between materials, aiming

to achieve an equilibrium distribution of server performance

status. These weight values are then updated in the load

balancer, which decides which server should receive new

requests based on these weights, thus realizing task

distribution based on the actual performance status of servers.

Figure 2 presents the implementation method of the adaptive

dynamic load balancing strategy for cloud services.

3.1 Improvements to the weighted least connections

algorithm

The solution concept of the heat conduction equation has

been applied to service load balancing optimization,

particularly in improving the weighted least connections

algorithm. In this enhanced algorithm, not only are the current

connection numbers of backend servers considered, analogous

to temperature, but server weights, analogous to heat capacity,

are also introduced as adjusting factors. This equates to

considering the "thermal efficiency" of each server in

processing requests. When several servers exhibit the same

ratio of connections to weight, the server with the largest

weight, akin to the object with the highest heat capacity, is

chosen to handle the next request. Moreover, the performance

parameters of servers are updated periodically, influencing the

dynamic adjustment of weights, similar to how temperature

changes in an object affect the distribution of heat flow in heat

conduction. Figure 3 displays the flowchart of the improved

weighted least connections algorithm. Assuming the ratio of

the target server's connection number to weight is represented

by Z(Tl)/Q(Tl), and the minimum value obtained for this ratio

is denoted by MIN{Z(Tu)/Q(Tu)}, the following is established:

() () () () / /l l u uZ T Q T MIN Z T Q T= (5)

Figure 3. Flowchart of the improved weighted least connections algorithm

3.2 Weight calculation

The dynamic weight adjustment mechanism established in

this study centers on the principle that the weights of backend

servers are not statically set but are adjusted periodically based

on the real-time load performance of the servers. Analogous to

the redistribution of heat flow caused by temperature changes

in an object during heat conduction, the performance

parameters of servers, likened to temperature, are periodically

evaluated and calculated to serve as the basis for weight

adjustment. Just as heat tends to flow from high-temperature

areas to low-temperature areas until thermal equilibrium is

reached, the algorithm adjusts weights to allow servers that

performed better (cooler) in the previous cycle to receive

higher weights (larger "heat capacity") in the next cycle, taking

on more connections, while servers with already high loads

(hotter) see a reduction in their weights ("heat capacity"

decreased), accepting fewer new requests. This dynamic

adjustment strategy simulates the natural equilibrium process

of heat conduction, enabling server clusters to adaptively

adjust their load based on individual performance, thereby

maintaining optimal overall system performance.

CPU idle rate, memory idle rate, and Input/Output (I/O) idle

rate are selected as indicators of server load performance, and

real-time data of these performance indicators are utilized to

dynamically adjust server weights. This method is akin to

considering the thermal conductivity of different materials in

heat conduction, where the immediacy and accuracy of server

performance indicator data act as key factors ensuring efficient

heat transfer. To mitigate the transient performance deviations

that periodic sampling might introduce, data are not merely

collected at the end of cycle S but also at the midpoint S/2, and

average values are calculated. This approach is similar to

examining average temperature changes over a period rather

than the temperature gradient at a single moment in heat

conduction analysis. It helps to more accurately capture server

performance changes, based on which weights are adjusted to

ensure even load distribution. The selection of the length of

period T is akin to determining an appropriate time step in heat

conduction experiments; it should be neither too short, causing

resource wastage due to frequent data collection, nor too long,

preventing timely response to performance changes and

leading to uneven load distribution. Assuming a backend

server is represented by Tu, with weight denoted by D(Tu),

323

CPU usage at moments S and S/2 represented by ZS and ZS/2,

memory usage at moments S and S/2 by LS and LS/2, and I/O

usage at moments S and S/2 by US and US/2, the following

formula calculates the weight of each server:

()

2

2

2

* 1
2

* * 1
2

* 1
2

S S

CPU

S S

u MEM

S S

IO

Z Z

J

L L

D T O j

U U

j

 +  
  

−  
   

 
+  

  = + −  
   

 
+  

  + −  
  
  

 (6)

The significance of CPU, memory, and I/O in performance,

represented by jCPU, kMEM, and jIO, satisfies the following

equation:

1CPU MEM IOj j j+ + = (7)

3.3 Reference parameters and threshold values for weight

change

The CPU and memory utilization rates of servers are

considered key indicators representing the server load

"temperature," analogous to the temperature of materials.

When the CPU or memory utilization of a server increases to

80%, it is viewed as entering a "high temperature zone,"

capable of bearing less new load "heat." Consequently, the

weight adjustment parameter for such servers is halved,

effectively reducing their "heat capacity" and decreasing the

number of requests they accept in the next cycle. Should the

utilization further rise to 90%, it indicates that the server is

"overheated" and in an overload state. At this point, the P value

is adjusted to 0.1, significantly lowering the server's weight to

prevent it from undertaking additional load. This is similar to

reducing the heat flow input to areas of high heat concentration

in the heat conduction process, ensuring a uniform and stable

temperature distribution throughout the system. Since

reaching an 80% utilization rate for I/O is relatively rare,

adjustments for this within the model are not a primary

consideration, though it remains a monitoring indicator for

assessing the overall load situation of servers. The

aforementioned scenarios can be expressed as follows:

2 2

2 2

2 2

0.8 0.8 1
2 2

0.8 0.8 0.5
2 2

0.9 0.9 0.1
2 2

S S S S

S S S S

S S S S

Z Z L L

AND o

Z Z L L

OR o

Z Z L L

OR o

+ +
   =



+ +


  =


+ +


  =


 (8)

To avoid overburdening the Nginx load balancer with

frequent weight calculations, a concept of a threshold value,

akin to the temperature gradient threshold in thermodynamic

equilibrium, is introduced. Weight updates are conducted only

when the change in server performance parameters exceeds

this threshold, indicating a significant shift in the system's

"temperature distribution." This is equivalent to considering

heat exchange in the heat conduction process only when the

temperature difference between objects surpasses a certain

value, thus controlling the distribution of thermal energy to

maintain system homeostasis. Weight remains unchanged

when the absolute difference between the current cycle's D(Tu)

and the previous cycle's DOL(Tu) is less than Z. Weight is

updated only when the absolute difference exceeds Z. The

formula for weight update is provided as follows:

() () () ()

() () () ()

OL u u NE u OL u

OL u u NE u u

D T D T ZD T D T

D T D T ZD T D T

 −  =


−  =

 (9)

3.4 Dynamic weight calculation for load balancers

A decimal weight value, D(Tu), reflecting the current load

condition of the server, can be derived from the idle rates of

the server's CPU, memory, and I/O. This weight value,

analogous to the temperature gradient in heat conduction,

indicates the trend and intensity of load energy flow among

servers. A high idle rate for a server implies a lower

"temperature," meaning it can bear more "heat energy," i.e.,

handle more requests. However, given that Nginx, serving as

the load balancer, requires integer-form weight values, these

decimal weight values must be converted into integer weights

suitable for Nginx processing. This conversion process

ensures the preservation of the relative proportions of weight

values, thus maintaining the relative fairness and efficiency of

load distribution among servers. The integer weight values

q1,q2,…qv for the backend servers on the Nginx side are

determined based on the proportion of each server's D(Tu), as

follows:

()

()

()

()

()

()

1

1

1

2

2

1

1

*

*

*

v

u

u

v

u

u

v

v v

u

u

D T
q V

D T

D T
q V

D T

D T
q V

D T

=

=

=


=




 =







=









 (10)

Figure 4. Network topology diagram of the load balancing

test environment

324

This method ensures that even in the process of weight

value discretization, requests can be dynamically and

reasonably distributed to each server based on real-time

changes in server performance parameters, leading to a more

balanced server load and thus optimizing the performance of

the entire cloud service system. Figure 4 provides the network

topology diagram of the load balancing test environment.

4. EXPERIMENTAL RESULTS AND ANALYSIS

The results of solving the heat conduction equation, as

presented in Table 1, compare three different methods: the

back propagation (BP) neural network, genetic algorithm, and

the method proposed in this study, which combines the genetic

algorithm and neural network. The identification values

derived from each method were compared with actual values,

using absolute and relative errors as metrics to assess the

accuracy of the models. For the parameter X, the method

proposed in this study exhibited the smallest relative error at

1.48%, compared to 2.63% and 1.89% for the BP neural

network and genetic algorithm, respectively. This indicates the

proposed method's superior accuracy in estimating parameter

X. In terms of parameters Y, Z, F, R, D, and H, the proposed

method also demonstrated lower relative errors, indicating

better overall precision. It can be concluded that the method

integrating the genetic algorithm and neural network, as

proposed in this study, predicts thermal physical parameters

more accurately in solving the inverse problem of the two-

dimensional nonlinear heat conduction equation, compared to

using the BP neural network or genetic algorithm alone. The

effectiveness of the proposed method is evidenced by the

smallest absolute and relative errors in the identification

values of all parameters, illustrating higher accuracy and

reliability in parameter estimation.

Table 1. Comparative results of solving the heat conduction equation

Parameter X Y Z F R D H

Actual value 1.0 0.1 0.01 0.001 1.0 0.1 0.01

BP neural network

Identification value 0.9652 0.11245 0.00948 0.00098 1.1245 0.09456 0.00912

Absolute error 0.0265 0.00312 0.00048 0.00009 0.02856 0.00421 0.00077

Relative error (%) 2.63 3.12 4.78 9.01 2.89 4.26 7.78

Genetic algorithm

Identification value 1.0156 0.0978 0.0097 0.00093 0.9785 0.1147 0.00935

Absolute error 0.0187 0.0017 0.0002 0.00006 0.0125 0.0031 0.00052

Relative error (%) 1.89 1.78 2.01 3.12 1.34 3.21 5.21

Proposed method

Identification value 1.02356 0.09785 0.01126 0.00095 0.98542 0.11256 0.00945

Absolute error 0.01452 0.00156 0.00025 0.00005 0.02154 0.00336 0.00044

Relative error (%) 1.48 1.65 2.56 5.1 2.15 3.38 4.45

Table 2. Relationship between the number of computer nodes and running time

Number of Computer Nodes 1 2 3 4 5

Running time (seconds) 2356.658 1635.124 987.235 825.648 759.361

Number of Computer Nodes 6 7 8 9 10

Running time (seconds) 712.365 689.214 785.124 821.236 934.586

Figure 5. Relationship between the number of computer

nodes and running time

Table 2 illustrates the impact of increasing the number of

computer nodes on the running time of the method proposed.

It is observed from the table that, as the number of computer

nodes increases, the overall running time tends to decrease,

although not linearly. Specifically, when the number of nodes

increases from 1 to 5, the running time significantly reduces

from 2356.658 seconds to 759.361 seconds. This indicates that

the completion time of tasks can be significantly reduced with

the addition of more computing resources, aligning with the

fundamental principles of parallel computing. However, as the

number of nodes continues to increase, the reduction in

running time begins to diminish, and even increases when

moving from 7 to 8 computer nodes, due to the influence of

communication overhead and the management costs of task

distribution. The minimum running time of 689.214 seconds

is reached with 7 computer nodes, after which an increase in

node count results in increased running time. It can be

concluded that the model proposed in this study effectively

utilizes parallel computing resources to reduce running time,

as clearly demonstrated in the data from one to five nodes.

Figure 5 depicts how the running time of the proposed

method changes with the increase in the number of computer

nodes. As the number of nodes increases from 1 to 7, the

running time decreases from 2477 seconds to 687 seconds,

indicating that parallel processing can significantly reduce

computation time. However, when the number of nodes

increases to 8, the running time paradoxically rises to 788

seconds, and as the number of nodes continues to increase to

10, the running time remains at a higher level (815 seconds

and 941 seconds). This is due to the fact that beyond a certain

point, the overhead of network communication and task

coordination exceeds the time savings brought by parallel

computing. It can be concluded that the model proposed in this

study effectively leverages parallel computing resources, as

325

evident from the significant decrease in running time when

increasing the node count from 1 to 7. This indicates that the

model is well-designed for parallelization, effectively

distributing computing tasks across multiple processing nodes.

Table 3 provides parallel computing performance data for

two methods: the traditional genetic algorithm and the method

proposed in this study, which integrates the genetic algorithm

and neural network. This data includes the parallel speedup

ratio and efficiency as the number of computer nodes increases

for both methods. Analyzing these metrics helps understand

the parallel performance of the models. Data from Table 3

show that for the traditional genetic algorithm, the speedup

ratio increases with the number of nodes but begins to decline

starting from seven nodes, indicating a weakening of

parallelization effects beyond a certain level of node increase.

Conversely, the parallel speedup ratio of the method proposed

in this study generally increases with the number of nodes,

although it also declines after eight nodes. However, the

magnitude of this decline is less than that of the traditional

genetic algorithm, and it remains constant at nine nodes,

indicating maintained performance at higher levels of

parallelism. The parallel efficiency of the traditional genetic

algorithm shows a clear downward trend as the number of

nodes increases, whereas the parallel efficiency of the method

proposed in this study, although also decreasing with more

nodes, maintains a higher level overall. Notably, at three nodes,

it reaches an efficiency of 0.815, meaning a more than 2.5

times speed increase with a threefold increase in computing

resources. In summary, the model combining the genetic

algorithm and neural network demonstrates superior

performance in parallel computing compared to the traditional

genetic algorithm, especially in maintaining high parallel

efficiency and speedup ratio. This indicates that the proposed

method can more effectively utilize increased computing

resources to enhance computation speed and reduce

computation time.

Table 3. Speedup ratio and parallel efficiency

Number of Computer Nodes 2 3 4 5 6 7 8 9 10

Genetic algorithm
Parallel speedup ratio 1.53 2.23 2.78 3.21 3.12 3.45 2.89 2.31 2.24

Parallel efficiency 0.758 0.715 0.712 0.624 0.524 0.512 0.356 0.256 0.214

Proposed method
Parallel speedup ratio 1.4562 2.365 2.895 3.125 3.215 3.456 3.124 3.124 2.564

Parallel efficiency 0.745 0.815 0.723 0.635 0.556 0.519 0.378 0.325 0.256

Figure 6. Line graph of the relationship between average

response time and cycle T

Figure 6 shows the change in the system's average response

time as cycle T increases. It is observed that between cycles 5

and 7, the average response time decreases from 888

milliseconds to 836 milliseconds. This indicates an

improvement in the system's response time as the cycle

increases, due to the effective distribution of requests by the

adaptive dynamic load balancing strategy proposed in this

study, thereby reducing response time. However, from cycle 7

to cycle 10, the average response time gradually increases,

from 836 milliseconds to 918 milliseconds. This trend

suggests that beyond a certain cycle length, the average

response time increases due to the influence of the load

distribution strategy. This is attributed to the system needing

to handle more requests before re-evaluating and adjusting

server weights over longer cycles, leading to resource overload

or imbalance in the short term. It can be concluded that the

algorithm proposed in this study effectively reduces average

response time in the initial phase (i.e., as T increases from 5 to

7), demonstrating the algorithm's effectiveness in reflecting

and adjusting to real-time loads. This emphasizes the

algorithm's ability to adapt promptly in the face of dynamic

load changes, thereby optimizing performance. As the cycle

continues to increase, system performance begins to decline,

highlighting some limitations in the load distribution of the

algorithm or the improper setting of cycle lengths. Excessively

long cycles lead to untimely adjustments; therefore, in

practical applications, the cycle length needs to be optimized

based on system load characteristics to ensure that the

response time remains within an ideal range.

Figure 7. Line graph illustrating the relationship between

average response time and concurrency

Figure 7 displays the changes in average response time

under different levels of concurrency for the adaptive dynamic

load balancing strategy and the improved weighted least

connections algorithm proposed in this study. At lower levels

of concurrency (0 to 400), the response time trends of both

algorithms are similar, and the values are close, indicating that

under light load conditions, both algorithms can effectively

handle requests with little difference in response time. As the

326

concurrency continues to increase (400 to 1000), the increase

in average response time for the adaptive dynamic load

balancing strategy is less than that for the improved weighted

least connections algorithm. For example, at a concurrency of

1000, the response time for the adaptive strategy is 510

milliseconds, compared to 530 milliseconds for the improved

weighted least connections algorithm. This demonstrates the

advantage of the adaptive strategy under moderate load

conditions. At higher levels of concurrency, especially above

1400, the response time for the adaptive strategy is over 150

milliseconds lower than that for the improved weighted least

connections algorithm. This gap illustrates that under high

load conditions, the adaptive strategy can more effectively

distribute the load, maintaining lower response time. The

algorithm proposed in this study shows good performance

under different load conditions, especially in maintaining low

latency under high concurrency situations, thereby enhancing

user experience.

Figure 8. Line graph of the relationship between throughput

and concurrency

Figure 8 illustrates the throughput of the adaptive dynamic

load balancing strategy and the improved weighted least

connections algorithm under various levels of concurrency. It

is observed that at low concurrency levels (0 to 200), the

throughput of both algorithms is nearly identical, with the

adaptive dynamic load balancing strategy even showing

slightly lower throughput at zero concurrency. This indicates

that under low load conditions, both algorithms are capable of

efficiently handling requests with comparable performance.

As the concurrency increases to 600 and 800, the throughput

of both algorithms decreases, but the adaptive dynamic load

balancing strategy exhibits less reduction, demonstrating

better stability. When concurrency further increases to

between 1000 and 1400, the throughput of the adaptive

dynamic load balancing strategy shows better stability and a

slight increase, while the throughput of the improved weighted

least connections algorithm first declines and then stabilizes.

Notably, at a concurrency of 1400, the throughput of the

adaptive strategy is approximately 30 higher than that of the

improved algorithm. With a further increase in concurrency to

1600, the throughput of the adaptive dynamic load balancing

strategy decreases but remains above 965, whereas the

throughput of the improved weighted least connections

algorithm drops to around 950. It can be concluded that the

adaptive dynamic load balancing strategy maintains

comparable performance to the improved weighted least

connections algorithm at low to medium concurrency levels,

and exhibits better stability and efficiency at high concurrency

levels. Facing a large number of concurrent requests, the

proposed algorithm maintains a higher throughput, reflecting

its excellent adaptive capability and effective management of

load fluctuations.

5. CONCLUSION

The article initially introduces a novel model that combines

the genetic algorithm and neural network to solve the inverse

problem of the two-dimensional nonlinear heat conduction

equation, namely predicting thermal physical parameters

through observational data. The innovation of this method lies

in leveraging the global search capability of the genetic

algorithm and the powerful fitting ability of the neural network

to achieve high-accuracy solutions for complex heat

conduction problems. Building on the first part, an adaptive

dynamic load balancing strategy algorithm is proposed. By

applying the solution of the heat conduction equation to

calculate the weights of backend servers, this method

optimizes and improves the weighted least connections

algorithm in Nginx, achieving the objective of dynamically

adjusting server weights based on real-time load. This offers a

new solution for load balancing in web server clusters within

cloud services.

The article compares the results of solving the heat

conduction equation with the proposed model, verifying its

accuracy. The relationship between the number of computer

nodes and running time is discussed, and the model's

computational performance is studied by comparing speedup

ratios and parallel efficiencies. Line graphs illustrating the

relationship between average response time and cycle T,

average response time and concurrency, and throughput and

concurrency are drawn, comparing and analyzing the

performance of different load balancing strategies.

Future research will further optimize the model combining

the genetic algorithm and neural network, enhancing its

solution accuracy and speed in more complex situations. The

application of the proposed model and algorithm to the

solution of other types of partial differential equations, as well

as optimization problems in other fields, will be explored.

REFERENCES

[1] Hemam, S.M., Hioual, O., Hioual, O. (2023). Dynamic

load balancing upon the replication and deletion of cloud

services. Journal of Intelligent & Fuzzy Systems, 44(1):

381-393. https://doi.org/10.3233/JIFS-221989

[2] Chanyour, T., Malki, M.O.C. (2021). Deployment and

Migration of virtualized services with joint optimization

of backhaul bandwidth and load balancing in mobile

edge-cloud environments. International Journal of

Advanced Computer Science and Applications, 12(3):

566-576.

https://doi.org/10.14569/IJACSA.2021.0120368

[3] Dornala, R.R. (2023). An advanced multi-model cloud

services using load balancing algorithms. In 2023 5th

International Conference on Inventive Research in

Computing Applications, pp. 1065-1071.

https://doi.org/10.1109/ICIRCA57980.2023.10220892

[4] Saba, T., Rehman, A., Haseeb, K., Alam, T., Jeon, G.

(2023). Cloud-edge load balancing distributed protocol

327

for IoE services using swarm intelligence. Cluster

Computing, 26(5): 2921-2931.

https://doi.org/10.1007/s10586-022-03916-5

[5] Mohammadian, V., Navimipour, N.J., Hosseinzadeh, M.,

Darwesh, A. (2023). LBAA: A novel load balancing

mechanism in cloud environments using ant colony

optimization and artificial bee colony algorithms.

International Journal of Communication Systems, 36(9):

e5481. https://doi.org/10.1002/dac.5481

[6] Halappa, A., Rajesh, A. (2023). Performance analysis of

load balancing mechanism in cloud computing. In 2023

International Conference on Applied Intelligence and

Sustainable Computing, Dharwad, India, pp. 1-5.

https://doi.org/10.1109/ICAISC58445.2023.10199269

[7] Choubey, P., Mohapatra, B. (2022). Comparative

analysis of load balancing algorithm in cloud computing.

In International Conference on Signal Processing and

Integrated Networks, Noida, India, pp. 187-199.

https://doi.org/10.1007/978-981-99-1312-1_15

[8] Ramya, K., Ayothi, S. (2023). Hybrid dingo and whale

optimization algorithm-based optimal load balancing for

cloud computing environment. Transactions on

Emerging Telecommunications Technologies, 34(5):

e4760. https://doi.org/10.1002/ett.4760

[9] Zhang, Y., Jia, Y., Lin, Y. (2023). A new multiscale

algorithm for solving the heat conduction equation.

Alexandria Engineering Journal, 77: 283-291.

https://doi.org/10.1016/j.aej.2023.06.066

[10] He, H., Zhang, X. (2024). A general numerical method

for solving the three-dimensional hyperbolic heat

conduction equation on unstructured grids. Computers &

Mathematics with Applications, 158: 85-94.

https://doi.org/10.1016/j.camwa.2024.01.012

[11] Saleh, M., Kovács, E., Kallur, N. (2023). Adaptive step

size controllers based on Runge-Kutta and linear-

neighbor methods for solving the non-stationary heat

conduction equation. Networks and Heterogeneous

Media, 18(3): 1059-1082.

https://doi.org/10.3934/nhm.2023046

[12] Shevelev, V.V. (2023). The method of integral

transformations for solving boundary-value problems for

the heat conduction equation in limited areas containing

a moving boundary. Journal of Engineering Physics and

Thermophysics, 96(1): 168-177.

https://doi.org/10.1007/s10891-023-02673-5

[13] Al-Nuaimi, B.T., Al-Mahdawi, H.K., Albadran, Z.,

Alkattan, H., Abotaleb, M., El-kenawy, E.S.M. (2023).

Solving of the inverse boundary value problem for the

heat conduction equation in two intervals of time.

Algorithms, 16(1): 33.

https://doi.org/10.3390/a16010033

[14] Yang, Z., Wang, Y., Huang, Z., Rao, Z. (2021).

Characteristic analysis of a new high-static-low-dynamic

stiffness vibration isolator based on the buckling circular

plate. Journal of Low Frequency Noise, Vibration and

Active Control, 40(3): 1526-1539.

https://doi.org/10.1177/1461348420904864

[15] Huang, M.F., Tu, Z., Li, Q., Lou, W., Li, Q.S. (2017).

Dynamic wind load combination for a tall building based

on copula functions. International Journal of Structural

Stability and Dynamics, 17(8): 1750092.

https://doi.org/10.1142/S0219455417500924

[16] Chi, X., Yao, J., Yu, H. (2018). A hybrid load balance

method using evolutionary computing. In Proceedings of

the Australasian Joint Conference on Artificial

Intelligence-Workshops, Wellington, New Zealand, pp.

15-19. https://doi.org/10.1145/3314487.3314490

[17] Lifflander, J., Slattengren, N.L., Pébaÿ, P.P., Miller, P.,

Rizzi, F., Bettencourt, M.T. (2021). Optimizing

Distributed Load Balancing for Workloads with Time-

Varying Imbalance. In 2021 IEEE International

Conference on Cluster Computing, Portland, OR, USA,

pp. 238-249.

https://doi.org/10.1109/Cluster48925.2021.00039

[18] Lin, Z., Liu, X., Zhou, H., Wu, J. (2022). Adaptive time-

varying routing for energy saving and load balancing in

wireless body area networks. IEEE Transactions on

Mobile Computing, 23(1): 90-101.

https://doi.org/10.1109/TMC.2022.3213471

[19] Xu, X., Zhao, N., Wang, L., Yao, X., Zhou, L. (2023).

Research on time-varying dynamic response aggregation

model of distributed generator participating in active

distribution network. Energy Reports, 9: 1546-1556.

https://doi.org/10.1016/j.egyr.2023.04.159

[20] Karpeev, A. (2022). Dynamic load balancing algorithm

for continuum mechanics problems with essential

redistribution of workloads among the processes. Journal

of Physics: Conference Series, 2154(1): 012007.

https://doi.org/10.1088/1742-6596/2154/1/012007

[21] Wang, F., Yao, H., Zhang, Q., Wang, J., Gao, R., Guo,

D., Guizani, M. (2021). Dynamic distributed multi-path

aided load balancing for optical data center networks.

IEEE Transactions on Network and Service Management,

19(2): 991-1005.

https://doi.org/10.1109/TNSM.2021.3125307

[22] Zhu, A., Chang, Q., Xu, J., Ge, W. (2023). A dynamic

load balancing algorithm for CFD–DEM simulation with

CPU–GPU heterogeneous computing. Powder

Technology, 428: 118782.

https://doi.org/10.1016/j.powtec.2023.118782

[23] Mouawad, M., Mah, F., Dziong, Z. (2022). RRH-Sector

selection and load balancing based on MDP and dynamic

RRH-Sector-BBU mapping in C-RAN. Computer

Networks, 215: 109192.

https://doi.org/10.1016/j.comnet.2022.109192

328

