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 With the rapid development of cloud computing, load balancing technology in cloud 

services has become a critical component in ensuring service quality and system stability. 

Traditional load balancing methods, often relying on static parameters and preset rules, 

face challenges in flexibly responding to the dynamic changes in cloud service demands. 

Recent studies have begun to explore the application of machine learning algorithms to 

optimize load balancing, aiming to enhance the system's adaptive adjustment capabilities. 

This study proposes an innovative approach, applying the solution of the heat conduction 

equation to the optimization of cloud service load balancing issues. It simulates and 

analyzes the dynamic changes in load distribution, proposing corresponding optimization 

strategies. The first part of this research focuses on designing a model that integrates 

genetic algorithms and neural networks to solve the inverse problem of the two-

dimensional nonlinear heat conduction equation, namely, the accurate prediction of 

thermal physical parameters. By simulating the heat conduction process, this model can 

reflect the dynamic distribution characteristics of server loads and guide the adjustment 

strategy of weights. Furthermore, an adaptive dynamic load balancing strategy algorithm 

is proposed. By optimizing the existing engine x (Nginx) weighted least connections 

algorithm, an efficient adaptive algorithm is designed and implemented. This algorithm 

adjusts server weights dynamically based on real-time load data, enabling cloud services 

to respond more flexibly and efficiently to different service requests. The findings of this 

research not only enhance the processing capability and resource utilization rate of cloud 

services but also provide more scientific and precise theoretical support for load balancing 

through the introduction of new algorithmic models. Additionally, the proposed adaptive 

dynamic load balancing strategy algorithm has demonstrated good performance in practical 

deployment, offering new perspectives and technical paths for the research and practice of 

cloud service load balancing. 
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1. INTRODUCTION 

 

As cloud computing technology has proliferated and 

evolved, the mechanism of load balancing in cloud services 

has emerged as one of the key technologies to ensure the 

reliability and efficiency of services [1-3]. The core challenge 

of load balancing lies in the rational allocation of resources to 

address the constantly changing service requests and system 

loads [4, 5]. Traditional load balancing strategies, often based 

on preset rules and static parameters, lack dynamic 

adaptability, making it challenging to cope with the 

complexity and time-variability in large-scale distributed 

systems [6-8]. Against this backdrop, the application of the 

heat conduction equation's solution method is innovatively 

proposed for optimizing cloud service load balancing, with the 

aim of enhancing the processing capability and resource 

utilization efficiency of cloud services. 

To date, the optimization research on cloud service load 

balancing has not fully explored the possibility and potential 

advantages of integrating physical models, such as the heat 

conduction equation, with machine learning algorithms [9, 10]. 

The application of the heat conduction equation's solution 

theory to the optimization of service load balancing not only 

provides a theoretical basis for the dynamic adjustment of 

server weights but also guides the formulation of practical load 

distribution strategies [11-13]. This interdisciplinary research 

approach offers a new perspective for cloud service load 

balancing, contributing to the enhancement of algorithm 

intelligence and adaptability, and holds significant research 

importance for improving the overall performance of cloud 

services. 

However, existing research methods face limitations when 

addressing dynamic load balancing issues [14-17]. For 

instance, algorithms based on static rules struggle to adapt to 

the dynamic changes in load, and traditional prediction models 

often require extensive historical data, with high 

computational complexity and slow response speed [18-20]. 

Moreover, current methods have difficulty accurately 

describing and dealing with the nonlinear interactions between 

servers and the time-variability of load changes, limiting their 

effectiveness and reliability in practical applications [21-23]. 

Therefore, the main content of this study focuses on two 
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innovative research areas. Firstly, a model that combines 

genetic algorithms and neural networks is designed to solve 

the inverse problem of the two-dimensional nonlinear heat 

conduction equation, namely, the accurate prediction of 

thermal physical parameters. The solution of the heat 

conduction equation is reasonably associated with the 

calculation of the weight values of backend servers in the next 

period for the application of service load balancing 

optimization. Secondly, based on this, an adaptive dynamic 

load balancing strategy algorithm is proposed. By integrating 

the heat conduction equation solution algorithm, the weighted 

least connections algorithm in Nginx has been optimized and 

improved, enabling dynamic adjustment of server weights 

according to real-time load situations, and achieving adaptive 

dynamic load balancing in web server clusters within cloud 

services. This strategy not only enhances the flexibility and 

efficiency of load balancing but also provides more stable and 

reliable service guarantees for cloud services. Through these 

two aspects of research, this study aims to offer new solutions 

for the theory and practice of cloud service load balancing, 

possessing high research value and application potential. 

 

 

2. DESIGN OF A NEURAL NETWORK MODEL FOR 

SOLVING THE TWO-DIMENSIONAL HEAT 

CONDUCTION EQUATION 

 

In this work, an efficient distributed parallel algorithm is 

applied to address the problem of cloud service load balancing, 

aiming to optimize and enhance service quality within cloud 

computing environments. The engineering background of this 

algorithm extends beyond the traditional scope of solving 

outer material characteristics in aerospace vehicle thermal 

protection systems, reaching into the domain of resource 

allocation and task scheduling for backend servers in cloud 

services. Specifically, the solution method of the heat 

conduction equation is utilized to simulate and predict the 

spatiotemporal distribution of server loads. Through real-time 

monitoring of cloud servers' working temperatures and load 

situations, the multi-dimensional, nonlinear, and time-varying 

thermal conductivity coefficients are analogized as dynamic 

adjustment parameters for server weights. The application 

prospect is transformed into guiding the next cycle's server 

weight distribution by analyzing real-time load data of servers, 

using the results of the heat conduction equation solution to 

achieve more efficient and balanced resource utilization. This 

method ensures that cloud services can optimize resource 

allocation in real-time adaptively, enhancing the overall 

service response speed and processing capability while 

maximizing resource utilization and reducing energy 

consumption. 

The method involves constructing a two-dimensional, 

nonlinear, time-varying heat conduction model to simulate the 

load distribution and changes of servers, akin to studying the 

thermal conductivity characteristics of functionally graded 

materials. A genetic algorithm combined with a neural 

network is employed to approximate the solution of this 

inverse problem, namely inferring the optimal weight values 

of servers from observed load distributions. The numerical 

solution of the forward problem, i.e., the expected load 

distribution under known weight distribution, is used to 

validate the approximate solution of the inverse problem and 

conduct error analysis. The virtual boundary prediction 

method accelerates the distributed computing process of the 

forward problem and employs different prediction techniques 

to enhance computational speed and reduce prediction error. 

This process is iterated until the error in server weight 

adjustment falls within an acceptable range. 

Despite progress in solving the inverse heat conduction 

problem using genetic algorithms and neural networks, these 

achievements have not yet been applied to solving the two-

dimensional non-steady-state variable coefficient 

mathematical model, especially in the context of distributed 

solving with parallel genetic-neural network algorithms in 

high-speed local area network environments. This work 

represents the first integration of such parallel algorithms with 

the virtual boundary prediction method for the problem of 

service load balancing in cloud service environments. 

Specifically, a novel algorithm framework is developed, 

simulating the heat conduction process to predict and analyze 

server load distribution, and then utilizing an improved 

genetic-neural network algorithm to dynamically adjust server 

weights for load balancing. This algorithm achieves 

distributed computing on high-speed local area networks, 

significantly enhancing the efficiency of solution finding. 

Figure 1 presents the representation of the load balancing 

algorithm in the distributed computing model. 

 

 
 

Figure 1. Representation of load balancing algorithm in a 

distributed computing model 

 

Similar to the numerical computation of traditional heat 

transfer problems, a mathematical model for the server load 

issue, including control equations and boundary conditions, 

must first be established in this study. This model accounts for 

the dynamic changes in server load, analogous to the 

temperature distribution problem in heat conduction processes. 

In the design of thermal protection systems for aerospace 

vehicles, solving the characteristics of outer layer materials is 

a crucial step to ensure their normal operation and protection 

of internal structures under extreme temperatures. Originating 

from a Cartesian coordinate system, a two-dimensional heat 

conduction control equation is constructed to simulate the load 

heat distribution among multiple servers in cloud services. In 

this model depicted by the Cartesian coordinate system, 

"temperature" represents the server load level, while "heat 

flow" corresponds to the inflow and outflow of tasks. On this 

basis, corresponding boundary conditions are set, such as the 

maximum load capacity of servers and the arrival rate of 

service requests, to reflect the actual operation environment of 

cloud services. The two-dimensional heat conduction control 

equation and its boundary conditions are as follows: 

 

1 2 0 , 1, 0
i i i

j j a b s
s a a b b

       
= +      

       
 (1) 

 

Considering that the thermal conductivity of thermal 

protection system materials may vary across different layers in 

the thickness direction, the mathematical model is adjusted to 

allow for non-uniformity in thermal conductivity in the 

thickness direction, i.e., the model is adjusted to allow changes 

321



 

in thermal conductivity (representing the ease of load transfer 

between servers) in the "thickness direction" (analogous to 

load migration between servers). This implies that the rate of 

load transfer between servers can differ, possibly depending 

on the servers' configurations, network bandwidth, and other 

factors. Such adjustments permit the consideration that load 

migration between certain servers in actual cloud services 

might be more efficient than between others. The entire 

equation can thus be expressed as 

∂i/∂s=∂/∂j(j∂i/∂a)+∂/∂b(j∂i/∂b) along with boundary 

conditions. Assuming temperature is represented by i, and the 

material's thermal conductivity is represented by j, this results 

in the following mathematical model: 

 

( )

( ) ( ) ( )

( ) ( ) ( )

0 , 1, 0

, ,0 0

0, , 2

1, , 0, ,0, 0, ,1, 0. 0

i i i
j k a b s

s a a b b

i a b

i b s SIN s SIN b

i b s i a s i a s s

 

       
= +      

       
 =
 =

 = = = 

 (2) 

 

To accurately estimate the thermal conductivity 

characteristics of thermal protection materials, an objective 

function considering temperature errors was constructed in 

this study. This objective function evaluates the discrepancies 

between experimental data and numerical solutions, 

encompassing both measurement and model errors, that is, the 

deviation between predicted values based on service load and 

actual monitored values. The optimization of this objective 

function aims to minimize prediction errors, ensuring that load 

distribution closely matches actual demand, thereby 

optimizing the overall performance and resource usage 

efficiency of servers. Specifically, let j=j(a,i)=(X-a2)(Y-

Zi+Fi2)+a2(R+Di+Hi2) from experience, where X, Y, Z, F, R, 

D, and H are unknown parameters, and let ϕ-=(X,Y,Z,F,R,D,H). 

Assuming the temperature history at a point o is represented 

by Sl(M,s), and the history of the calculated temperature value 

at that point is denoted by Sz. Clearly, there is a difference 

between Sl(su) and Sz(su). The following objective function 

expression is established: 

 

( ) ( ) ( )
22

1

1
,

V

u

K Sl Sz Sl su Sz su
V

 
=

= − = −    (3) 

 

The entire problem is transformed into a nonlinear 

optimization problem, that is, under given constraints, the 

unknown parameters in the model (such as the position-

dependent thermal conductivity) are adjusted to minimize the 

objective function. Using prior knowledge, upper and lower 

bounds that give X, Y, Z, F, R, D, and H practical significance 

are obtained, denoted as Xm, Xi, Ym, Yi, Zm, Zi, Fm, Fi, Rm, Ri, 

Dm, Di, Hm, and Hi, respectively. Thus, the original problem is 

transformed, with Xm≤X≤Xu, Ym≤Y≤Yi, Zm≤Z≤Zi, Fm≤F≤Fi, 

Rm≤R≤Ri, Dm≤D≤Di, and Hm≤H≤Hi serving as constraints. 

In the context of designing thermal protection systems for 

aerospace vehicles, the inverse problem involves deducing the 

material's thermal conductivity from observed temperature 

data. Assuming the sought value of j is of the form: j=(1-

a2)(0.1-0.01i+0.001i2)+a2(1.0+0.1i+0.01i2), then the objective 

function is I1=j(iaa+ibb)+ jaia+jbib, or i:=j(iaa+i)+H, where 

H=H(a,b,s)=jaia+jbib. 

The function for thermal conductivity coefficient is derived 

to determine the direction of error reduction on the gradient. 

The updating method can adopt gradient descent or other 

optimization algorithms. The derivation results in 

ja=2x(0.9+0.1mi+0.009i2)+[(1-a2)(0.002i-0.01)+a2(0.1+0.02i)]ia, 

and jb=[(1-a2)(0.002i-0.01)+a2(0.1+0.02i)]ib. Further, let the 

time step be represented by ∇s and the spatial step by g, then 

the objective function is given by: 

 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1

1, 1, , 1 , 14
b b b b b

uk u k u k u k u ki i i i i fuk
+ + + + +

− + − ++ = + + + +  (4) 

 

where, ϑ=g2/j∇sfk=ϑi(b)
k+g2/jH, u,k=0,1,2,...,L, v=0,1,2,..., 

i(v)
0k=SIN(2π(v))SIN(2πbk)i(v)

Lk=0, and i(v)
0k=0i(v)

u0=0i(v)
uL=0. 

 

 

3. IMPLEMENTATION OF AN ADAPTIVE DYNAMIC 

LOAD BALANCING STRATEGY FOR CLOUD 

SERVICES 

 

To enhance the performance status of web servers in 

providing cloud services on private cloud platforms, a web 

server cluster adaptive dynamic load balancing strategy for 

cloud services was designed and implemented. This strategy is 

based on the analogy of the heat conduction equation solution 

method for calculating the weight values of backend servers 

for the next cycle, as outlined in the previous section. The 

proposed strategy improves upon the existing Nginx weighted 

least connections algorithm by introducing a dynamic weight 

adjustment mechanism based on the heat conduction equation, 

thereby enhancing its adaptability. Given Nginx's widespread 

application in various web service scenarios and its 

capabilities for high concurrency handling and high 

configurability, the implementation of an adaptive load 

balancing strategy within this architecture has a solid practical 

foundation. 

 

 
 

Figure 2. Implementation method of the adaptive dynamic 

load balancing strategy for cloud services 

 

Specifically, this improved strategy takes the current 

number of connections and performance indicators of servers 

as "temperature" parameters, continuously monitoring and 

estimating each server's "temperature change", i.e., the trend 

of performance status change, through a numerical method 

akin to solving the heat conduction equation. Subsequently, 

server weights are dynamically adjusted according to these 

trends; servers with lower loads ("colder") receive higher 

weights, thus being more likely to accept new connection 

requests, while servers with higher loads ("hotter") have their 

weights reduced. Furthermore, backend servers periodically 

collect and report their performance parameters, such as 

Central Processing Unit (CPU) load, memory usage, and 
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network bandwidth usage, to a central computing module. 

Employing an algorithm analogous to the heat conduction 

equation, this module predicts future performance trends of 

servers based on the collected performance parameters and 

calculates new weight values for each server accordingly. This 

process mimics the transfer of heat between materials, aiming 

to achieve an equilibrium distribution of server performance 

status. These weight values are then updated in the load 

balancer, which decides which server should receive new 

requests based on these weights, thus realizing task 

distribution based on the actual performance status of servers. 

Figure 2 presents the implementation method of the adaptive 

dynamic load balancing strategy for cloud services. 

 

3.1 Improvements to the weighted least connections 

algorithm 

 

The solution concept of the heat conduction equation has 

been applied to service load balancing optimization, 

particularly in improving the weighted least connections 

algorithm. In this enhanced algorithm, not only are the current 

connection numbers of backend servers considered, analogous 

to temperature, but server weights, analogous to heat capacity, 

are also introduced as adjusting factors. This equates to 

considering the "thermal efficiency" of each server in 

processing requests. When several servers exhibit the same 

ratio of connections to weight, the server with the largest 

weight, akin to the object with the highest heat capacity, is 

chosen to handle the next request. Moreover, the performance 

parameters of servers are updated periodically, influencing the 

dynamic adjustment of weights, similar to how temperature 

changes in an object affect the distribution of heat flow in heat 

conduction. Figure 3 displays the flowchart of the improved 

weighted least connections algorithm. Assuming the ratio of 

the target server's connection number to weight is represented 

by Z(Tl)/Q(Tl), and the minimum value obtained for this ratio 

is denoted by MIN{Z(Tu)/Q(Tu)}, the following is established: 

 

( ) ( ) ( ) ( ) / /l l u uZ T Q T MIN Z T Q T=  (5) 

 

 
 

Figure 3. Flowchart of the improved weighted least connections algorithm 

 

3.2 Weight calculation 

 

The dynamic weight adjustment mechanism established in 

this study centers on the principle that the weights of backend 

servers are not statically set but are adjusted periodically based 

on the real-time load performance of the servers. Analogous to 

the redistribution of heat flow caused by temperature changes 

in an object during heat conduction, the performance 

parameters of servers, likened to temperature, are periodically 

evaluated and calculated to serve as the basis for weight 

adjustment. Just as heat tends to flow from high-temperature 

areas to low-temperature areas until thermal equilibrium is 

reached, the algorithm adjusts weights to allow servers that 

performed better (cooler) in the previous cycle to receive 

higher weights (larger "heat capacity") in the next cycle, taking 

on more connections, while servers with already high loads 

(hotter) see a reduction in their weights ("heat capacity" 

decreased), accepting fewer new requests. This dynamic 

adjustment strategy simulates the natural equilibrium process 

of heat conduction, enabling server clusters to adaptively 

adjust their load based on individual performance, thereby 

maintaining optimal overall system performance. 

CPU idle rate, memory idle rate, and Input/Output (I/O) idle 

rate are selected as indicators of server load performance, and 

real-time data of these performance indicators are utilized to 

dynamically adjust server weights. This method is akin to 

considering the thermal conductivity of different materials in 

heat conduction, where the immediacy and accuracy of server 

performance indicator data act as key factors ensuring efficient 

heat transfer. To mitigate the transient performance deviations 

that periodic sampling might introduce, data are not merely 

collected at the end of cycle S but also at the midpoint S/2, and 

average values are calculated. This approach is similar to 

examining average temperature changes over a period rather 

than the temperature gradient at a single moment in heat 

conduction analysis. It helps to more accurately capture server 

performance changes, based on which weights are adjusted to 

ensure even load distribution. The selection of the length of 

period T is akin to determining an appropriate time step in heat 

conduction experiments; it should be neither too short, causing 

resource wastage due to frequent data collection, nor too long, 

preventing timely response to performance changes and 

leading to uneven load distribution. Assuming a backend 

server is represented by Tu, with weight denoted by D(Tu), 
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CPU usage at moments S and S/2 represented by ZS and ZS/2, 

memory usage at moments S and S/2 by LS and LS/2, and I/O 

usage at moments S and S/2 by US and US/2, the following 

formula calculates the weight of each server: 

 

( )

2

2

2

* 1
2

* * 1
2

* 1
2

S S

CPU

S S

u MEM

S S

IO

Z Z

J

L L

D T O j

U U

j

 +  
  

−  
   

 
+  

  = + −  
   

 
+  

  + −  
  
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 (6) 

 

The significance of CPU, memory, and I/O in performance, 

represented by jCPU, kMEM, and jIO, satisfies the following 

equation: 

 

1CPU MEM IOj j j+ + =  (7) 

 

3.3 Reference parameters and threshold values for weight 

change 

 

The CPU and memory utilization rates of servers are 

considered key indicators representing the server load 

"temperature," analogous to the temperature of materials. 

When the CPU or memory utilization of a server increases to 

80%, it is viewed as entering a "high temperature zone," 

capable of bearing less new load "heat." Consequently, the 

weight adjustment parameter for such servers is halved, 

effectively reducing their "heat capacity" and decreasing the 

number of requests they accept in the next cycle. Should the 

utilization further rise to 90%, it indicates that the server is 

"overheated" and in an overload state. At this point, the P value 

is adjusted to 0.1, significantly lowering the server's weight to 

prevent it from undertaking additional load. This is similar to 

reducing the heat flow input to areas of high heat concentration 

in the heat conduction process, ensuring a uniform and stable 

temperature distribution throughout the system. Since 

reaching an 80% utilization rate for I/O is relatively rare, 

adjustments for this within the model are not a primary 

consideration, though it remains a monitoring indicator for 

assessing the overall load situation of servers. The 

aforementioned scenarios can be expressed as follows: 
 

2 2

2 2

2 2

0.8 0.8 1
2 2

0.8 0.8 0.5
2 2

0.9 0.9 0.1
2 2

S S S S

S S S S
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Z Z L L
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Z Z L L

OR o

Z Z L L

OR o

+ +
   =



+ +


  =


+ +


  =


 (8) 

 

To avoid overburdening the Nginx load balancer with 

frequent weight calculations, a concept of a threshold value, 

akin to the temperature gradient threshold in thermodynamic 

equilibrium, is introduced. Weight updates are conducted only 

when the change in server performance parameters exceeds 

this threshold, indicating a significant shift in the system's 

"temperature distribution." This is equivalent to considering 

heat exchange in the heat conduction process only when the 

temperature difference between objects surpasses a certain 

value, thus controlling the distribution of thermal energy to 

maintain system homeostasis. Weight remains unchanged 

when the absolute difference between the current cycle's D(Tu) 

and the previous cycle's DOL(Tu) is less than Z. Weight is 

updated only when the absolute difference exceeds Z. The 

formula for weight update is provided as follows: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

OL u u NE u OL u

OL u u NE u u

D T D T ZD T D T

D T D T ZD T D T

 −  =


−  =

 (9) 

 

3.4 Dynamic weight calculation for load balancers 
 

A decimal weight value, D(Tu), reflecting the current load 

condition of the server, can be derived from the idle rates of 

the server's CPU, memory, and I/O. This weight value, 

analogous to the temperature gradient in heat conduction, 

indicates the trend and intensity of load energy flow among 

servers. A high idle rate for a server implies a lower 

"temperature," meaning it can bear more "heat energy," i.e., 

handle more requests. However, given that Nginx, serving as 

the load balancer, requires integer-form weight values, these 

decimal weight values must be converted into integer weights 

suitable for Nginx processing. This conversion process 

ensures the preservation of the relative proportions of weight 

values, thus maintaining the relative fairness and efficiency of 

load distribution among servers. The integer weight values 

q1,q2,…qv for the backend servers on the Nginx side are 

determined based on the proportion of each server's D(Tu), as 

follows: 
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 (10) 

 

 
 

Figure 4. Network topology diagram of the load balancing 

test environment 
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This method ensures that even in the process of weight 

value discretization, requests can be dynamically and 

reasonably distributed to each server based on real-time 

changes in server performance parameters, leading to a more 

balanced server load and thus optimizing the performance of 

the entire cloud service system. Figure 4 provides the network 

topology diagram of the load balancing test environment. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

The results of solving the heat conduction equation, as 

presented in Table 1, compare three different methods: the 

back propagation (BP) neural network, genetic algorithm, and 

the method proposed in this study, which combines the genetic 

algorithm and neural network. The identification values 

derived from each method were compared with actual values, 

using absolute and relative errors as metrics to assess the 

accuracy of the models. For the parameter X, the method 

proposed in this study exhibited the smallest relative error at 

1.48%, compared to 2.63% and 1.89% for the BP neural 

network and genetic algorithm, respectively. This indicates the 

proposed method's superior accuracy in estimating parameter 

X. In terms of parameters Y, Z, F, R, D, and H, the proposed 

method also demonstrated lower relative errors, indicating 

better overall precision. It can be concluded that the method 

integrating the genetic algorithm and neural network, as 

proposed in this study, predicts thermal physical parameters 

more accurately in solving the inverse problem of the two-

dimensional nonlinear heat conduction equation, compared to 

using the BP neural network or genetic algorithm alone. The 

effectiveness of the proposed method is evidenced by the 

smallest absolute and relative errors in the identification 

values of all parameters, illustrating higher accuracy and 

reliability in parameter estimation. 

 

Table 1. Comparative results of solving the heat conduction equation 

 
Parameter X Y Z F R D H 

Actual value 1.0 0.1 0.01 0.001 1.0 0.1 0.01 

BP neural network 

Identification value 0.9652 0.11245 0.00948 0.00098 1.1245 0.09456 0.00912 

Absolute error 0.0265 0.00312 0.00048 0.00009 0.02856 0.00421 0.00077 

Relative error (%) 2.63 3.12 4.78 9.01 2.89 4.26 7.78 

Genetic algorithm 

Identification value 1.0156 0.0978 0.0097 0.00093 0.9785 0.1147 0.00935 

Absolute error 0.0187 0.0017 0.0002 0.00006 0.0125 0.0031 0.00052 

Relative error (%) 1.89 1.78 2.01 3.12 1.34 3.21 5.21 

Proposed method 

Identification value 1.02356 0.09785 0.01126 0.00095 0.98542 0.11256 0.00945 

Absolute error 0.01452 0.00156 0.00025 0.00005 0.02154 0.00336 0.00044 

Relative error (%) 1.48 1.65 2.56 5.1 2.15 3.38 4.45 

 

Table 2. Relationship between the number of computer nodes and running time 

 
Number of Computer Nodes 1 2 3 4 5 

Running time (seconds) 2356.658 1635.124 987.235 825.648 759.361 

Number of Computer Nodes 6 7 8 9 10 

Running time (seconds) 712.365 689.214 785.124 821.236 934.586 

 

 
 

Figure 5. Relationship between the number of computer 

nodes and running time 

 

Table 2 illustrates the impact of increasing the number of 

computer nodes on the running time of the method proposed. 

It is observed from the table that, as the number of computer 

nodes increases, the overall running time tends to decrease, 

although not linearly. Specifically, when the number of nodes 

increases from 1 to 5, the running time significantly reduces 

from 2356.658 seconds to 759.361 seconds. This indicates that 

the completion time of tasks can be significantly reduced with 

the addition of more computing resources, aligning with the 

fundamental principles of parallel computing. However, as the 

number of nodes continues to increase, the reduction in 

running time begins to diminish, and even increases when 

moving from 7 to 8 computer nodes, due to the influence of 

communication overhead and the management costs of task 

distribution. The minimum running time of 689.214 seconds 

is reached with 7 computer nodes, after which an increase in 

node count results in increased running time. It can be 

concluded that the model proposed in this study effectively 

utilizes parallel computing resources to reduce running time, 

as clearly demonstrated in the data from one to five nodes. 

Figure 5 depicts how the running time of the proposed 

method changes with the increase in the number of computer 

nodes. As the number of nodes increases from 1 to 7, the 

running time decreases from 2477 seconds to 687 seconds, 

indicating that parallel processing can significantly reduce 

computation time. However, when the number of nodes 

increases to 8, the running time paradoxically rises to 788 

seconds, and as the number of nodes continues to increase to 

10, the running time remains at a higher level (815 seconds 

and 941 seconds). This is due to the fact that beyond a certain 

point, the overhead of network communication and task 

coordination exceeds the time savings brought by parallel 

computing. It can be concluded that the model proposed in this 

study effectively leverages parallel computing resources, as 
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evident from the significant decrease in running time when 

increasing the node count from 1 to 7. This indicates that the 

model is well-designed for parallelization, effectively 

distributing computing tasks across multiple processing nodes. 

Table 3 provides parallel computing performance data for 

two methods: the traditional genetic algorithm and the method 

proposed in this study, which integrates the genetic algorithm 

and neural network. This data includes the parallel speedup 

ratio and efficiency as the number of computer nodes increases 

for both methods. Analyzing these metrics helps understand 

the parallel performance of the models. Data from Table 3 

show that for the traditional genetic algorithm, the speedup 

ratio increases with the number of nodes but begins to decline 

starting from seven nodes, indicating a weakening of 

parallelization effects beyond a certain level of node increase. 

Conversely, the parallel speedup ratio of the method proposed 

in this study generally increases with the number of nodes, 

although it also declines after eight nodes. However, the 

magnitude of this decline is less than that of the traditional 

genetic algorithm, and it remains constant at nine nodes, 

indicating maintained performance at higher levels of 

parallelism. The parallel efficiency of the traditional genetic 

algorithm shows a clear downward trend as the number of 

nodes increases, whereas the parallel efficiency of the method 

proposed in this study, although also decreasing with more 

nodes, maintains a higher level overall. Notably, at three nodes, 

it reaches an efficiency of 0.815, meaning a more than 2.5 

times speed increase with a threefold increase in computing 

resources. In summary, the model combining the genetic 

algorithm and neural network demonstrates superior 

performance in parallel computing compared to the traditional 

genetic algorithm, especially in maintaining high parallel 

efficiency and speedup ratio. This indicates that the proposed 

method can more effectively utilize increased computing 

resources to enhance computation speed and reduce 

computation time. 

 

Table 3. Speedup ratio and parallel efficiency 

 
Number of Computer Nodes 2 3 4 5 6 7 8 9 10 

Genetic algorithm 
Parallel speedup ratio 1.53 2.23 2.78 3.21 3.12 3.45 2.89 2.31 2.24 

Parallel efficiency 0.758 0.715 0.712 0.624 0.524 0.512 0.356 0.256 0.214 

Proposed method 
Parallel speedup ratio 1.4562 2.365 2.895 3.125 3.215 3.456 3.124 3.124 2.564 

Parallel efficiency 0.745 0.815 0.723 0.635 0.556 0.519 0.378 0.325 0.256 

 

 
 

Figure 6. Line graph of the relationship between average 

response time and cycle T 

 

Figure 6 shows the change in the system's average response 

time as cycle T increases. It is observed that between cycles 5 

and 7, the average response time decreases from 888 

milliseconds to 836 milliseconds. This indicates an 

improvement in the system's response time as the cycle 

increases, due to the effective distribution of requests by the 

adaptive dynamic load balancing strategy proposed in this 

study, thereby reducing response time. However, from cycle 7 

to cycle 10, the average response time gradually increases, 

from 836 milliseconds to 918 milliseconds. This trend 

suggests that beyond a certain cycle length, the average 

response time increases due to the influence of the load 

distribution strategy. This is attributed to the system needing 

to handle more requests before re-evaluating and adjusting 

server weights over longer cycles, leading to resource overload 

or imbalance in the short term. It can be concluded that the 

algorithm proposed in this study effectively reduces average 

response time in the initial phase (i.e., as T increases from 5 to 

7), demonstrating the algorithm's effectiveness in reflecting 

and adjusting to real-time loads. This emphasizes the 

algorithm's ability to adapt promptly in the face of dynamic 

load changes, thereby optimizing performance. As the cycle 

continues to increase, system performance begins to decline, 

highlighting some limitations in the load distribution of the 

algorithm or the improper setting of cycle lengths. Excessively 

long cycles lead to untimely adjustments; therefore, in 

practical applications, the cycle length needs to be optimized 

based on system load characteristics to ensure that the 

response time remains within an ideal range. 

 

 
 

Figure 7. Line graph illustrating the relationship between 

average response time and concurrency 

 

Figure 7 displays the changes in average response time 

under different levels of concurrency for the adaptive dynamic 

load balancing strategy and the improved weighted least 

connections algorithm proposed in this study. At lower levels 

of concurrency (0 to 400), the response time trends of both 

algorithms are similar, and the values are close, indicating that 

under light load conditions, both algorithms can effectively 

handle requests with little difference in response time. As the 
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concurrency continues to increase (400 to 1000), the increase 

in average response time for the adaptive dynamic load 

balancing strategy is less than that for the improved weighted 

least connections algorithm. For example, at a concurrency of 

1000, the response time for the adaptive strategy is 510 

milliseconds, compared to 530 milliseconds for the improved 

weighted least connections algorithm. This demonstrates the 

advantage of the adaptive strategy under moderate load 

conditions. At higher levels of concurrency, especially above 

1400, the response time for the adaptive strategy is over 150 

milliseconds lower than that for the improved weighted least 

connections algorithm. This gap illustrates that under high 

load conditions, the adaptive strategy can more effectively 

distribute the load, maintaining lower response time. The 

algorithm proposed in this study shows good performance 

under different load conditions, especially in maintaining low 

latency under high concurrency situations, thereby enhancing 

user experience. 

 

 
 

Figure 8. Line graph of the relationship between throughput 

and concurrency 

 

Figure 8 illustrates the throughput of the adaptive dynamic 

load balancing strategy and the improved weighted least 

connections algorithm under various levels of concurrency. It 

is observed that at low concurrency levels (0 to 200), the 

throughput of both algorithms is nearly identical, with the 

adaptive dynamic load balancing strategy even showing 

slightly lower throughput at zero concurrency. This indicates 

that under low load conditions, both algorithms are capable of 

efficiently handling requests with comparable performance. 

As the concurrency increases to 600 and 800, the throughput 

of both algorithms decreases, but the adaptive dynamic load 

balancing strategy exhibits less reduction, demonstrating 

better stability. When concurrency further increases to 

between 1000 and 1400, the throughput of the adaptive 

dynamic load balancing strategy shows better stability and a 

slight increase, while the throughput of the improved weighted 

least connections algorithm first declines and then stabilizes. 

Notably, at a concurrency of 1400, the throughput of the 

adaptive strategy is approximately 30 higher than that of the 

improved algorithm. With a further increase in concurrency to 

1600, the throughput of the adaptive dynamic load balancing 

strategy decreases but remains above 965, whereas the 

throughput of the improved weighted least connections 

algorithm drops to around 950. It can be concluded that the 

adaptive dynamic load balancing strategy maintains 

comparable performance to the improved weighted least 

connections algorithm at low to medium concurrency levels, 

and exhibits better stability and efficiency at high concurrency 

levels. Facing a large number of concurrent requests, the 

proposed algorithm maintains a higher throughput, reflecting 

its excellent adaptive capability and effective management of 

load fluctuations. 

 

 

5. CONCLUSION 

 

The article initially introduces a novel model that combines 

the genetic algorithm and neural network to solve the inverse 

problem of the two-dimensional nonlinear heat conduction 

equation, namely predicting thermal physical parameters 

through observational data. The innovation of this method lies 

in leveraging the global search capability of the genetic 

algorithm and the powerful fitting ability of the neural network 

to achieve high-accuracy solutions for complex heat 

conduction problems. Building on the first part, an adaptive 

dynamic load balancing strategy algorithm is proposed. By 

applying the solution of the heat conduction equation to 

calculate the weights of backend servers, this method 

optimizes and improves the weighted least connections 

algorithm in Nginx, achieving the objective of dynamically 

adjusting server weights based on real-time load. This offers a 

new solution for load balancing in web server clusters within 

cloud services. 

The article compares the results of solving the heat 

conduction equation with the proposed model, verifying its 

accuracy. The relationship between the number of computer 

nodes and running time is discussed, and the model's 

computational performance is studied by comparing speedup 

ratios and parallel efficiencies. Line graphs illustrating the 

relationship between average response time and cycle T, 

average response time and concurrency, and throughput and 

concurrency are drawn, comparing and analyzing the 

performance of different load balancing strategies. 

Future research will further optimize the model combining 

the genetic algorithm and neural network, enhancing its 

solution accuracy and speed in more complex situations. The 

application of the proposed model and algorithm to the 

solution of other types of partial differential equations, as well 

as optimization problems in other fields, will be explored. 
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