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 The present work presents a numerical investigation of the combined sliding outcomes of 

the MHD unstable heat and mass transport phenomena of the Casson fluid above the 

stretched sheet. The stretched sheet moving at a non-uniform velocity and the magnetic 

field were taken into consideration. We reconstruct the flow-related equations as linked 

non-linear partial differential equations by using similarity transformations. The main 

conclusions drawn from this work indicate that flow velocity decreases with increasing 

porosity levels and the Casson parameter. On the other hand, a rise in the Dufour number 

increases the fluid velocity. The impact of various physical parameters on the flow field is 

graphically depicted with the help of the MATLAB application BVP4C. 
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1. INTRODUCTION 

 

Hydromagnetic flow has many uses in industry, physics, 

and engineering domains, including bioengineering; 

nevertheless, studying hydromagnetic flow over surfaces that 

are either expanding or contracting is a difficult task. Magnetic 

fields significantly impact the flow of electrically conducting 

viscous fluids in applications like glass, paper, crude oil 

refining, and magnetic materials. Several researchers have 

explored mathematical solutions using a no-slip boundary 

condition to study flow phenomena. The relative velocity of a 

(Newtonian) fluid with respect to any solid surface is zero, 

which is the principle underlying the no-slip condition.  

Nevertheless, there are scenarios where this assumption is not 

valid. In this paper, we explore the implications of slip at the 

wall on fluid flow. The slip condition suggests that fluid 

particles at the solid boundary do not adhere to or stick to the 

surface instead, they undergo some form of slip or relative 

motion with respect to the solid.  The study of vibrating valves 

has been stimulated by the significance of slip boundary 

conditions in microchannels and nanochannels can take place 

in fluids containing concentrated suspensions. Soltani and 

Yilmazor [1] studied the rheological behavior of concentrated 

suspensions with a Newtonian matrix, aluminum powder, and 

glass beads, focusing on wall slip using a parallel disk 

rheometer. Impure fluids such as mixtures and spray solutions 

can exhibit incomplete velocity slip. In addition to this at 

borderline of pipes, walls and embowed surfaces slip effects 

can be seen. The utilization of the Navier slip velocity 

condition is a prevalent method in the investigation of slip 

phenomena. Different authors, like Mahanthesh et al. [2], 

Hayat et al. [3], Motsa and Shateyi [4] gone through slip 

effects for different flow phenomenas. Shateyi and Mabood 

[5] extended the work of slide effects on MHD flows. The 

applications of magnetohydrodynamic fluid flows on a 

stretching sheet are significant in engineering and industry, 

underlining their importance [6]. Magnetohydrodynamic 

(MHD) flow can be applied in a variety of situations, such as 

thermionic freezing, vessels, heat neutralization and alloy 

removal, liquid alloy fuel containers, nuclear power plants, 

and nuclear activities. Mabood et al. [7] investigated the 

influence of thermal inputs and chemical reactions on the 

behavior of rotating magnetohydrodynamic fluids. The effect 

of erosion warming on MHD ferro-fluid with heat emission 

was investigated by Kumar et al. [8]. Abbas et al. [9], Makinde 

et al. [10], and Ibrahim et al. [11] performed a computational 

investigation to examine the impact of radiation on 

magnetohydrodynamic (MHD) nanofluids with chemical 

reactions. Prasannakumara et al. [12] conducted a study 

investigating the impact of numerous slides and thermal 

emissions on the stable flow, as well as the heat and mass 

transport of a condensed Jeffrey nanofluid when it interacts 

with a parallel dilatant surface. Apart from these studies many 

researchers have done significant work in connection with the 

above work [13-22]. Mabood and Shateyi [23] extended the 

work to the multiple slips for MHD flows in permeable frame 

of reference including Soret effect. One of the main issues in 

fluid dynamics is analyzing the flow and heat transfer of a 

viscous fluid across a stretched sheet. The study of chemical 

and metallurgical engineering fields can also benefit from 

knowledge of Casson fluid flow over a stretched sheet. The 

study focuses on the mass and heat transfer of Casson fluid 

flow across a stretched surface, despite its significant non-

Newtonian behavior in technology and industry. This extends 

the work of Mabood and Shateyi [23] to include MHD Casson 

fluid flow, taking into account the permeability parameter and 

the Dufour effect. 
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2. FORMULATION OF THE PHENOMENA 

 

An incompressible two-dimensional MHD electronically 

controlling fluid flow across a porous stretched surface is 

studied in the context of thermal emission. As shown in Figure 

1, the horizontal and vertical directions are represented by the 

x- and y-axes, respectively, in a two-dimensional coordinate 

system. A thin sheet that is positioned and completely aligned 

with the x-axis is metaphorically compared to a metal plate, as 

shown. Along the x-axis, the sheet is moving continuously in 

the positive x-direction at a variable speed while meeting the 

criteria λt<1 for a positive constant and stretching rate. The 

magnetic field, the magnetic field, denoted by the letter "x", is 

a coordinate that changes with distance from the origin over 

the surface. The magnetic field energy is denoted by B0. It is 

anticipated that the induced magnetic field will be 

significantly smaller than the applied magnetic field since it is 

constrained by the charge's velocity. The equations that 

explain the flow are as follows: 
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Figure 1. Configuration and coordinate system 
 

The preceding description provides an overview of the 

model's boundary conditions. 
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𝑢 → 0,  𝑇 − 𝑇∞ → 0,  𝐶 − 𝐶∞ → 0,  
as 𝑦 → ∞ 

as such 0 ≤ 𝑇0 ≤ 𝑇𝑤  and 0 ≤ 𝐶0 ≤ 𝐶𝑤  are applicable if 

( )1-λt >0.
 Eq. (1) is fulfilled by defining the stream functions 

u= (
𝜕𝜓

𝜕𝑥
), ν= (

𝜕𝜓

𝜕𝑦
).  

Let's introduce the following dimensionless functions: 
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Replacing Eq. (6) into (2), (3) and (4) we get the following. 
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The transmuted extremity positions regarding the 

phenomena are: 
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𝑓 ′(𝜂) → 0,  𝜃(𝜂) → 0,   𝜙(𝜂) → 0 as 𝜂 → ∞, 

(10) 

 

where, 
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𝜆

𝑎
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The local skin resistance coefficient Sf, local Nusselt 

number Nu, and local Sherwood number Sh are among the 

engineering-relevant physical characteristics, and they are 

described as: 
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By substituting Eq. (6) into (11) to (13) we can obtain the 

dimensionless form of equations 

 

( ) ( )
Nu Sh

S = Re S , Nu = =-[1+R]θ 0 , Sh = =-f 0 ,fr x f r r
Re Rex x

   

 

Here, Rex is the local Reynolds number, defined as 
𝑈𝑤𝑥

𝑣
 Sh𝑟, 

Nur and Sfr symbolizes the decreased Sherwood number, the 

decreased Nusselt number, and the decreased skin friction. 

 

 

3. METHOD OF SOLUTION 

 

The transformed ordinary differential equation (ODE) and 

its corresponding boundary conditions were numerically 

solved using the MATLAB tool BVP4C. This method 

provides a solution that is continuous on the specified interval 

[a, b] and has a continuous first derivative there. BVP4C 

effectively addresses a system of algebraic equations to 

determine the numerical solution for a boundary value 

problem (BVP) at each mesh point. 

The bvp4c function integrates a system of differential 

equations, taking into consideration the initial solution guess 

provided by Solinit and the boundary conditions specified by 

bcfun. The bvpinit function provides the initial estimate and 

specifies the locations where the boundary conditions are 

applied. 

The approach used to solve the coupled nonlinear ODEs 

(Eqs. (7), (8), and (9)) is detailed below. 

1. Define Variables. 

2. Construct the collection of Ordinary Differential 

Equations (ODEs). 

3. Define the boundaries utilizing the variables that 

have been established. 

4. Define the ODE Function. 

5. Establish the Boundary Condition (BC) function, 

specifying conditions for the problem. 

6. Set Up the Boundary Value Problem (BVP). 

7. Solve the BVP. 

The dissimilar critical variables were investigated for their 

influence on the displacement rate, temperature, and 

concentration. 

The step size and concurrence bench mark were considered 

as Δη=0.001. The asymptotic conditions at the boundary as 

per Eq. (10) were estimated by fixing the similarity variable 

ηmax to 5, as follows:  

 

𝑀𝑎𝑥 𝜂 = 5, 𝑓 ′(5) = 𝜃(5) = 𝜑(5) = 0. 
 

4. DISCUSSION ON OUTCOMES 

 

In order to enhance comprehension of the issue, Figures 2(a) 

and (b) with and without slip present graphical representations 

of the impacts of many factors on temperature, velocity, and 

concentration. As viscosity increases, flow momentum 

decreases, raising the Casson variable β and subsequently 

lowering the flow's velocity. This is seen in Figures 2(a) and 

2(b). 

 

 
(a) Control of Casson variable on displacement Rate without 

slip 

 

 
(b). Control of Casson variable on displacement Rate with 

slip 

 

Figures 2. Control of Casson variable on displacement rate 

 

The differences in velocity profiles for various thermal 

Gasthof number values, Gr, are shown in Figures 3(a) and 3(b). 

It may be described as the thermal buoyant force divided by 

the viscous hydrodynamic force. Impact of this force is fruitful 

to a greater extent in the alliance of free convection, which 

rises momentum rate of the flow. 

 

 
(a) Displacement rate with respect to solutal Grashof number 

on velocity profiles without slip 
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(b) Displacement rate with respect to solutal Grashof number 

on velocity distributions with slip 
 

Figure 3. Displacement rate with respect to solutal Grashof 

number 

 

The portrayal of displacement rate has been represented in 

Figures 4(a) and 4(b). As porosity (k) increases while keeping 

other parameters constant, the velocity and density at the 

borderline also increase. The permeable medium becomes less 

favorable, resulting in a decrease in flow velocity. 
 

 
(a) Porosity's effect on non-slip velocity profiles 

 

 
(b) Porosity's effect on velocity profiles with slip 

 

Figure 4. Porosity's effect on non-slip velocity profiles 
 

 
(a) Magnetic parameter control on slippage-free displacement 

profiles 

 
(b) Controlling the magnetic parameter on displacement 

patterns that involve slip 
 

Figure 5. Magnetic parameter control on displacement 

profiles 
 

By interacting with the magnetic field, the generated 

currents produce the immune force, an opposing force that 

lowers velocity. The acceleration of the flow decreases as the 

magnetic variable increases, as shown in Figures 5(a) and 5(b). 

The effects of the radiation variable are shown in Figures 

6(a) and 6(b). The displacement rate of the flow increases as 

the heat emission parameter increases. This is because the 

density of the thermal boundary layer increases with an 

increased radiation parameter. 
 

 
(a) Impact of the heat emission parameter on velocity profiles 

in the absence of slip 
 

 
(b) Consequence of heat emission parameter on velocity 

distributions with slip 
 

Figure 6. Consequence of heat emission parameter on 

velocity distributions 
 

Figures 7(a) and 7(b) show that, when suction is increased, 

the fluid flow velocity decreases due to decreased diffusion 

and a thinner fluid layer at the surface. The Prandtl number, or 

the ratio of fluid flow ease to heat conduction ease, is 

responsible for much of this occurrence. 

Figures 8(a) and 8(b) demonstrate how the flow temperature 

rises as the heat emission parameter increases. The increase in 

heat emission parameter is attributed to the growth in thermal 

boundary layer density. 
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(a) Performance of different suction parameter levels without 

any slippage 
 

 
(b) Speed profile for different suction parameter values with 

slip 
 

Figure 7. Performance of different suction parameter levels 

on velocity profiles 
 

 
(a) Temperature profiles in the presence of slip, specifically 

examining the emission parameter 
 

 
(b) Temperature profiles in the presence of slip, specifically 

examining the emission parameter 
 

Figure 8. Differences in temperature profiles for various heat 

emission parameter values 

 
(a) Temperature profiles in the absence of slip, specifically 

examining the Prandtl number 

 

 
(b) Temperature profiles in the presence of slip, specifically 

examining the Prandtl number 

 

Figure 9. Temperature profiles specifically under the 

influence of Prandtl number 

 

 
(a) Result of Dufour variable on thermal profiles with slip 

 

 
(b) Result of Dufour variable on thermal profiles with slip 

 

Figure 10. Result of Dufour variable on thermal profiles 
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Heat conductivity and Prandtl number have an inverse 

relationship, as seen in Figures 9(a) and 9(b). This relationship 

is observed as a decrease in the boundary layer temperature as 

the Prandtl number grows. 

As the Dufour number rises, so does the fluid's temperature. 

This is seen in Figures 10(a) and 10(b). 

Figures 11(a) and 11(b) show how the Schmidt number 

affects concentration profiles. The mixture diffusivity reduces 

with increasing Schmidt number, facilitating a more even 

distribution of the solutal effect. Consequently, the 

concentration drops more gradually. 

 

 
(a) Results of concentration with reference to Schmidt 

number without slip 

 

 
(b) Results of concentration with reference to Schmidt 

number with slip 

 

Figure 11. Results of concentration with reference to 

Schmidt number 

 

A fluid with a high viscosity and an increase in congregation 

is produced by increasing the Casson parameter. Figures 12(a) 

and 12(b) depict this. 

 

 
(a) Impression of Casson parameter on concentration profiles 

without slip 

 
(b) Impression of Casson parameter on concentration profiles 

with slip 
 

Figure 12. Impression of Casson parameter on concentration 

profiles 

 

A comparison analysis was conducted for the friction 

coefficient −𝑓″(0) at the surface and the rate of heat transfer 

-θ'(0) in order to verify the present findings and evaluate the 

accuracy of the continuing analysis. 

Table 1 shows that increasing the stretching parameter 

increases the amount of skin friction. 
 

Table 1. Comparing different values of 𝛿 when 𝑓𝑤=M=Gr 

=Gc=S𝑓=0 

 

 Fazle Mabood and Stanford Shateyi Present Results 

0.8 1.2615 1.2619 

1.2 1.3780 1.3782 

 

Table 2 illustrates how the skin friction coefficient varies in 

the absence of suction in accordance with the findings of [21], 

extending slip parameters as the magnetic variable M rises. 

We can observe that due to rise in magnetic parameter skin 

friction enlarges significantly owing to Lorentz forces 

generated by electromagnetic forces. 

 

Table 2. Examination of −𝑓″(0) different values of M when 

fw=δ=Sf=0 

 
M Fazle Mabood and Stanford Shateyi Present Results 

0 –1.0000 –1.0014 

1 1.4142 1.4142 

5 2.4494 2.4653 

10 3.3166 3.3182 

50 7.1414 7.1428 

100 10.0498 10.0408 

500 22.3830 22.3800 

 

Table 3 displays a comparison between the present heat 

transfer rate numbers and those from [23]. It has been 

demonstrated that the Prandtl number has a significant impact 

on the heat transfer rate. As the Prandtl number rises, so does 

the rate of heat transport. 
 

Table 3. Distinguishing of heat exchange rate -θ'(0) when 

M=f𝑤=S𝑓  =S𝜃=δ=Gr=Gc=R=0 

 
Pr Fazle Mabood and Stanford Shateyi Present Results 

0.72 0.8088 0.8095 

1 1.0000 1.0012 

3 1.9237 1.9229 

10 3.7207 3.7306 
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5. CONCLUSIONS 

 

The current article undertakes an in-depth analysis of 

collective slip effects in the context of unstable Casson fluid 

flow. To translate the partial differential equations regulating 

these occurrences into conventional ones, appropriate 

similarity transformations are provided. The MATLAB tool 

BVP4C was used to determine the problem's numerical 

solution. This work extends the work of Mabood and Shateyi 

[23] by methodically examining mass and heat transport in 

Casson fluid flow over extended surfaces. We reach the 

following important results by means of the graphical 

narration of several physical parameter impacts: 

1) As suction, permeability, magnetic field, and Casson 

parameters increase, the fluid velocity falls. 

2) The fluid velocity increased as the radiation 

parameter and thermal gradient number increased. 

3) While rising radiation parameter and Dufur number 

values raise fluid temperature, rising Prndtl number 

values decelerate the fluid's temperature. 

4) Increasing values of Casson parameter gives 

increment in fluid concentration and increasing in 

Schmidt number decreases fluid concentration. 

5) The above results were depicted through graphs 

separately for fluid flow without slip and with slip. 

6) Existing results of heat exchange and skin friction are 

compared with the values obtained in the present 

work with help of the tables. 

7) In general, the conclusions drawn from this study 

have the potential to yield advantages across diverse 

sectors, including industrial processes, and can be 

valuable for professionals in engineering, physics, 

and mathematics. 

The current methodology has applications in biomedical 

engineering, namely in examining blood flow properties as a 

Casson fluid across an elongating arterial wall. 
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