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Deep learning models are proficient at predicting target classes, but they need to explain 

their predictions. Explainable Artificial Intelligence (XAI) offers a promising solution by 

providing both transparency and object detection capabilities to classification models. Mask 

detection plays a crucial role in ensuring the safety and well-being of individuals by 

preventing the spread of infectious diseases. A new visual XAI method called HayCAM+ is 

proposed to address the limitations of the previous method known as HayCAM, such as the 

need to select the number of filters as a hyper-parameter and the use of fully-connected 

layers. When object detection is performed using activation maps created via various 

methods, including GradCAM, EigenCAM, GradCAM++, LayerCAM, HayCAM, and 

HayCAM+, it is found that HayCAM+ provides the best results with an IoU score of 0.3740 

(GradCAM: 0.1922, GradCAM++: 0.2472, EigenCAM: 0.3386, LayerCAM: 0.2476, 

HayCAM: 0.3487) and a Dice score of 0.5376 (GradCAM: 0.3153, GradCAM++: 0.3923, 

EigenCAM: 0.5003, LayerCAM: 0.3928, HayCAM: 0.5098). By using dynamical 

dimension reduction to eliminate unrelated filters in the last convolutional layer, HayCAM+ 

generates more focused activation maps. The results demonstrate that HayCAM+ is an 

advanced activation map method for explaining decisions and detecting objects using deep 

classification models. 
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1. INTRODUCTION

Research in the field of Artificial Intelligence (AI) has 

shown that it is capable of successfully solving image-based 

tasks, such as image classification, in various industries, 

including medicine [1-3], retail [4-6], and personal protective 

equipment [7-9]. This capability arises from researchers’ 

ability to train deep model architectures without overfitting 

[10]. However, despite their success, the decisions made by 

deep models are only partially explained due to their non-

linear nature. The field of research focused on understanding 

how AI models make decisions is known as Explainable 

Artificial Intelligence (XAI) [11]. 

To address the lack of explanation in deep models, we 

propose a new visual XAI method called HayCAM+. Deep 

models consist of convolution, pooling, activation function, 

and normalization layers, which enable them to learn 

representations [12]. Although these layers allow for the 

combination of different features, the non-linear nature of 

these layers means that the explanation side of deep models is 

decreased, resulting in them being referred to as “Black Box” 

models [13]. Figure 1 illustrates the general problem of deep 

models and the developed solutions. As shown at the top of 

Figure 1, deep models can accurately predict classes, but they 

cannot explain their decisions (a.k.a., Black-Box models). 

Figure 1. The general problems of the GradCAM. While 

GradCAM generates scattered activation maps, HayCAM+ 

generates focused activation maps 

The goal of XAI is to provide understandable explanations 

for the decisions made by AI models, which builds trust 

between the models and experts, such as developers, doctors, 

and engineers [14, 15]. With XAI, experts can understand why 

a particular decision was made, how the model learned, which 

parts of the content were emphasized, and what factors 
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contributed to the classification. For example, when an image 

is fed into a classification model, the experts can only 

understand how the model predicted using XAI. By providing 

transparent, understandable explanations, XAI addresses the 

inherent "black box" nature of complex AI models. This 

transparency fosters trust between medical professionals and 

AI systems, as doctors can confidently rely on and validate the 

decisions made by these models. 

XAI methods are typically divided into three categories: 

visual, numerical, and rule-based methods [16]. Numerical 

methods calculate the importance of input features by adding 

or removing them, while rule-based methods create a decision 

tree structure [17]. Visual methods, on the other hand, reveal 

which parts of an image are relevant to the model’s decision 

[18]. Given the thousands of parameters in a deep model, 

numerical and rule-based methods are better suited for 

explaining the decisions made by these models. However, 

visual methods are ideal for explaining decisions by 

identifying the most essential parts of an image [19, 20]. As 

illustrated in Figure 1, activation maps are generated to reveal 

which parts of an image are related to the decision. 

In our previous work, we proposed HayCAM [21] as a 

visual XAI method and compared it to other well-known 

methods such as GradCAM [22], EigenCAM [23], and 

GradCAM++ [24]. Our primary contribution was to reduce the 

last layer of the deep model during visualization to ignore 

irrelevant filters and obtain a more focused activation map. 

HayCAM+ builds on HayCAM by addressing its primary 

limitations: (i) the number of components was manually 

selected, and (ii) the fully connected layer weighted reduced 

layers. As an advanced visual XAI method, HayCAM+ is 

simpler and more effective than other methods, such as 

GradCAM, EigenCAM, GradCAM++, LayerCAM, and 

HayCAM. 

Our main contributions in proposing HayCAM+ are as 

follows: (i) the number of PCA components is dynamically 

calculated, (ii) Weight dependency in fully-connected layer is 

removed, and (iii) LayerCAM is added as a new method to 

compare. 

Section 1 introduces the current state and advancements in 

Artificial Intelligence, as well as the need for Explainable 

Artificial Intelligence (XAI). Section 2 discusses related XAI 

methods across various domains, such as medicine, retail, and 

personal protective equipment. Section 3 provides details 

about the materials and methods used in the study. Section 4 

introduces the proposed method, HayCAM+, and explains 

how it overcomes the limitations of the previous method, 

HayCAM. Section 5 describes the experiments and results 

obtained using HayCAM+ and compares them with other XAI 

methods, such as GradCAM, EigenCAM, GradCAM++, 

LayerCAM, and HayCAM. Section 6 discusses the achieved 

results, their implications, and limitations. Finally, Section 7 

provides the study's conclusion, including the significance of 

the proposed method and its future potential. 

 

 

2. RELATED WORK 

 

Numerical explanations involve calculating the contribution 

of input features to decision-making by training the AI model 

with different numbers of features and observing the resulting 

performance [25]. Rule-based methods are another approach 

to building explanations by creating decision rules from input 

features to decisions. These methods can improve the model’s 

performance while retaining explanations, but there is often a 

trade-off between performance and explanation quality. Given 

the large number of inputs in a simple deep model, it is 

difficult to determine the importance of each feature. 

Visual methods are another approach to explaining deep 

Convolutional Neural Networks (CNNs), by identifying the 

most essential parts of the content. One standard method is to 

visualize the convolution filters and layers to understand 

whether the model is learning effectively [26]. If the layers 

reveal unrelated parts to the desired classes, it may indicate 

overfitting or other issues that require further exploration. 

Perturbation-based methods [27, 28] involve windowing the 

input content with different shapes to measure the output. 

Local Interpretable Model-Agnostic (LIME) approach creates 

linear models by dividing decisions into smaller parts. 

Similarly, the Shapley Additive Explanations approach 

utilizes non-linear models for the same purpose. 

Deconvolution Networks [29] create hierarchical 

visualizations by propagating from the last layers to the first 

layers. Class Activation Mapping (CAM) [30] is a method that 

uncovers the contributions of pixels using the last 

convolutional layer. However, CAM requires removing the 

fully-connected layer and adding Global Average Pooling, 

which can reduce performance [31]. Gradient-based CAMs 

(GradCAMs) do not have these limitations and can be applied 

without modifying the model. 

GradCAM-based methods, such as GradCAM++, take class 

information into account to generate activations separately for 

each class. GradCAM++ utilizes second-order gradients in the 

last convolutional layer of deep models to generate activations 

when compared to GradCAM. In contrast, LayerCAM 

provides activation mapping using various layers of the deep 

models, while EigenCAM reduces the last layer using Singular 

Value Decomposition (SVD) to generate a focused activation 

map. However, EigenCAM directly decreases the 

convolutional layer to one filter without measuring the 

importance of filters in the layer. HayCAM+ utilizes Principal 

Component Analysis (PCA) to measure the importance of 

filters and generate more focused activation mapping. This 

approach calculates the number of PCA components 

dynamically and removes weight dependency in the fully-

connected layer. Since the other methods use all of the filters 

in the last convolutional layer, they cause more scattered areas 

over the images. HayCAM+, as a new method, reduces the 

filters and creates more focused areas. 

 

 

3. MATERIALS AND METHOD 

 

In this section, the materials and methods used in the study 

are presented in detail. The proposed HayCAM+ method is 

also described. The experiments and results are presented in 

this section as well. 

 

3.1 Material 

 

In this study, mask images were obtained from open-source 

and custom images to create a dataset of 23,140 images for 

training, validation, and testing. The experiments were 

conducted on a Centos 7 Linux server with a Tesla GPU. The 

Python programming language was used along with the 

PyTorch framework for deep learning operations and OpenCV 

for computer vision tasks. Further details can be found in the 

authors' previous work [32]. 
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3.2 Classification of the images 

 

Image classification is a basic process in computer vision 

that aims to determine the category of an image when it is fed 

into a model. Feature engineering and classification are 

necessary to obtain class information [33]. The process of 

feature engineering involves two main steps: feature extraction 

and feature selection. 

Features encompass any relevant information that can be 

derived from an image, such as edges, circles, patterns, colors, 

and areas, among others. Feature extraction methods, like the 

Canny Edge Detector [34] and Histograms of the Oriented 

Gradients [35], extract these features. After extracting the 

features, their dimensions are reduced using feature selection 

methods like Singular Value Decomposition (SVD) [36]. This 

reduction is necessary because the high dimensionality of the 

features can lead to information noise, increased time costs, 

and higher processing costs for the classification methods. 

Once the features have been reduced in dimensionality, 

classification methods like Artificial Neural Networks (ANN) 

[37] and Support Vector Machines (SVM) [38] are utilized to 

classify the features and obtain class information. However, a 

significant limitation of machine learning methods is that 

feature engineering needs to be carried out manually. 

Deep learning methods, such as CNNs, address this 

limitation by automatically performing both feature 

engineering and classification through the use of operations 

and layers such as convolution, pooling, and fully-connected 

layers. A CNN model can be visualized as shown in Figure 2. 

 

 
 

Figure 2. A basic CNN model. C, P, and FC stand for 

Convolution, Pooling and Fully-Connected respectively. 

When C and P are frozen it is called basic transfer learning 

 

As shown in Figure 2, a simple CNN model consists of a 

combination of convolution, pooling, and fully-connected 

layers. For instance, a CNN model can have a structure of 3 

convolution layers, two pooling layers, and two fully-

connected layers, or five convolution layers, five pooling 

layers, and three fully-connected layers. Convolutional layers 

automatically extract features from images, while pooling 

layers reduce the dimensionality of the extracted features. 

Finally, the fully-connected layer classifies the reduced 

features to obtain class information. In this study, a CNN 

model is utilized to classify images into “mask” and “no mask” 

classes. 

While CNN models are effective at image classification, 

they contain thousands of parameters that result in high 

operational costs. To reduce costs and maintain high 

performance, transfer learning is employed [39-42]. The basic 

idea of transfer learning is that the same convolutional weights, 

which capture low-level information such as edges, can be 

shared among CNN models. For example, some pre-trained 

models like ResNet [43], VGG [44], and Inception [45] are 

trained on the ImageNet dataset, which consists of images 

classified into 1000 different classes. Since the first layers of 

these pre-trained models capture low-level features, they can 

be utilized in custom models. Figure 3 displays a basic 

ResNet18 model. 

 
 

Figure 3. A Resnet model. (3, 64) shows 64 times 3×3 

convolution and (3,512) shows 512 times 3×3 convolution. 

The arrows point to skip connections. GAP and FCL stand 

for Global Average Pooing and Fully-Connected Layer 

respectively 

 

In this particular study, the pre-trained ResNet18 model is 

chosen and adapted to the mask dataset for comparison with 

the HayCAM approach. ResNet18 is one of the state-of-the-

art deep learning models that has been shown to outperform 

other popular models like VGG16 in terms of accuracy and 

efficiency. It can train a high-quality model with a low amount 

of data, making it well-suited for devices. The modified 

ResNet18 model is then trained on the dataset. 

As depicted in Figure 3, ResNet18 comprises convolutional 

layers, pooling layers, global average pooling, fully-connected 

layers, and skip connections. Skip connections help to 

alleviate the overfitting issue by allowing gradients to flow 

from the last layers to the earlier ones. 

 

3.3 Class activation mapping methods 

 

CAM methods aim to explain the decisions made by CNNs 

by visualizing their last convolutional layers through various 

approaches such as GradCAM, EigenCAM, GradCAM++, 

LayerCAM [46], and HayCAM. The first CAM method, as 

described by Eq. (1), only requires the Global Average Pooling 

(GAP) layer (as shown in Eq. (2)) after the last convolutional 

layer, which results in a decrease in performance since the 

fully-connected layer is removed. 

 

𝐿 = ∑ 𝑤𝑝𝐴
𝑝

𝑝   (1) 

 

𝐺𝐴𝑃𝑝 =
1

𝑁
∑ ∑ 𝐴𝑖𝑗

𝑝
𝑗𝑖   (2) 

 

where, L is the created importance map, wp is the weights 

importance of the layers and Ap is the last convolutional layer. 

GradCAM (Eq. (3)) that is generalization of the CAM, 

removes the limitations such that fully-connected layer can be 

used in the CNN architecture. GradCAM uses the gradients of 

the classes propagating from the last convolutional layer. 

 

𝑤𝑝(𝐺𝑟𝑎𝑑𝐶𝐴𝑀) =
1

𝑁
∑ ∑

∂𝑌

∂𝐴
𝑗𝑘
𝑝𝑘𝑗   (3) 

 

In GradCAM, the weights importance of the layers for the 

last convolutional layer is denoted by wp(GradCAM), while Y 
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represents the desired class. The importance map is created 

using Eq. (1) with the wp(GradCAM) values. GradCAM++ is 

another method used to identify important regions in an image. 

In addition to calculating first-order gradients, it also computes 

second-order derivatives and applies a ReLU function to 

eliminate negative values. The weights of GradCAM++ are 

determined using Eq. (4). 

 

𝑤𝑝(𝐺𝑟𝑎𝑑𝐶𝐴𝑀++) = ∑ ∑ α𝑗𝑘
𝑝

𝑘𝑗 𝑅𝑒𝐿𝑈 (
∂𝑌

∂𝐴
𝑗𝑘
𝑝 )  (4) 

 

LayerCAM generates importance maps by combining 

multiple convolutional layers, not just the last one. This is 

achieved by using the second-order derivatives. The weighting 

of the layers is determined by eliminating any negative values. 

 

𝐿𝐿𝑎𝑦𝑒𝑟𝐶𝐴𝑀 = 𝑅𝑒𝐿𝑈(∑ 𝐴𝑝𝑝 )  (5) 

 

EigenCAM, as shown in Eq. (6), applies SVD (as described 

in Eq. (7)) to find the first principal component of the 

GradCAM methods. This results in a decrease in the size of 

the last convolutional layer from (512, 7×7) to (1, 7×7). 

 

𝐿𝐸𝑖𝑔𝑒𝑛𝐶𝐴𝑀 = 𝐴𝑝𝑉1 (6) 

 

𝐴𝑝 = 𝑈𝐸𝑉𝑡 (7) 

 

where, V and U are orthogonal matrices, and E is a diagonal 

matrix. V, U, and E are known right singular vectors, left 

singular vectors, and singular values respectively. The first 

element V1 of the V is used to get the EigenCAM importance 

map. HayCAM reduces the last convolutional layer and related 

weights (Eq. (8)) by PCA, and creates the activation mapping 

(Eq. (9)). 

 

𝑤𝑝(𝐻𝑎𝑦𝐶𝐴𝑀), 𝐴(𝐻𝑎𝑦𝐶𝐴𝑀)
𝑝

= 𝑃𝐶𝐴 (
1

𝑁
∑ ∑

∂𝑌

∂𝐴
𝑗𝑘
𝑝𝑘𝑗 , 𝐴𝑝)  (8) 

 

𝐿𝐻𝑎𝑦𝐶𝐴𝑀 = ∑ 𝑤𝑝(𝐻𝑎𝑦𝐶𝐴𝑀)𝑝 𝐴(𝐻𝑎𝑦𝐶𝐴𝑀)
𝑝

  (9) 

 

3.4 Calculating the number of filters dynamically 

 

Data in the real world often comprises both related and 

unrelated features. Dimension reduction techniques aim to 

minimize the unrelated features as much as possible. Principal 

Component Analysis (PCA) has been used as a dimension 

reduction method for decades and is mainly employed to 

calculate the importance of features by computing eigenvalues. 

PCA generates a covariance matrix to obtain eigenvalues 

and eigenvectors. The importance of each eigenvector is 

determined by its corresponding eigenvalue. After sorting the 

eigenvectors by eigenvalues, the first “n” elements are selected 

as principal eigenvectors. The value of “n” can be chosen 

manually, as is the case in HayCAM. For further information, 

please refer to the study of Örnek and Ceylan [21]. 

 

Algorithm 1. Calculating number of filters dynamically 

1. covariance_matrix = get_covariance(main_filters) 

2. eig_val, eig_vec = get_eigens(covariance_matrix) 

3. sort(eig_val) 

4. ev = calculate_each_variance(eig_vec) 

5. iv = ev / total_variance 

6. sum first nth until sum > 0.9 

This study dynamically calculates the value of "n" by using 

the variance of the sorted eigenvectors. The process for 

selecting the appropriate number of filters is outlined in 

Algorithm 1, and it is as follows: (i) the variance for each 

sorted eigenvector is computed, (ii) the obtained variances are 

summed, (iii) each variance is divided by the summed variance, 

(iv) the divided variances are then summed from the first to 

the "n"th element until the summed variance is higher than 0.9. 

This means that if the selected eigenvectors account for 90% 

of the variance, it is sufficient to select these as the principal 

eigenvectors. 

 

3.5 Evaluation of the bounding boxing 

 

A bounding box is defined by four components: x, y, w, and 

h, which are associated with an object. Here, (x, y) refers to the 

top left corner of the bounding box, w refers to the width of 

the box, and h refers to the height of the box. Figure 4 provides 

a visual representation of these components. This information 

is taken from the study of Zhao et al. [47]. 

 

 
 

Figure 4. A sample bounding box intersection and union 

 

In Figure 4, the ground truth bounding box is represented 

by a solid line, while the estimated bounding box is 

represented by dashed lines. The Intersection over Union (IoU) 

metric (Eq. (10)) and Dice coefficient (Eq. (11)) are used to 

evaluate how well the estimated bounding box aligns with the 

ground truth bounding box. Both IoU and Dice scores range 

between 0 and 1, with scores closer to 1 indicating a better 

alignment between the ground truth and estimated bounding 

boxes. Both IoU and Dice are commonly used object detection 

indicators and can intuitively reflect the performance of the 

model [48, 49]. Secondly, the calculation process of IoU and 

Dice is relatively simple and easy to implement and calculate. 

 

𝐼𝑜𝑈 =
|𝐵𝑜𝑥1|∩|𝐵𝑜𝑥2|

|𝐵𝑜𝑥1|∪|𝐵𝑜𝑥2|
  (10) 

 

𝐷𝑖𝑐𝑒 =
2∗(|𝐵𝑜𝑥1|∩|𝐵𝑜𝑥2|)

|𝐵𝑜𝑥1|+|𝐵𝑜𝑥2|
  (11) 

 

 

4. PROPOSED HAYCAM+ 

 

HayCAM+ is a novel visual XAI method that aims to create 

more focused activation maps by selecting important filters in 

the last convolutional layer. To achieve this, HayCAM+ 

reduces only the last convolutional layer (Eq. (12)) using PCA, 

without taking weights into account. The number of PCA 

components is dynamically calculated, as described in the 

previous section. Once the PCA components are obtained, 

they are summed to obtain the HayCAM+ activation mapping 

(Eq. (13)). This method enables HayCAM+ to create more 

focused activation maps that highlight the most important 
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features in the input data. Algorithm 2 outlines the steps 

involved in the HayCAM+ method. 

 

𝐴(𝐻𝑎𝑦𝐶𝐴𝑀+)
𝑝

= 𝑃𝐶𝐴(𝐴𝑝)  (12) 

 

𝐿𝐻𝑎𝑦𝐶𝐴𝑀+ = ∑ 𝐴(𝐻𝑎𝑦𝐶𝐴𝑀+)
𝑝

𝑝   (13) 

 

Algorithm 2. HayCAM+ (proposed) 

1. filters = inference(input_image) 

2. reshaped_filters = reshape(filters) 

3. centered_filters = center(reshaped_filters) 

4. main_filters = PCA(centered_filters) 

5. HayCAM+ = sum(main_filters, axis = 1) 

6. HayCAM+ = reshape(HayCAM+) 

 

First, the model is used to infer the activations in the last 

convolutional layer, which contains 512 filters of size 7×7. 

The filters are then reshaped to 512×49 to enable vector 

operations such as subtraction. The mean of the filters is 

subtracted to center them. Next, PCA is used to obtain the 

main filters by selecting the first n elements (i.e., n elements 

that have 90% variance) after sorting the eigenvectors 

according to eigenvalues. This step removes unrelated or noisy 

filters from the last convolutional layer, leaving only the class-

related information. The values of the selected filters are then 

summed to obtain a single filter, which represents the 

HayCAM+ activation map. The resulting (1×49) filter is 

reshaped to (7×7) as seen in Figure 5 and resized to (224×224) 

to highlight the input image. 

By applying the changes, HayCAM+ achieves better 

performance by its IoU score of 0.3740 (GradCAM 0.1922, 

GradCAM++ 0.2472, EigenCAM 0.3386, LayerCAM 0.2476, 

and HayCAM 0.3487) and a Dice score of 0.5376 (GradCAM 

0.3153, GradCAM++ 0.3923, EigenCAM 0.5003, LayerCAM 

0.3928, and HayCAM 0.5098). This performance is attributed 

to HayCAM+'s utilization of dynamic dimension reduction, 

eliminating irrelevant filters in the last convolutional layer, 

thereby producing activation maps enhanced focus and 

precision. 

 

 
 

Figure 5. Sample 7×7 activation mapping images 

 

 

5. EXPERIMENTS AND RESULTS 

 

The pre-trained ResNet18 classifier model is used for the 

study, which was modified by removing the 1000-class fully-

connected layer and adding a new fully-connected layer with 

only 2 classes: “mask” and “no mask”. The model was trained 

on a dataset of 18,400 training images and 200 validation 

images, and then tested on 4,540 images. 

The results showed that the ResNet18 model achieved a 

4.42% loss in classifying images into the “mask” and “no mask” 

categories. However, to better understand how the model 

works and which regions it considers important for 

classification, the researchers used several visual 

explainability methods, including GradCAM, EigenCAM, 

GradCAM++, LayerCAM, HayCAM, and HayCAM+. These 

methods aim to highlight the important areas of an image that 

are related to the predicted class. The resulting activation maps 

and their combination with the input images are shown in 

Figures 6 and 7. 

Figures 6 and 7 show that all of the methods can identify 

important areas in the input images, but some methods create 

less focused areas than others. The results suggest that a 

classifier model can also function as an object detector model. 

HayCAM+ produces the most focused areas, as shown in 

Figure 8. A comprehensive evaluation can be found in Table 

1, focusing on Intersection over Union (IoU) values, and Table 

2, focusing on Dice values, the superior performance of the 

HayCAM+ method.  

Since PCA is employed to reduce the dimensionality of the 

feature space, it helps in simplifying the complexity of the data 

representation while retaining the most significant features. By 

selecting the first n elements (eigenvectors) that collectively 

account for 90% of the variance, the dimensionality is 

effectively reduced, focusing on the most informative aspects 

of the data. Sorting the eigenvectors according to eigenvalues 

allows for the identification of the most critical filters in the 

last convolutional layer. This is advantageous because it 

effectively filters out unrelated or noisy filters. These 

unrelated filters may capture irrelevant patterns or noise, 

which, when removed, streamlines the subsequent analysis, 

ensuring that the retained filters carry more pertinent 

information related to the target classes. Therefore, 

HayCAM+ encapsulates the critical class-related information 

while excluding extraneous details. It serves as a concise and 

focused representation of the features influencing the model's 

decision, contributing to improved interpretability. 

According to the results shown in Figure 8, HayCAM+ 

produces the most precise areas of interest, and it also has the 

highest IoU and Dice values. This implies that HayCAM+ is 

the best approach for both explaining decisions and identifying 

objects in input images. 

 

 
 

Figure 6. Generated activation maps 

 

 
 

Figure 7. The combination of activation maps and input 

images 
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Figure 8. Object detection results 

 

 

6. DISCUSSION 

 

The field of computer vision heavily relies on image 

classification, and CNNs are widely used for this purpose. 

While CNNs achieve high classification accuracy, their non-

linear nature makes them difficult to explain. To address this 

challenge, various visual methods such as GradCAM, 

EigenCAM, and HayCAM have been developed to provide 

insights into what a CNN learns. In this study, a new visual 

method called HayCAM+ is proposed not only to explain what 

a CNN learns but also to generate more focused activation 

maps. 

Figure 7 demonstrates that all the methods can identify 

important regions in the images, but HayCAM+ produces the 

most focused areas, indicating that a classifier model can not 

only classify images but also locate class objects. Figure 8 

displays the detected mask images with bounding boxes and 

IoU values. More focused areas lead to better object detection 

performance, as indicated in Table 1 and Table 2. It is evident 

that HayCAM+ outperforms the other methods with IoU and 

Dice scores of 0.3710 and 0.5376, respectively. 

HayCAM+ uses the last convolutional layers of the CNN. It 

would be interesting to explore the possibility of using 

different layers of the CNN for various datasets. This could 

potentially lead to even more accurate and efficient results, as 

different layers may be better suited for different types of 

images or data. 

 

Table 1. The IoU results 

 
Image no GradCAM GradCAM++ EigenCAM LayerCAM HayCAM HayCAM+ 

a1 0.0523 0.1214 0.1784 0.1214 0.2828 0.3156 

a2 0.0499 0.1188 0.1647 0.1188 0.2816 0.2895 

a3 0.0835 0.1488 0.2087 0.1488 0.4269 0.4782 

a4 0.1162 0.1752 0.2457 0.1752 0.3024 0.3105 

a5 0.1014 0.1900 0.2685 0.1881 0.2699 0.2706 

a6 0.1146 0.1345 0.1879 0.1358 0.3337 0.3568 

…       

a154 0.1285 0.1534 0.2131 0.1519 0.4179 0.4575 

a155 0.2039 0.2555 0.3397 0.2555 0.3460 0.3948 

a156 0.2275 0.2803 0.3643 0.2830 0.3735 0.4205 

a157 0.2329 0.2866 0.3593 0.2893 0.4017 0.4231 

a158 0.1205 0.1484 0.2018 0.1469 0.2845 0.2905 

a159 0.1293 0.1550 0.2129 0.1534 0.3199 0.4132 

a160 0.1486 0.1898 0.3104 0.1916 0.3468 0.4039 

Average 0.1922 0.2472 0.3386 0.2476 0.3487 0.3740 

 

Table 2. The dice results 

 
Image no GradCAM GradCAM++ EigenCAM LayerCAM HayCAM HayCAM+ 

a1 0.0994 0.2165 0.3029 0.2165 0.4409 0.4798 

a2 0.0951 0.2123 0.2828 0.2123 0.4395 0.4490 

a3 0.1542 0.2148 0.2941 0.2129 0.2924 0.2903 

a4 0.2082 0.2983 0.3945 0.2983 0.4644 0.4738 

a5 0.1842 0.3193 0.4233 0.3166 0.4251 0.4260 

a6 0.2056 0.2371 0.3164 0.2391 0.5004 0.5260 

…       

a154 0.2278 0.2660 0.3513 0.2637 0.5895 0.6278 

a155 0.3388 0.4070 0.5072 0.4070 0.5141 0.5661 

a156 0.3707 0.4379 0.5341 0.4411 0.5438 0.5921 

a157 0.3778 0.4455 0.5286 0.4487 0.5731 0.5946 

a158 0.2151 0.2584 0.3358 0.2562 0.4430 0.4502 

a159 0.2290 0.2683 0.3510 0.2660 0.4847 0.5847 

a160 0.2588 0.3190 0.4738 0.3215 0.5150 0.5754 

Average 0.3153 0.3923 0.5003 0.3928 0.5098 0.5376 

 

 

7. CONCLUSIONS 

 

Deep learning models, particularly CNNs, have become 

popular for their ability to achieve high classification accuracy 

in various tasks. However, their complex architecture and vast 

number of parameters make it difficult to interpret how they 

make decisions. As a result, there is a need to develop 

techniques that can explain the reasoning behind the model’s 

decisions and highlight the important features that lead to the 

classification result. This is especially important in 

applications where transparency and interpretability are 

critical, such as medical diagnosis, autonomous driving, and 
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fraud detection. HayCAM+ can be used in these areas. In the 

field of medical imaging, HayCAM+ could be instrumental in 

enhancing the interpretability of deep learning models used for 

diagnostic purposes. HayCAM+ can be applied to improve 

object recognition and localization tasks. Its ability to produce 

more focused activation maps allows for better localization of 

objects within images, contributing to the development of 

more accurate and reliable computer vision systems. 

HayCAM+ may find utility in the development of computer 

vision systems for autonomous vehicles. The enhanced 

interpretability and focused activation maps can aid in 

understanding the driving decisions made by AI models, 

making them more transparent and trustworthy for safe 

navigation. In industrial settings, particularly in quality control 

processes, HayCAM+ might be applied to enhance the 

inspection of manufactured products. By providing clearer 

insights into the features contributing to classification 

decisions, it can contribute to the improvement of product 

quality assessment. HayCAM+ could play a role in augmented 

reality applications by facilitating more accurate and 

contextually relevant virtual object placement. The focused 

activation maps can aid in aligning virtual elements with real-

world objects, enhancing the overall user experience. 

HayCAM+ might be incorporated into systems that involve 

human-computer interaction, such as gesture recognition or 

facial expression analysis. The focused activation maps can 

contribute to more precise identification of relevant facial 

features or gestures, improving the accuracy of interaction 

models. 

We introduce a novel visual Explainable AI (XAI) method 

called HayCAM+ that generates the most focused areas 

compared to other XAI methods. These areas aid in object 

detection and demonstrate that a classifier model can not only 

classify images but also highlight important regions and detect 

objects. The findings suggest that there are still open areas in 

basic processes like classification that need to be uncovered 

and explained to establish trust between AI machines and 

humans. Since almost all models need an explanation, 

HayCAM+ can be applied to different datasets. 

In future studies, our aim is to delve deeper into the world 

of XAI by exploring and developing novel XAI methods that 

not only provide more accurate explanations but also enable 

us to gain a deeper understanding of the underlying 

mechanisms of deep learning models. We are considering the 

incorporation of attention mechanisms to further refine the 

interpretability of deep learning models. Investigating 

methods for dynamically assessing feature importance during 

different stages of model inference. Exploring techniques for 

quantifying uncertainty in model predictions. Considering the 

development of interactive XAI methods that allow users, such 

as domain experts or end-users, to actively query the model for 

specific explanations. 
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