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Nowadays, falls are one of the important causes of accidental death in older people. 

Assessment of fall risk can help to protect older adults in a timely manner. Current studies 

tend to use a single type of sensor, which always suffers from insufficient robustness, and 

the accuracy of the risk assessment model is low. In this study, we proposed a Convolutional 

Neural Network (CNN)-Bi Long Short-Term Memory (LSTM) fall risk assessment model 

based on the fusion of multi-sensor information with improved efficient channel attention 

(ISA-ECA-CNN-BiLSTM). Firstly, we construct a hybrid network consisting of a LSTM 

network and a CNN, which can capture the features hidden in asynchronous gait data 

sequences very well. An improved efficient Channel Attention Mechanism was also 

incorporated to make the model more attentive to the global features of the gait. Since the 

features extracted from the plantar pressure distribution signal and the IMU signal do not 

contribute to the fall risk assessment to the same extent, an adaptive weighted feature fusion 

method was introduced to enhance the influence of important features on the assessment 

results while weakening the influence of unimportant features on the assessment results. The 

improved method has higher sensitivity, specificity, and accuracy compared to the direct 

cascade method. The experimental results show that the accuracy, precision, sensitivity, and 

F1-score of the ISA-ECA-CNN-BiLSTM model proposed in this study were 98.4%, 99.1%, 

98.8%, and 98.9%, respectively, which are higher than other classification models and can 

effectively extract gait features, thus improving the accuracy of fall risk recognition. 
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1. INTRODUCTION

Falls are recognized as the leading cause of accidental 

deaths and injuries among people over the age of 65 years. 

Reduced mobility and impaired balance make older adults 

more prone to falls, which threatens their safety. Therefore, it 

is important to conduct a risk assessment for falls to predict 

the risk of falls in time and to take active preventive and 

intervention measures to minimize falls in the elderly. The 

purpose of fall risk assessment is to identify the elderly with 

high risk of falls and to propose individualized fall prevention 

methods, so as to we hope to reduce or avoid the occurrence 

of fall accidents. Clinical assessment of fall risk mainly uses 

fall risk scales such as the Berg Balance Scale, Tinetti Balance 

and Gait Scale, and the TUGT test [1, 2]. These methods 

require doctors to score, so it takes a long time and the process 

is complicated. With the development of technologies such as 

the Internet of Things and artificial intelligence, researchers 

have started to monitor human gait with wearable devices, by 

analyzing kinematic and kinetic characteristics such as 

acceleration, rhythm, gait speed, plantar pressure, and step 

length, to assess fall risks [3]. Gait is the posture and state of 

the human body when walking. Gait analysis can be used to 

effectively evaluate the risk of falls. The selection of gait 

features directly affected the assessment accuracy. Identifying 

the gait features with a high risk of falls can help doctors 

objectively evaluate the walking ability of the elderly in clinics. 

The preventive program has important practical significance 

for scientifically guiding the elderly to walk with a minimized 

fall risk. 

Among the many wearable sensors, IMU and plantar 

pressure sensors are widely used in fall risk assessment 

because of their small size, low price and little impact on 

wearers and that IMU is ideal devices for detecting gait in 

daily life. However, since the IMU signals only capture gait 

kinematic parameters, the model's performance for fall risk 

assessment is poor [4-7]. Although the plantar pressure signal 

has rich dynamic gait information, research on fall risk 

assessment based on plantar pressure is still in its early stages. 

If only a single IMU or plantar pressure signal is used, there is 

a problem of insufficient robustness. Furthermore, most of the 

construction of risk assessment models lacks real-life data in 

daily scenarios, resulting in a lack of effectiveness in the risk 

assessment model [8, 9]. 

Therefore, the existing risk assessment model lacks validity, 

and the single-mode IMU and plantar pressure signals used 
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alone have poor robustness. We proposed a new method based 

on the ISA-ECA-CNN-BiLSTM model with an improved 

attention mechanism, to perform fall risk assessment through 

adaptive weighted feature fusion based on the collected IMU 

signal and plantar pressure signal datasets. 

 

1.1 Related work 

 

Scholars have proposed a various fall risk assessment 

methods that use wearable devices. Among these methods and 

their variants, methods based on inertial sensors and plantar 

pressure sensors are the most attractive, as inertial sensors and 

plantar pressure transmitters can be mounted on the body and 

collect very detailed movement characteristics [10-16], and 

the acquired time-series gait data can be used to identify and 

authenticate people [17, 18]. Initially, machine learning 

methods were adopted for fall risk assessment. Wang et al. [19] 

designed an insole pressure sensor system that could provide 

users with real-time predictions and early warnings. It can 

predict the risk of falls in advance, allowing users sufficient 

time to take effective intervention measures and effectively 

reduce the occurrence of falls. Yang et al. [20] collected 

acceleration, angular velocity, and plantar pressure data of 

nine common lower limb movements of 10 subjects, extracted 

13 gait features as the input of a common classifier to identify 

motion postures, and found that KNN has the highest 

classification accuracy. The recognition rate of 9 kinds of 

common types was high as 99.96%. Yu et al. [21] designed a 

plantar pressure sensor-based inversion-detection system. The 

fuzzy inference algorithm is used to divide the gait phase and 

then detect whether the inversion of the foot occurs, and the 

experimental results show that the plantar pressure data have 

an important predictive value for sports risk. Zhao et al. [22] 

developed a wearable plantar pressure force measurement and 

analysis (WPPFMA) system based on a flexible sensor matrix 

film to monitor plantar pressure force in real time. This system 

is highly valuable for personal foot care, gait analysis, and 

clinical diagnosis. Peng et al. [23] used an integrated empirical 

modal decomposition to decompose Parkinsonist left and right 

VGRF signals from high to low frequency bands into intrinsic 

modal functions. A person's gait health is then analyzed using 

their instantaneous phase dependence to assess the strength of 

the causal interaction between each intrinsic mode function. 

Gao et al. [24] collected the foot low-pressure data of 48 

subjects, extracted 44 multi-dimensional weak foot features 

based on one legged COP, and analyzed the symmetry and 

time consistency of the gait line by using the probability 

distribution method. The final model achieved an accuracy of 

87.5% for the test data. These methods can differentiate 

individual features with transparency, and the individual 

contribution of features to the decision is visible. However, 

manual feature extraction relies heavily on human experience, 

which is time-consuming and inefficient in fall prediction [25, 

26]. Deep learning models can gradually extract higher-level 

features from raw inputs; therefore, there is no need to 

manually select relevant features that may require expert 

knowledge. In particular, for gait analysis, deep learning can 

handle complex data and provide accurate results. For example, 

Nait Aicha et al. [27] first studied CNN and LSTM networks 

that can automatically extract features from raw accelerometer 

data for fall risk assessment. Experiments showed that this 

method has a higher prediction accuracy than CNN and LSTM 

alone. Tunca et al. [28] used an inertial sensor-based gait 

analysis system with a LSTM neural network to extract gait 

spatiotemporal parameter sequences as input features for fall 

risk assessment and achieved an excellent classification 

accuracy of 92.1%. Baloch et al. [29] performed early fusion 

and late fusion based on acceleration sensors and angular 

velocity sensors to identify human activity using CNN and 

convolutional CNN-LSTM. A weighted f1 score of 93.78% 

was obtained on the RealDisp dataset when late fusion was 

performed. Liang et al. [30] proposed a fall risk prediction 

model for the elderly using the plantar center of force with the 

ConvLSTM algorithm. This method achieved an accuracy of 

94 percent accuracy. Yu et al. [31] used three deep networks, 

CNN, LSTM, and Hybrid Convolutional Long Short-Term 

Memory (ConvLSTM), to construct a fall prediction model, 

with model inputs of raw IMU data. The results on the SisFall 

dataset showed that the hybrid ConvLSTM model had an 

average of non-fall, pre-impact fall, and fall sensitivity of 

93.15%, 93.78%, and 96.00%, respectively, which are higher 

than the LSTM (except for the, fall class) and CNN models. 

Shalin et al. [3] used 16 gait features extracted from plantar 

pressure data for gait freezing detection, the study collected 

plantar pressure data from 11 Parkinson's disease and 

classified them using the LSTM network. The experimental 

results showed that the classification model achieved 82.1% 

(SD 6.2%) mean sensitivity and 89.5% (SD 3.6%) mean 

specificity. 

 

1.2 Motivation and contribution 

 

In summary, currently, IMU-based fall risk assessment 

methods still have the problem of low accuracy, and there are 

relatively few fall risk assessment methods based on plantar 

pressure sensors. It is still debatable how to improve the 

accuracy and reliability of fall risk assessment. In addition, 

IMU can acquire gait kinematic parameters, and plantar 

pressure sensor contains rich gait dynamics information, 

combining IMU and plantar pressure sensor may be an 

effective way to improve fall risk assessment. So Based on the 

above, this study establishes a dataset containing multi-sensor 

information for fall risk assessment and proposes a fall risk 

assessment model that fuses multi-modal data and achieves 

98.4% accuracy. 

The main innovations and contributions of this work include: 

We built a dataset that includes labels indicating fall risk. 

We proposed a deep learning framework incorporating an 

improved attention mechanism to better focus on global 

features, thereby improving recognition accuracy. 

By employing adaptive weighting, we fused signals from 

two sensors at the feature level, ensuring a higher recognition 

accuracy and enhancing the robust-ness of the fall risk 

assessment model. 

 

 

2. EXPERIMENTAL DESIGN AND DATA 

COLLECTION 

 

2.1 Experimental scheme and data 

 

By reviewing the literature [19-31], it is evident that the 

number of participants in fall risk assessment experiments 

typically ranges from 5 to 30 individuals. There are variations 

in the types and quantities of sensors used by different 

researchers, but the emphasis is predominantly on sensors 

located on the lower limbs. Although walking test tasks differ 

across studies, they commonly include activities such as 
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straight-line walking and turning. In this study, 24 elderly 

individuals in and around nursing homes were used as 

experimental subjects. Eighteen men, 75%) had an average 

age of 70 years and six women, 25%) had an average age of 

65 years. They were all over 60 years old, cognitively capable, 

and able to walk independently. 

The three-dimensional coordinates of the human body and 

the sensor placement are shown in Figure 1. The plantar 

pressure sensor was incorporated into an insole to obtain the 

plantar pressure of the human body. According to the structure 

of the human foot, the sole of the foot is divided into five areas, 

as shown in Figure 2, including the first toe (T1), second to 

fifth toe (T2-5), metatarsals (M1-5), midfoot (MF), and heel 

(HM, HL) [32]. Note that the data represent the vertical 

direction of the ground. Since there were a large number of 

missing values in the data of the toe area, we deleted the T2-5 

data and only used the remaining four parts of the data. An 

inertial sensor unit IMU was placed on each ankle to collect 

the triaxial acceleration and angular velocity.  The experiment 

was carried out on flat ground, and the experimental 

environment did not require special arrangements. At the 

beginning of the experiment, the subjects were first asked to 

stand still on the spot, keep their feet without obvious 

movements, and shake their body involuntarily. After the 

recorder gave the start signal, the volunteers began to walk 

forward, and the walking speed was not specified, but it was 

carried out at a speed that the volunteers thought was 

comfortable until the recorder gave the end signal. Each 

subject repeated the experiment to 2-3 times. However, not all 

experimental data contain complete information; therefore, in 

this study, two of the more complete experimental data were 

selected for the subsequent study. 

 

 
 

Figure 1. Sensor wearing condition 

 

 
 

Figure 2. Plantar partition 

2.2 Data label 

 

Supervised learning labels must be added to the elderly after 

data collection; the process of data labels is shown in Figure 3. 

The Timed Up and Go Test (TUGT) has been widely used in 

clinical trials and is considered an effective method for 

measuring homeostasis [33, 34]. Therefore, we used TUGT in 

the first stage of the labeling process. This test records the time 

the volunteers stand up from a chair, walk 3 m at a constant 

speed, turn around, and sit down. The risk of falling was 

positively correlated with the time spent. We classified the 

elderly according to the research results of Pardoel et al. [35], 

and there were 15 in the high-risk group, 5 in the low-risk 

group and 4 in the "grey zone.” The 'grey zone' population was 

not clearly classified in the TUGT trial, so this group was 

further assessed using the Tinetti Balance and Gait Scale. The 

Tinetti Balance and Gait Scale is a comprehensive gait and 

balance assessment tool for the elderly developed by Tinetti in 

1986. The balance test consists of a balance test and a gait test 

consisting of 10 items with a total score of 16 points, 

consisting of eight items with a total score of 12 points, which 

was improved by Tinetti [36] in 1986. Beck [37] modified the 

scale in 1999, with nine entries in the Balance Test section 

totaling 16 points and seven entries in the Gait Test section 

totaling 12 points, still giving the scale a full score of 28 points. 

A score of less than 15 indicated a higher risk of falling [38]. 

Finally, the results of the two experiments were combined to 

obtain data labels. Of the 24 volunteers, 17 were at low risk of 

falls and 7 were at high risk of falls. 

 

 
 

Figure 3. Data labeling flow chart 

 

2.3 Sliding window method to construct sequence samples 

 

The CNN model is usually used to process one-dimensional 

grid data, and it is necessary to convert the one-dimensional 

data into grid data as the input of the CNN model. The use of 

the sliding window method to process time-series data is very 

effective. One-dimensional data can be constructed into a grid 

data structure. The sample segmentation process is illustrated 

in Figure 4. Taking the triaxial acceleration data in the inertial 

data as an example, the entire process of constructing sequence 

samples using the sliding window method is described. 

Suppose the window size is T, and the sliding overlap rate is 

50%. The T data records covered by the window will be used 

as a new sequence sample, and each sliding window will cover 

T/2 new data records. Some studies [39, 40] point out that the 

label of the sample with the highest frequency in the window 

should be used as the label of the data segment, whereas others 

believe that it is more reasonable to use the label of the last 

frame use the label of the last frame sample as the label of the 

data segment. We chose the first method, as shown in Figure 

4, where blue and green rep-resent high and low fall risks, 

respectively. The sequence sample categories generated by the 

first and second sliding windows are blue and green, 
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respectively. To better identify the gait of the monitoring 

object, it is necessary to use the feature parameters within a 

period of time, and the optimal length T of the sliding window 

is determined by the minimum duration of the falling gait and 

the sampling frequency. When T is too large, the window can 

contain enough fall features, but the model cannot recognize 

short-duration gaits, and the detection delay becomes longer. 

When T is too small, the window lacks sufficient gait features, 

and the detection accuracy reduces accordingly. Therefore, 

through experimental verification in Section 3.3.5 of this paper, 

the optimal sliding window size was selected to be 1s, and the 

sliding overlap rate was 50%. Finally, 2085 high-risk and 826 

low-risk samples were obtained. 

 

 
 

Figure 4. Sample segmentation diagram 

 

 

3. FALL RISK ASSESSMENT ALGORITHM 

 

3.1 Improved ECA attention mechanism 

 

Wang et al. [41] believed that the compression and 

dimensionality reduction of SE (Squeeze and Excitation) 

attention model has a negative impact on learning the 

dependencies between channels, and capturing the 

dependencies between all channels is inefficient and 

unnecessary. Therefore, an ECA attention mechanism was 

proposed, as shown in Figure 5. The ECA module proposes a 

local cross-channel interaction strategy without a 

dimensionality reduction. The ECA attention mechanism uses 

1-dimensional convolution to effectively realize partial cross-

channel interaction and obtain dependencies between channels, 

thereby avoiding the negative effects of dimensionality 

reduction. The ECA mechanism plays a crucial role in 

enhancing the accuracy of fall risk assessment by focusing on 

the most informative channels within the input data. This 

selective attention mechanism helps highlight the key features 

that distinguish an individual's gait. Additionally, it aids in 

reducing the impact of irrelevant or noisy data, ultimately 

improving the accuracy and robustness of the fall risk 

assessment model. However, the ECA attention mechanism 

ignores the spatial attention module. 

 

 
 

Figure 5. Schematic diagram of the ECA attention 

mechanism module 

 
 

Figure 6. Schematic diagram of the improved ECA attention 

mechanism module (ISA-ECA) 

 

Therefore, we have introduced an enhanced ECA attention 

mechanism, as delineated in Figure 6. Following the ECA 

operation, a spatial attention module has been incorporated. 

The output feature map, enriched with channel attention, is fed 

into this spatial attention module. Within the spatial attention 

module, initial operations entail average pooling and 

maximum pooling along the channel axis of the input feature 

map, yielding intermediate results denoted as A and B, 

respectively. Subsequently, these outcomes undergo 

connections and convolutions via a conventional 

convolutional layer, thereby generating a 2D spatial attention 

map. The mathematical formulation of the spatial attention 

module is expressed as follows. This innovative augmentation 

aims to address issues of redundancy and elevate the 

discriminative power of the attention mechanism for improved 

performance in the given context. 

 

𝑀𝑆(𝐹)  = 𝜎(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]))

= 𝜎 (𝑓7×7([𝐹𝑎𝑣𝑔
𝑆 ; 𝐹𝑚𝑎𝑥

𝑆 ])) 
(1) 

 

Among them, 𝑓7×7  represents the convolution operation 

with a convolution kernel size of 7*7, and σ represents the 

Sigmoid function. Favg
S and Fmax

S represent average pooling 

features and maximum pooling features, respectively. 

The integration of the spatial attention module serves as a 

remedial measure for the limitations inherent in the ECA 

attention mechanism. This enhancement facilitates a more 

precise extraction of human gait features, thereby contributing 

to an elevated model accuracy. The incorporation of the spatial 

attention module is a strategic refinement aimed at mitigating 

deficiencies in the original ECA mechanism, ultimately 

bolstering the discernment and fidelity of the model's 

representations of intricate gait patterns. 

 

3.2 ISA-ECA-CNN-BiLSTM model architecture 

 

The overall process of fall gait risk assessment proposed in 

this paper is shown in Figure 7. Firstly, data collection is 

carried out through human walking experiments, fixing the 

IMU and plantar pressure sensor on human’s sole and the calf 

respectively, the gait sequence data set was constructed by 

filtering and segmenting the IMU and plantar pressure signals. 

Then the gait data set was inputted into the ISA-ECA-CNN-

BiLSTM network model for the gait detection task. The main 

network structure of the model is a CNN module and a Bi-

LSTM module, where the CNN module is used to provide an 

abstract representation of the gait signal in the feature map. 

LSTM is used to model the feature maps output by the CNN 

module. The translation invariance of the convolution 

operation in the convolutional layer ensures that the key timing 

of the features is preserved while extracting low-level local 

features, that is why the output vector of the CNN module can 

be used as the input of the LSTM module. After the multi-layer 
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convolution operation, the field of view of the convolution 

kernel is expanded, and the length of the feature sequence is 

shortened, which realizes the compression of the original 

information and is more conducive to the modeling of the 

LSTM network. In addition, max pooling and improved ECA 

attention are added after the second or fourth layers of 

convolutional blocks. This operation can fuse channel and 

spatial global information during local feature extraction, 

improving the ability to represent gait signals. Finally, the 

features extracted from the IMU signal and the plantar 

pressure signal are fused with adaptive weighted features to 

perform the fall risk detection task. The framework of the fall 

gait risk analysis model is shown in Figure 8. 

The ISA-ECA-CNN-BiLSTM model consists of the 

following seven parts: 

Input layer: Acceleration and angular velocity data and 

plantar pressure data, pre-processed and fed into the target 

network. 

Convolution layer: In time series data, adjacent signals can 

be correlated with each other, and CNN can capture the local 

correlation of time series data; therefore, we used it to extract 

local features. Each convolution layer contains 64 filters and 

the kernel size is 7×1. Each unit is activated according to the 

ReLU activation function after convolution. 

Pooling layer: The second and fourth layer convolutions of 

the model used the maximum pooling method for sub-

sampling, further reducing the dimensionality of the 

information extracted by the convolutional layer, the size of 

the model and the number of calculations to prevent overfitting. 

The size of the kernel in this layer is 2×2, the stride is 2. 

Attention Mechanism: The attention mechanism can make 

the model more accurate and efficient in processing sequence 

data. In the attention mechanism, the output of each neuron 

depends not only on the output of all the neurons in the 

previous layer, but can also be weighted according to different 

parts of the input data. In order to better extract features of 

human gait, we added the above-mentioned improved ECA 

module at different positions of the model. 

Bidirectional LSTM layer: The input sequences are input 

into two LSTM neural networks in positive and reverse order 

respectively for feature extraction. The word vector is formed 

after the two output vectors are spliced together as the final 

feature expression of the word. The final prediction result is 

determined by both forward propagation and back propagation. 

 

 

 
 

Figure 7. Fall risk assessment framework 

 

 
 

Figure 8. Schematic diagram of model frame of ISA-ECA-CNN-BiLSTM
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Dropout layer: It is added after the fully connected layer and 

bidirectional LSTM layers. When propagating forward, it 

makes the activation value of a neuron stop working with a 

certain probability p, which makes the model more generalized, 

we set the value of dropout to 0.5. 

Output layer: The features processed by the designed 

network are connected to each node and all nodes of the 

previous layer through the fully connected layer to synthesize 

the features extracted before, and after obtaining a specific 

value, the final classification result is obtained based on the 

softmax classifier. 

In this paper, we used the above model for fall risk 

assessment using a multimodal fusion approach. The 

conventional approach for combining multimodal features is 

to concatenate the feature vectors of each modality directly. 

Employing a direct concatenation of feature vectors may not 

be the most optimal approach due to the inherent dissimilarity 

in the contributions of plantar pressure signals and IMU 

signals to the fall risk assessment task. Additionally, there 

exists a likelihood of high redundancy or, conversely, 

complementary relationships between features extracted from 

these two signal sources. This elevated duplication rate 

underscores the necessity for a more nuanced strategy that 

captures the nuanced interplay and unique characteristics of 

each signal type in order to enhance the overall effectiveness 

of fall risk assessment. Therefore, this paper adopts adaptive 

feature weighted fusion, and automatically shields redundant 

features and highlights complementary features through 

network training to achieve feature fusion of the two signals. 

We assigned a weight to each feature parameter to indicate 

how important that feature parameter is for the fall risk 

assessment task. The weight value can be learned 

automatically through neural network training, and 

automatically assign higher weights to the feature parameters 

with high contribution degree. 

The computational process of adaptive weighted feature 

fusion is shown in Figure 9. For each gait parameter, a weight 

β is set. Suppose FM is the inertial feature vector output after 

the network model structure removes the last layer, F is the 

plantar feature vector output after the network model structure 

removes the last layer, and 𝐹𝑠  is the feature vector after 

splicing the two feature vectors. Then 𝐹𝑠 can be obtained by 

the following formula: 

 

𝐹𝑠 = 𝑐𝑜𝑛𝑎𝑡(𝐹𝑀, 𝐹) [
𝐹𝑀

𝐹
] (2) 

 

Next, the concatenated feature vector 𝐹𝑠 is assigned weights 

to obtain the fused feature vector  𝐹𝐹, which is calculated as 

follows: 

 

𝐹𝐹 = 𝛽𝐹𝑠 = [
𝛽𝑀𝐹𝑀

𝛽𝑃𝐹
] (3) 

 

In Eq. (3), β, βM , and βP  represent weight vectors. After 

obtaining the fused feature vector, calculate the category score 

G: 

 

𝐺 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝐹𝐹 + 𝑏) (4) 

 

In Eq. (4), W ∈ RCl∗Fs and b ∈ RCl , both are the weight 

matrix and bias vector respectively. Cl is the number of 

classification categories, and FF is the dimension of the fused 

vector. The softmax function is defined as: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑖) =
𝑒𝑍𝑖

∑ 𝑒𝑍𝑗𝐶𝑖
𝑗=1

, (𝑖, 1,2,3, … 𝐶𝑙) (5) 

 

 
 

Figure 9. Feature fusion based on adaptive weighting 

 

Finally, the final predicted category y is calculated, and its 

calculation formula is: 

 

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐺) (6) 

 

The loss calculation method in the feature fusion network 

model is the cross entropy loss function, which can be obtained 

by the following formula: 

 

Loss =
1

N
∑ lossj

j

= −
1

N
∑ ∑ yjh

Cl

hj

log(Gjh) (7) 

 

The Eq. (7), N is the total number of samples, and Gjh 

represents the probability that sample j belongs to category h. 

yjh is a symbolic function, which can be expressed as: 

 

𝑦𝑗ℎ

= {
1(𝑇ℎ𝑒 𝑟𝑒𝑎𝑙 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑗 𝑖𝑠 ℎ)

0(𝑇ℎ𝑒 𝑟𝑒𝑎𝑙 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑗 𝑖𝑠 𝑛𝑜𝑡 ℎ)
  

(8) 

 

In the model training phase, the single-modal ISA-ECA-

CNN-BiLSTM model is first trained as a pre-training model. 

The multimodal adaptive weighted feature fusion model is 

then trained by fixing the network parameters of the ISA-

ECA-CNN-BiLSTM model, and the weights in the feature 

fusion network model change with training. This training 

method can speed up model convergence and save training 

time. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSES 

 

4.1 Experimental environment 

 

Experiment and result analysis the purpose of the 

experiment is to identify the risk of human falls and verify its 

accuracy. The experiment uses the Win10 operating system, 

the CPU is Intel(R) Core (TM) i9-7900X 3.30GHz, the GPU 

is GeForce RTX 3090, the Python version is 3.8.4, the Cuda 

and Cudnn versions are 11.2 and 8.1.0 respectively. 
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The constructed dataset is used to train and test the model. 

We used 80% of the dataset as the training set and 20% as the 

test set. When dividing the dataset, we ensured that the data 

was random and reproducible. In this experiment, trial and 

error was used to set hyperparameters, and the early 

termination condition was that the loss of model did not 

decrease for 5 consecutive times. The final selected 

hyperparameter in this experiment is the super-parameter set 

with the best performance of the model on the verification set, 

as shown in Table 1. The network is optimized using the Adam 

algorithm. 

 

Table 1. Model parameter setting 

 
Setting Item Parameter Value 

Learning rate 0.0001 

Batch size 256 

Epoch 100 

Dropout 0.5 

Number of hidden layer units 512 

 

4.2 Evaluation indicators 

 

In the classification problem, the indicators for 

quantitatively evaluating the performance of classifiers 

include accuracy, precision, sensitivity and F1-score. 

Different indicators are interrelated and each has its emphasis. 

Huang et al. [42] pointed out in their research that in the fall 

risk assessment algorithm, the most important indicator is 

sensitivity, followed by accuracy. Because low sensitivity will 

mean that the elderly who are at high risk of falls have not been 

correctly classified. From the perspective of economic costs, 

these high-risk individuals underestimate their own risk of 

falls. Once a fall occurs, it will bring serious economic and 

health loss. Similarly, high sensitivity and low specificity will 

mean that some people with low fall risk will also be classified 

as high fall risk group, but compared with low sensitivity, the 

economic loss caused by such misclassification is relatively 

small only increasing the allocation of social resources 

accordingly. Therefore, to ensure that as many high-fall risk 

groups as possible are correctly classified into high-fall risk 

groups, the classification algorithm is required to have higher 

sensitivity. At the same time, the British National Institute for 

Health and Service Optimization also believes that the 

sensitivity index should be as high as possible in the 

"Guidelines for Assessment and Prevention of Falls in the 

Elderly", and pointed out that both the sensitivity and accuracy 

indicators should reach 70% and above. 

In this paper, high-fall-risk groups are used as positive 

samples and low-fall-risk groups are used as negative samples. 

Among them, TP refers to the number of samples correctly 

identified as high risk, TN refers to the number of samples 

correctly identified as low risk, FP refers to the number of 

samples incorrectly identified as high risk, and FN refers to the 

number of samples incorrectly identified as low risk. The 

definitions of accuracy, precision, sensitivity and F1-score are 

given below: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (9) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
   (12) 

 

4.3 Model evaluation test 

 

In this paper, the models CNN, LSTM, GRU, CNN-LSTM 

and CNN-BiLSTM in the existing fall risk assessment 

research are compared and the results are shown in Table 2. 

The CNN-BiLSTM model has the highest accuracy and 

precision. The results show that compared with CNN and 

LSTM alone all four metrics have been improved to a certain 

extent. Compared with GRU, the accuracy, precision and 

F1Score have increased by 6.5%, 13.4% and 4.4%. Compared 

with CNN-LSTM, the accuracy and sensitivity of this model 

are similar, but the precision and F1Score are 4.8% and 1.1% 

higher than CNN-LSTM. So finally, CNN-BiLSTM is chosen 

as the baseline model for optimization improvement in this 

paper. 

 

Table 2. Performance comparison of baseline models 

 
Model Accuracy Precision Sensitivity F1 Score 

CNN 82.7% 92.7% 87.9% 90.1% 

LSTM 81.1% 94.5% 87.2% 89.8% 

GRU 81.6% 83.0% 89.9% 87.8% 

CNN-LSTM 87.6% 91.6% 90.1% 91.1% 

CNN-BiLSTM 88.1% 96.4% 89.6% 92.2% 

 

4.4 Effect of attention mechanism and max pooling layer 

on model performance 

 

 
 

Figure 10. Training accuracy/loss for different models 
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Table 3. Performance comparison of the ISA-ECA-CNN-

BiLSTM model with other models 

 
Model Accuracy Precision Sensitivity  

CNN-

BiLSTM(noMaxpooling) 
88.1% 96.4% 89.6% 92.2% 

CNN-BiLSTM 90.0% 95.8% 95.1% 95.5% 

CBAM-CNN-BiLSTM 96.5% 98.7% 97.4% 98.5% 

ECA-CNN-BiLSTM 97.1% 98.9% 98.3% 98.6% 

BAM-CNN-BiLSTM 96.4% 98.1% 97.6% 98.0% 

ISA-ECA-CNN-BiLSTM 98.4% 99.1% 98.8% 98.9% 

 

To assess the practicality of integrating the enhanced ECA 

attention module and max pooling layer into the CNN-

BiLSTM model, we performed experimental evaluations 

using a custom dataset across six distinct network model 

configurations: 

(1) CNN-BiLSTM (lacking a max pooling layer); 

(2) CNN-BiLSTM with an added max pooling layer for 

enhanced feature extraction; 

(3) CBAM-CNN-BiLSTM, incorporating CBAM attention 

for refined focus on relevant features; 

(4) ECA-CNN-BiLSTM, enhanced with ECA attention to 

improve accuracy by emphasizing important features; 

(5) BAM-CNN-BiLSTM, augmented with BAM attention 

for better feature representation; 

(6) ISA-ECA-CNN-BiLSTM, the model introduced in this 

study, featuring an advanced version of ECA attention for 

superior performance.  

The outcomes of the six network models are illustrated in 

Figure 10, with the experimental results detailed in Table 3. 

These results clearly demonstrate that the ISA-ECA-CNN-

BiLSTM model outperforms the others in terms of accuracy 

and sensitivity. As depicted in Figure 10, the ISA-ECA-CNN-

BiLSTM model in our investigation significantly surpasses 

alternative models in accuracy and convergence speed. A 

comparison between models (1) and (2) reveals that 

incorporating a max-pooling layer enhances the accuracy and 

sensitivity by 2.5% and 5.7%, respectively. The integration of 

an attention mechanism preserves critical feature information, 

thereby increasing model precision. Further analysis of the 

CNN-BiLSTM model, upon integrating BAM, ECA, and 

CBAM attention mechanisms, shows that the ECA attention 

mechanism notably boosts model accuracy by 7.7%. However, 

ECA attention overlooks the spatial attention module, unlike 

CBAM and BAM. Consequently, our study introduces a 

spatial attention module following ECA attention. Within this 

module, global and maximum pooling operations are initially 

executed, followed by concatenation and convolution using 

standard convolutional layers to produce a two-dimensional 

spatial attention map. This enhancement significantly refines 

the attention mechanism's impact on model accuracy. The 

experimental findings confirm that the refined model exhibits 

commendable accuracy, precision, and sensitivity. 

 

4.5 Effect of different CNN layers on model performance 

 

In examining the impact of varying the number of CNN 

layers on classification accuracy, we conducted a comparative 

analysis across different configurations, specifically focusing 

on models with 1, 2, 3, and 4 CNN layers, while keeping the 

LSTM parameters constant. The outcomes of these 

experiments are presented in Table 4. Notably, when 

employing 4 CNN layers, the model achieved the highest 

accuracy, surpassing the performance observed with 1, 2, and 

3 layers. Consequently, we opted to fix the number of CNN 

layers at 4 based on these findings. 

 

Table 4. Accuracy of the model at different CNN layers 

 
CNN Layer Accuracy Precision Sensitivity F1 Score 

1 97.1% 98.9% 98.5% 98.8% 

2 96.8% 98.8% 98.0% 98.4% 

3 95.2% 98.3% 96.9% 97.9% 

4 98.4% 99.1% 98.8% 98.9% 

 

4.6 Effect of different LSTM layers on model performance 

 

To assess how the classification accuracy is influenced by 

the number of LSTM layers, we maintained the CNN 

parameters constant and manipulated the number of LSTM 

layers. The results of these experiments are detailed in Table 

5. Notably, the model achieved its highest accuracy when 

employing a single LSTM layer, outperforming configurations 

with 2 and 3 layers. Consequently, we opted to settle on a 

single LSTM layer based on these results. 

 

Table 5. Accuracy of the model at different LSTM layers 

 
LSTM Layer Accuracy Precision Sensitivity F1 Score 

1 98.4% 99.1% 98.8% 98.9% 

2 94.2% 96.9% 97.4% 97.9% 

3 91.9% 96.3% 94.7% 96.6% 

 

4.7 Effect of different sliding window sizes on model 

performance 

 

In order to observe the effect of the sliding window size on 

the classification accuracy, we compared the model accuracy 

changes with window sizes of 1, 2, and 3 seconds, while 

keeping other parameters unchanged. The experimental results 

are shown in Table 6. When the size of the sliding window is 

1 second, the accuracy of the model is the highest, and the 

performance is better than 2 seconds and 3 seconds, so we 

finally set the sliding window size to 1 second. Then, we 

compared the model accuracy changes with window sliding 

overlap rate of 40%, 50%, and 60%, while keeping the sliding 

window size to 1 second. When the sliding overlap rate is 50%, 

the accuracy of the model is the highest. The experimental 

results are shown in Table 7. 

 

Table 6. Accuracy of the model at different sliding window 

sizes 

 
Sliding Window 

Size (s) 
Accuracy Precision Sensitivity 

F1 

Score 

1 98.4% 99.1% 98.8% 98.9% 

2 96.9% 98.8% 98.0% 98.7% 

3 96.1% 98.3% 97.8% 98.0% 

 

Table 7. Accuracy of the model at different sliding overlap 

rate 

 
Sliding Overlap 

Rate 
Accuracy Precision Sensitivity 

F1-

Score 

40% 97.0% 98.8% 98.2% 98.4% 

50% 98.4% 99.1% 98.8% 98.9% 

60% 95.3% 97.8% 97.4% 97.5% 
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4.8 Analysis of model test results 

 

We analyze the IMU signal and plantar pressure signal to 

assess the risk of falls in humans. The performance indicators 

of the fall risk assessment model on the test set are shown in 

Table 8, where the prediction accuracies for high-risk and low-

risk are 98.1% and 99.0% respectively. The test results 

demonstrate the effectiveness of the ISA-ECA-CNN-BiLSTM 

algorithm with fused signal features. 
 

Table 8. ISA-ECA-CNN-BiLSTM model test results 

 
Fall Risk  Accuracy Precision Sensitivity  

high 98.1% 98.6% 98.2% 98.5% 

low 99.0% 99.4% 99.1% 99.3% 

 

4.9 Analysis of model test results 

 

Table 9 provides a comparison of the recognition 

performance between our approach and existing studies. 

Although the performance of fall risk assessment cannot be 

directly compared to previous findings due to different 

experimental conditions, our approach achieved comparable 

performance: using our own constructed dataset as a 

benchmark. In this study, the LSTM model proposed by Tunca 

et al. [28] achieved 91.88% recognition accuracy, whereas the 

ConvLSTM model proposed by Liang et al. [30], which uses 

a convolutional kernel instead of the fully-connected layer in 

the LSTM, achieves 94.2% accuracy. The CNN model 

proposed by Baloch et al. [29] achieved 93.6% accuracy. 

Baloch et al. [29] also proposed combining CNN and LSTM 

to achieve 95.2% accuracy, exceeding the performance of the 

CNN model alone. However, the comparison in Table 9 

indicates that the model in this study had the highest accuracy 

rate. The results show that the classification accuracy of the 

fall risk assessment method designed in this chapter is 98.4%. 

Compared with other methods, the fall risk assessment method 

based on multi-sensor information in this study also has a high 

classification accuracy, and by continuously adjusting the 

model parameters, it has achieved better experimental results 

in fall risk assessment research. 

 

Table 9. Performance comparison with the existing methods 

 
Study Technology Accuracy 

[29] CNN-LSTM 95.2% 

[28] LSTM 94.9% 

[29] CNN 93.6% 

[30] ConvLSTM 94.2% 

propose ISA-ECA-CNN-BiLSTM 98.4% 

 

 

5. CONCLUSION 

 

In this study, we propose a fall risk assessment model based 

on the fusion of multisensory information to improve the 

efficiency of the channel attention mechanism of CNN-

BILSTM. First, unlike existing fall risk assessment methods, 

our model accepts inputs as fixed-length segments, an 

improvement that allows the recognition model to be freed 

from noise- and bias-sensitive fall risk assessment tasks. 

Second, an improved network structure of an efficient channel 

attention mechanism is designed to incorporate a spatial 

attention module, which allows the model to efficiently extract 

global gait features. Based on this, based on this, gait features 

extracted from IMU signals and plantar pressure signals are 

adaptively weighted and fused, and the evaluation of our 

constructed dataset demonstrates that this approach 

outperforms existing fall risk assessment models and achieves 

new state-of-the-art performance in recognition and validation 

tasks. 

This study had several limitations. First, the number of 

people in the constructed dataset is small and the size of the 

data is small. If it were trained using a larger dataset, the 

current model might perform better. Second, there were 

mainly male participants-75%). Future research should 

consider how male and female models perform differently. 

Deep learning models are also difficult to interpret. Future 

research that aims to create interpretable models may provide 

a more in-depth understanding of the factors that affect fall 

risk. Due to the lack of suitable public datasets, all experiments 

in this study were validated on a self-constructed dataset. In 

the future, it may be beneficial to consider employing external 

datasets for more comprehensive validation or cross-

validation to ensure the generalizability of the model. 
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