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The escalating prevalence of genetic disorders in humans underscores the criticality of early 

detection. Current clinical methodologies, such as cellular activity assessment and 

chromosomal examination, are widely employed for early-stage prediction of these 

disorders. However, traditional approaches to chromosomal cell (CC) examination are 

intricate and labor-intensive. This study proposes a novel deep learning framework (DLF) 

to overcome these challenges by precisely and efficiently segmenting and classifying CCs. 

As part of this scheme, images are collected and resized, the DLF is trained using the 

selected images, segmentation and deep feature extraction of the CC are performed. The 

proposed methodology involves image collection and resizing, training the DLF with chosen 

images, CC segmentation and feature extraction and multiclass classification and 

performance verification. This work implements the VGG-UNet plan to examine the chosen 

CC images collected from the Biomedical Imaging Laboratory (BioImLab). An 

experimental inquiry is being carried out on 5474 images and the achieved findings are 

addressed. The findings of this research suggest that the presented work help to provide a 

detection accuracy of >98% with the K-Nearest Neighbor supported classifier. This research 

can be expanded in the future to detect the genetic disorder based on the information 

obtained from the CC. 
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1. INTRODUCTION

Recent improvements in science and engineering have led 

to the automation of numerous examination procedures, 

particularly in the examination of biological data. The 

improvements in computing facilities and the accessibility of 

recent computational tools have empowered us to implement 

a wide range of diagnostic and detection procedures. This 

enables accurate evaluation of biological and medical 

information collected from the human subjects [1, 2]. 

In the current era, Artificial Intelligence (AI) plans are 

widely employed to solve a number of complex engineering 

tasks including medical image processing problems [3]. The 

advancements in the AI also helps to develop and implement 

various procedures to examine the complex medical images. 

As a result of the current research in the biological and medical 

fields, it has been confirmed that AI frameworks such as 

heuristic algorithms, Machine-Learning Methods (MLMs) as 

well as Deep-Learning Mechanisms (DLMs) are being utilized 

to increase automatic diagnosis accuracy [4, 5]. 

As part of a genetic disorder examination, chromosome cell 

(CC) karyotyping is a common biological test. In this task, a

person can be examined using the following information;

number of available CCs, deletion of a chromosome,

duplication of a chromosome, and chromosomes with unusual

structures. These analyses play a vital role during the clinical

level diagnosis of Edwards syndrome, Turner syndrome, and

Down syndrome are examples of genetic illnesses. As an 

automatic assessment of individual cells, segmentation and 

classification are involved. As far back as the early 

cytogeneticists were concerned, the CC was classified as 

twenty-two pairs of autosomes and one set of sex 

chromosomes. The automatic classification of the CC is based 

on its texture and shape features. There are two types of 

features in a CC: Handcrafted (traditional) Features (HF) as 

well as Learned Features (LF) derived with the help of a 

chosen Artificial Intelligence scheme. The past few years, the 

availability of modern computing facilities has led to the 

implementation of DLM in a variety of domains, including CC 

karyotyping, because of the accessibility of the modern 

computing facility. In order to achieve a higher level of clinical 

significance, a DLM can be implemented to perform automatic 

segmentation and classification. As a result, DLM schemes 

have been widely applied in research works related to CC 

karyotyping that have been conducted recently [6, 7]. Earlier 

works on CC karyotyping suggests that the existing 

procedures provides a satisfactory result on this task and it 

needs to be improved further with a modified Convolutional 

Neural Network (CNN) scheme. In this research, we plan to 

create a framework by integrating the Convolutional Neural 

Network -supported Segmenting and classification to enhance 

the results of CC karyotyping by integrating CNN-supported 

segmentation and classification approaches. A new feature of 

this work is the implementation of VGG-UNet (VGG19 acts 
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as the backbone) for segmenting the CC region and extracting 

the HF, including GLCMs and DWTs [8-10]. In this scheme, 

the pretrained VGG19 functions as the backbone (encoder) 

while the decoder is constructed based on the encoder structure. 

In order to form a dominant hybrid feature vector (HF+LF), 

the HF from the segmented images is combined with the LF 

from the VGG19 scheme to form a dominant hybrid feature 

vector (HF+LF). This feature vector will then be used in a 

cross-validation process for performing the classification task. 

With the help of different classifiers chosen by the authors of 

this study, the experimental outcome of this work is verified 

and compared with the recent work by Al-Kharraz et al. [11]. 

The proposed scheme has higher levels of classification 

accuracy than the other approaches in the literature, according 

to the experimental findings of this research.  

The contributions of this research involve; 

(i) Application of a CNN segmentation method to extract 

CCs and compute their shape and texture features based on the 

extracted CC. 

(ii) Improvement of CC karyotyping accuracy through HF 

and LF classification. 

(iii) Evaluation of the scheme's performance and assessment 

of its clinical relevance through comprehensive performance 

appraisal and validation. 

 

 

2. CONTEXT 

 

CC karyotyping is a critical component of clinical-level 

genetic disorder prediction, prompting various research 

endeavors as an alternative to the complex and time-

consuming conventional methods. 

In their work, Pallavoor et al. [12] introduced deep CNN-

supported segmentation schemes for CC extraction and 

evaluation that covered both Q-band and G-band. The 

presented approach attained a remarkable classification 

accuracy of 95.75% through the utilization of extracted 

features, employing a pre-trained SqueezeNet model. 

Hernández-Mier et al. [13] presented a machine learning-

based automatic karyogram generation method using G-band 

CC. They employed 119 Q-band images and 24 G-band 

images, achieving classification accuracy exceeding 90% for 

two-class classification and over 79% for multiclass 

classification. The clinical significance of their approach was 

substantiated with clinically collected images. 

Liu et al. [14] advocated a deep learning model (DLM) 

coupled with the SRAS-net classifier for CC classification in 

low-resolution images. Their innovative SRAS-net, which 

integrates InceptionV2 with ResNet, combined with other 

techniques like the Image Adaptive Module (IAM), SMOTE, 

and self-adaptive negative feedback network, resulted in an 

impressive 97.55% accuracy in CC detection. 

The study of Al-Kharraz et al. [11] proposed the application 

of a deep learning algorithm for categorized the CC, and with 

the VGG19 scheme, they achieved a classification accuracy 

of >95%. As a result of the results and discussion presented in 

this paper, we are able to conclude that the proposed approach 

to CC evaluation is efficient and outperforms more similar 

existing works in the field. 

The earlier works on the CC detection provided an accuracy 

of 95 to 97.55% and this result need to be improved using an 

appropriate methodology. To achieve a better detection 

accuracy of CC, the proposed research work is aimed at 

developing an integrated deep segmentation and classification 

technique. As part of this work, VGG-UNet (VGG19 as the 

backbone) is utilized to extract the chromosomes effectively 

and shape and texture features are extracted by using 

handcrafted features (HF) and learned features (LF), and the 

fusion of these features, denoted as HF+LF, is subsequently 

deployed in a comprehensive five-fold cross validation 

framework tailored for the multiclass classification task. 

Experimental investigations conducted within this study 

unequivocally establish the superior functionality of the 

strategy we've suggested when juxtaposed with existing 

methodologies delineated in the extant literature. 
 

 

3. METHODOLOGY 

 

An essential facet of early-stage genetic disease diagnosis is 

the automatic karyotyping of chromosome cells (CC). This 

procedure entails the examination of CC using a carefully 

selected methodology to optimize results. Previous literature 

has firmly established that deep learning methods (DLM) 

serve as effective tools for improving the accuracy of CC 

examinations. Consequently, the proposed scheme 

incorporates a DLM-supported segmentation and 

classification system to enhance the evaluation of CC. 

Figure 1 illustrates the procedural framework adopted in 

this research, encompassing the following pivotal stages: (i) 

Image acquisition and preprocessing; (ii) Utilization of VGG-

UNet for the segmentation of chromosome cells (CCs); (iii) 

Extraction of handcrafted features (HF) from the segmented 

images; (iv) Extraction of learned features (LF) from a pre-

trained deep learning model (DLM); and (v) Integration and 

classification of the derived sequential features. Within this 

study, the assessment of classification accuracy, facilitated by 

a carefully chosen classifier, serves as the benchmark for 

evaluating the efficacy of the proposed methodology. A 

central component of this framework is the VGG-UNet, as 

depicted in Figure 1(b), which significantly contributes to 

enhancing the precision of CC mining. 

 
 

 
 

(a) Proposed scheme 
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(b) VGG-UNet 

 

Figure 1. Structure of the proposed CC detection process 

 

 
(a) Original image 

 
(b) Complement image 

 
(c) Detected chromosomes 

 
(d) Karyotyping 

 

Figure 2. Sample images available for segmentation task 

3.1 Database 

 

The performance evaluation of the developed chromosome 

cell (CC) detection tool necessitates rigorous validation using 

a benchmark database. In this study, we have utilized the test 

images available from the well-established Biomedical 

Imaging Laboratory (BioImLab) database, and comprehensive 

details regarding this dataset can be accessed from Laboratory 

of Biomedical Imaging [15]. This dataset encompasses two 

distinct image sets designed to support both segmentation and 

classification tasks. The images presented in Figure 2 serve a 

dual purpose, catering to both segmentation and karyotyping. 

Specifically, Figure 2(a) showcases a Q-band prometaphase 

image for assessment, while Figure 2(b) represents the 

complementary image. Figure 2(c) portrays the contrast-

adjusted and segmented chromosome images, and Figure 2(d) 

exhibits the karyotype information included within the dataset. 

In the context of this research proposal, we have directed 

our focus towards the classification database, implementing a 

systematic approach that includes the following key steps: (i) 

resizing, (ii) mask generation utilizing ITK-Snap software [16, 

17], and (iii) segmentation and classification, guided by the 

VGG-UNet architecture. For the segmentation task, we have 

specifically considered 5474 images available in this database 

for assessment and classification. Within this set, a subset of 

500 images, each accompanied by a binary mask, has been 

selected to perform the segmentation process. These images 

are then considered for training and validating the proposed 

VGG-UNet algorithm. By using the trained VGG-UNet to 

extract the CC section (binary image) from the selected images 

from all 5474 images, the binary image of the CC is extracted, 

which is necessary to extract the HF, such as GLCM and DWT. 

The purpose of this study is to use the pretrained VGG-UNet 

scheme in order to achieve both 

 

3.2 VGG-UNet 

 

UNet is one of the commonly employed image 

segmentation practices to extract chosen regions from the 

digital image. The advantages of the UNet and its variations 

are supported by earlier research in the literature [18, 19]. The 

application of VGG-UNet in image extraction can be found in 

the studies [20, 21]. Khan et al. [9] proposed the VGG-UNet 

scheme that can be used to extract CC from selected test 

images. This scheme uses the VGG19 as a backbone (Encoder) 

and its inverted structure to function as the decoder. There is 

also the addition of another layer, which is a SoftMax, which 

extracts the CC section of the test image. The extracted section 

will be in the form of binary; therefore, it can be used later for 

the mining of GLCM and DWT features. Information about 

the VGG-UNet can be found in the studies [22-25]. The initial 

values for VGG-UNet are assigned as follows; Adam 

optimizer, MaxPooling layer and ReLu. 

The final layer within the decoder is equipped with SoftMax, 

which plays a pivotal role in extracting the binary 

representation of the target image section. 

A commonly used CNN scheme is image segmentation with 

UNet (UNet), which can be used to extract parts of a digital 

image for analysis. Earlier publications in the literature [18, 19] 

support the UNet and its derivatives. The application of VGG-

UNet in image extraction can be found in the studies [20, 21]. 

Khan et al. [9] proposed the VGG-UNet scheme that can be 

used to extract CC from selected test images. This scheme uses 

the VGG19 as a backbone (encoder) and its inverted structure 
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to function as the decoder. There is also the addition of another 

layer, which is a SoftMax, which extracts the CC section of 

the test image. The extracted section will be in the form of 

binary; therefore, it can be used later for the mining of GLCM 

and DWT features. Information about the VGG-UNet can be 

found at the studies [22-25]. The following are the initial 

values for VGG-UNet: Adam optimizer, MaxPoolinglayer, 

and andReLu. The final section of the decoder is associated 

with SoftMax to extract the binary image. 

 

3.3 Feature extraction and integration 

 

The proposed scheme emphasizes the importance of feature 

extraction and the importance of feature supported detection. 

In this work, both the HF and LF are considered. GLCM [26, 

27] and DWT [28, 29] were used so as to obtain the necessary 

HF. The outcomes of these methods can be obtained by using 

Eq. (1) and Eq. (2). 

 

𝐺𝐿𝐶𝑀(1𝑥1𝑥44) = 𝐺𝐿𝐶𝑀1, 𝐺𝐿𝐶𝑀2, … , 𝐺𝐿𝐶𝑀44 (1) 

 

𝐷𝑊𝑇(1𝑥1𝑥26) = 𝐷𝑊𝑇1, 𝐷𝑊𝑇2, … , 𝐷𝑊𝑇26 (2) 

 

This scheme proposes a LF vector of dimension 1×1×1000 

that is then reduced by 50% to 1×1×500, resulting in a new 

hybrid feature vector (HF+LF) of dimension as presented in 

equation. The classifier is then trained and validated using a 

five-fold cross-validation procedure based on Eq. (3), which is 

referred to as the hybrid feature vector (HF+LF). 

 

(𝐻𝐹 + 𝐿𝐹)(1𝑥1𝑥570) =  𝐺𝐿𝐶𝑀(1𝑥1𝑥44) +

 𝐷𝑊𝑇(1𝑥1𝑥26) +  𝐿𝐹(1𝑥1𝑥500)  
(3) 

 

3.4 Performance assessment and endorsement 

 

A number of classifiers, such SoftMax, k-NN, Random 

decision forests (RF), and support-vector networks (SVM), are 

employed to evaluate the suggested approach, and the results 

obtained are compared to and justified against those published 

in the literature. In this study, only classification accuracy is 

evaluated, and its expression is given in Eq. (4) [30-33]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐴𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (4) 

 

 

4. RESULT AND DISCUSSIONS 

 

This portion of the study demonstrates the experimental 

results obtained using Python software. This experiment is 

conducted using a work station having Intel i7 processor, 

16GB of RAM, and 4GB of video memory. 

Training and testing the VGG-UNet algorithm with 

properly picked images accompanied by binary masks is the 

first step in verifying the reliability of the segmentation 

process. We continuously monitor the system's efficiency 

during the training phase by analyzing accuracy and loss 

statistics. It's worth noting that this research uses an CNN 

architecture for both separation and classification. 

Our research investigates accuracy and loss values as 

critical verification measures in beneficial to thoroughly 

appraise the efficiency of the chosen method. Figure 3 depicts 

these metrics graphically, with Figure 3(a) displaying the 

training images, which include both the original picture and its 

associated mask, and Figures 3(b-c) displaying the accuracy 

and loss values, respectively. Figure 3(d) showcases the 

resulting segmented binary image. 

 

 

(a) Training Images 

  

(b) Accuracy 

 

 
 

(c) Loss 
 

 
 

(d) Validation 

 

Figure 3. The outcome of VGG-UNet on the given database 

 

From the observations made in Figure 3(d), it becomes 

evident that the predicted chromosome closely aligns with the 

provided mask, serving as compelling evidence for the 

efficacy of the segmentation achieved through the VGG-UNet 

model. Subsequently, this segmented image is employed for 

the extraction of essential shape features, further enhancing the 

depth of our analysis. 

As a result, the proposed segmentation model achieves an 

accuracy of 94.27% and accurately extracts the binary image 

of CC from the selected test image. As discussed in Eq. (3), 

handcrafted features (HFs) such as GLCM and DWT are 

extracted from these images and combined with learned 

features (LFs). The proposed scheme is subsequently tested 

using a multiclass classifier to validate the accuracy of this 

one-dimensional feature vector. 
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(a) Conv1 
 

 
 

(b) Conv2 
 

 
 

(c) Conv3 
 

 
 

(d) Conv4 

 

Figure 4. Intermediate layer result obtained from VGG19 

 

The VGG19-supported image classification task is initially 

executed using the SoftMax classifier. The necessary 

outcomes from the CNN scheme are obtained during this 

operation, as presented in Figures 4 and 5. Figure 4 shows the 

images collected from various convolutional layers of VGG19, 

and Figures 4(a-d) present the outcomes of convolutional layer 

1 (Conv1) to convolutional layer 4 (Conv4), confirming that 

the chosen image is transformed into features during this 

process. Figure 5 depicts the accuracy and loss values 

computed during the training and validation processes for 50 

epochs. 

The proposed scheme achieves a classification accuracy of 

96.93% with SoftMax, 98.04% with KNN, 96.36% with RF, 

and 97.28% with the SVM classifier. The achieved accuracy 

is then verified against other results found in the literature, 

confirming the merit of VGG-UNet. 

 
 

 
 

(a) Accuracy 
 

 
 

(b) Loss 

 

Figure 5. Training and validation performance of VGG19 for 

the chosen database 

 

The data presented in Table 1 unequivocally demonstrate 

that the outcomes achieved in this study surpass those of 

alternative methods documented in the literature [11, 14]. This 

substantiates the excellence of our proposed approach relative 

to existing methodologies. Figure 6 provides a visual 

comparison of accuracy between our proposed method and the 

methodologies under consideration, with the combined 

approach of our proposed scheme and K-Nearest Neighbor 

(KNN) yielding the most favorable results. 

Through the integration of VGG-UNet with the VGG19 

backbone in this research, we have successfully implemented 

a unified segmentation and classification method, resulting in 

enhanced chromosome cell (CC) segmentation and detection 

accuracy. Looking forward, there is potential for further 

improvements by exploring the fusion of learned features (LF) 

with an ensemble of LF-based methods, as this scheme 

capitalizes on the synergy between both handcrafted features 

(HF) and LF to achieve heightened classification accuracy. 

The findings derived from this research unequivocally 

validate the effectiveness of the proposed technique when 

applied to the selected database. In the future, the performance 
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of this scheme can be extended to include the evaluation of 

clinically collected CC images, offering prospects for even 

more robust validation and application. 

 

Table 1. Multiclass classification accuracy during 

chromosome detection 

 
Reference Scheme Accuracy (%) 

Al-Kharraz et al. [11] VGG19 95.04 

Liu et al. [14] 

SRAS-net (ResNet50) 95.92 

SRAS-net (Xception) 96.01 

SRAS-net (VGG19) 96.56 

SRAS-net 

(inception_resnet_V2) 
97.55 

Proposed 

VGG19 with SoftMax 96.88 

VGG19 with KNN 98.11 

VGG19 with RF 96.28 

VGG19 with SVM 97.19 

 

 
 

Figure 6. Comparison of classification accuracy of the 

proposed work with existing methods 

 

 

5. CONCLUSION 

 

This research introduces a novel approach for the automated 

recognition of chromosome cells (CC) through the integration 

of Convolutional Neural Networks (CNNs) for segmentation 

and classification tasks. Specifically, the VGG19 architecture 

is harnessed to execute these essential functions. The initial 

phase of the proposed tool employs the VGG-UNet model to 

effectively segment the requisite CC section, while the 

subsequent phase leverages the VGG19 model for 

classification. The CNN-based segmentation process results in 

a binary representation of the CC, which is subsequently 

utilized for the extraction of Handcrafted Features (HF) such 

as Gray-Level Co-occurrence Matrix (GLCM) and Discrete 

Wavelet Transform (DWT). 

To enhance the discriminative power of our approach, this 

research generates a hybrid feature vector by sequentially 

combining Deep Features (DF), GLCM, and DWT-derived 

features. This feature vector is then employed to provide a 

binary classification outcome with the aid of a chosen 

classifier. The empirical findings of this study unequivocally 

establish the superiority of the K-Nearest Neighbor (KNN) 

classifier, achieving classification accuracy surpassing 98%, 

which outperforms existing methods documented in the 

literature. 

However, it's important to acknowledge a limitation 

inherent in this scheme, which primarily relies on CNN-based 

segmentation and classification. In future investigations, 

alternative approaches for CC classification, distinct from 

segmentation, could be explored to further enhance the 

versatility and robustness of the proposed methodology. 
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