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This study underscores the imperative role of feature extraction and classification in the 

domain of electromyography (EMG) signals. The efficacy of myoelectric pattern 

recognition hinges upon the judicious selection of pertinent features. In this research 

endeavor, we introduce a novel approach that leverages two distinct feature sets: conditional 

spectral moments and refined time-domain descriptors, tailored to augment the precision of 

myoelectric signal classification. The conditional spectral moments, derived from the time-

frequency distribution of EMG signals, encapsulate nuanced variations in muscle activity 

and movement dynamics. This augmentation facilitates seamless differentiation of hand 

gestures, a pivotal advancement in the context of prosthetic applications. Concurrently, we 

enhance the time-domain descriptors by convolving them with wavelet filter coefficients, 

thereby extracting both spatial and temporal characteristics of muscle activity. The extracted 

features are subjected to classification using Support Vector Machines (SVM), K-Nearest 

Neighbor (KNN), Decision Tree (DT), and Ensemble Bagging classifiers. To elucidate the 

efficacy of our proposed features, comprehensive experiments are conducted employing the 

benchmark databases Ninapro DB1 (comprising 52 classes) and DB2 (comprising 49 

classes). Our findings underscore the superiority of the proposed features, particularly when 

applied in conjunction with ensemble classifiers. Specifically, the classification accuracies 

of the modified time-domain descriptor feature exhibit substantial enhancements, achieving 

87.1% and 85.3% accuracy rates for Ninapro DB1 and DB2, respectively. Notably, the 

conditional spectral moments outperform with remarkable classification accuracies of 

92.9% and 90.8% for Ninapro DB1 and DB2, respectively. This marked improvement in 

EMG signal classification corroborates the enhanced precision in decoding hand 

movements, thus imparting significant advancements in the realm of hand prosthesis control. 
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1. INTRODUCTION

Myoelectric is a term that refers to the electric properties of 

muscles, and myoelectric-controlled prostheses utilize the 

electrical signals emanating from muscles [1]. The EMG 

acquired from the muscles in the residual limb is used by the 

myoelectric prostheses to control its functionality. 

Electromyography is a diagnostic procedure used to assess the 

health of muscles and the nerve cells that control them. EMG 

non-invasively measures muscle activity and extracts reliable 

information from the muscles, making it commonly used by 

researchers to determine discriminative information. Pattern 

recognition (PR) techniques extract insightful information 

from the EMG signals and interpret the neural control signals 

into movement commands for movement recognition. 

Prosthesis controllers receive commands to implement 

movements using EMG patterns based on pattern 

classification. This allows users to manage their myoelectric 

prosthesis more easily and with more control using the EMG-

PR technique [2]. It is challenging to operate artificial hands 

with the same degree of dexterity and complexity as biological 

hands. Nevertheless, PR has long been used for controlling 

myoelectric prosthetic devices. PR enables more intuitive 

control that is easier for both humans and computers to learn. 

It also allows the independent control of numerous degrees of 

freedom (DOF), viz., simultaneous, sequential, or semi-

sequential control, bringing the prosthesis closer to natural arm 

functions. The limb movement can be accurately decoded and 

used to control a prosthetic hand using a suitable PR-based and 

signal-processing technique combined with machine learning 

algorithms. There have been many studies that show that the 

pre-processing of EMG signals, the choice of good features, 

and the right classification methods are very important to the 

overall performance of myoelectric systems [3-5]. 

Several feature extraction schemes have been proposed for 

EMG feature extraction and classification. Kuzborskij et al. 

[6] utilized time domain features like mean absolute value

(MAV), wavelength, and histogram for classifying large-scale

data sets. Waris et al. [7] investigated time-domain features

like MAV, Zero Crossing (ZC), Willison Amplitude
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(WAMP), Slope Sign Changes (SSC), Waveform Length 

(WL), Cardinality (CARD), and Myopulse Rate (MYOP) for 

intuitive control for upper-limb prosthesis. A combination of 

time-domain features by Hudgins et al. [8], namely the 

Hudgins Time Domain feature set, paved the way for 

multifunction myoelectric control. Khushaba et al. [4] derived 

the Time-Dependent-Power Spectral Descriptor (TD-PSD) 

feature from the power spectral descriptors, which was proven 

to find the muscular activities. Phinyomark and Scheme [9] 

have proposed the mean prominence of local peaks and 

valleys, which excel in the HTD feature set. Frequency domain 

features like autoregressive model coefficients proposed by 

Al-Timemy et al. [10] and the logarithm of Fourier transform 

(FT) moments feature proposed by Al-Timemy et al. [5] for 

multifunction prosthesis are available for EMG classification. 

Wavelet transform-based feature by Chu et al. [11], wavelet-

based iterative feature, namely, ternary pattern by Turker et al. 

[12], energy features by Karnam et al. [13], and variational 

mode decomposition (VMD)-based feature extraction 

methods [14] were developed for efficient EMG classification. 

A spatiotemporal feature developed by Jabbari et al. [15], 

namely spatiotemporal warping (STW), outperformed the 

traditional features. 

A classifier is required to determine the gesture label of the 

signal after feature extraction. Several classifiers have been 

suggested and tested, including linear discriminant analysis 

(LDA), SVM [16], MLP [17], and KNN [18]. Techniques 

known as ensemble machine learning combine the findings of 

numerous learners to produce better results [19]. 

EMG pattern recognition can be widely categorized into 

traditional and deep learning (DL) methods, while the former 

depends on feature engineering and the latter on feature 

learning [20]. Wei et al. [21] proposed a Multi-View 

Convolutional Neural Network (CNN) framework with DL 

techniques for hand gesture classification. An improved DL-

based framework was framed by Pancholi et al. [22] for 

myoelectric prosthesis control. An EMG signal classification 

model using CNN was presented by Atzori et al. [23], with 

results comparable to state-of-the-art machine learning 

techniques. Tsinganos et al. [24] used temporal CNN to 

classify EMG signals into 52 classes. Côté-Allard et al. [25] 

utilized the transfer learning technique with CNN to classify 

EMG signals. 

Despite the fact that quite a few state-of-the-art approaches 

are available for feature extraction and classification of EMG 

signals, the robustness of the classification technique poses a 

challenge to the researchers. There are a lot of challenges in 

classifying hand gestures with multiple degrees of freedom [26, 

27], and getting the model to work with a lot of different 

motions, like moving the upper and lower limbs, is important 

for making prosthetic control better [28]. Although notable 

progress has been made in DL methods for EMG-based hand 

gesture classification, it is essential to recognize that these 

achievements often entail considerable computational 

expenses. These expenses stem from the extensive data needed 

for training deep learning models such as CNN and the 

relatively large number of parameters that have to be learned. 

The number of model parameters varies widely, ranging from 

34k to 95k [29], 104k to 30k [30], and 30k to 549k [31], 

extending to several million parameters. Hence, a 

straightforward and resource-efficient model suitable for 

operation on constrained platforms is a crucial element in the 

development of machine-learning-based prosthetic devices. 

Moreover, robust feature extraction and classification have to 

be developed to classify EMG signals. 

The contributions of this research are: 

(1) To extract conditional spectral moment features from the 

EMG signal for capturing the variations of different hand 

gestures. 

(2) To obtain a modified TD-PSD by convolving the low-

pass decomposition filter coefficients of the wavelet transform 

with the TD-PSD [5]. 

(3) To classify the features extracted from the EMG signals 

with SVM, KNN, DT, and Bagged Ensemble DT classifiers. 

A feature extraction and classification framework has been 

proposed to improve the classification accuracy of EMG 

signals for hand prostheses to address the above-mentioned 

challenges. The conditional spectral moment and TD-PSD 

were extracted from the EMG signal. Spectral moments seem 

to be a potential strategy for EMG classification and have been 

employed in several applications [24, 25]. The conditional 

spectral moment is a morphological feature and is more noise-

resistant, which has been extracted from the spectrogram of 

the EMG signal [32]. Dynamic hand movements that involve 

muscle activations in different sequences with varying 

intensities result in asymmetric EMG signal distribution. The 

conditional spectral moments identify and differentiate 

patterns of muscle activity that exhibit asymmetric 

distributions. 

In the context of EMG-based hand gesture classification, it 

is important to recognize that individual hand gestures give 

rise to unique patterns of muscle activity. TD-PSD is a useful 

method for measuring how sensitive a signal is to changes in 

time. This lets us tell the difference between and describe the 

different patterns of muscle activity that are linked to different 

hand gestures. In the current work, the TD-PSD proposed by 

Al-Timemy et al. [5] is utilized as the base feature for EMG 

classification. These features are derived directly from the 

time domain through the use of FT and Parseval's theorem. 

The derivatives utilized in the power spectral moments are 

susceptible to noise interference; hence, it becomes crucial to 

apply feature value normalization to mitigate noise effects. To 

achieve this, a normalization step is incorporated by 

exponentiating the log-scaled amplitudes to an appropriate 

power [5]. The TD-PSD feature was mixed with wavelet 

transform filter coefficients to include both the spatial and 

temporal aspects of hand gesture EMG signals. This made the 

modified TD-PSD feature representation. When you combine 

the base feature set with wavelet transform filter coefficients, 

you get feature values from the combination of channels that 

were thought about, which helps with spatial focus. The 

rationale for integrating the wavelet filter coefficients with the 

time domain descriptors is to combine the information from 

both the time and wavelet domains. Also, this approach 

captures temporal and frequency-related characteristics. This 

is due to the fact that the EMG signals encompass frequency 

components associated with muscle activity and motion. The 

fusion of these frequency components with the statistical 

characteristics of time-domain descriptors enhances the 

discriminative capability of the extracted features. During 

muscle contractions or movements, the primary power of the 

EMG signal is concentrated within the 20 Hz to 500 Hz 

frequency range. The low-pass decomposition filter is adept at 

noise removal while retaining the essential signal components. 

This study introduces a changed TD-PSD feature that takes 

advantage of the benefits of wavelet transform filter 

coefficients and power spectral descriptors.  

This work is illustrated as follows: The EMG dataset used 
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for this research is detailed in Section 2.1. In Section 2.2, the 

proposed conditional spectral moments and the modified TD-

PSD features are elaborated. The feature sets utilized from the 

literature for comparing the accuracy of the proposed features 

are detailed in Section 2.3. The details of the classifiers 

employed for classifying the extracted features are given in 

Section 2.4. The classification outcomes achieved using the 

proposed features with the Ninapro databases, as well as the 

corresponding discussions, are presented in Section 3. Section 

4 describes the conclusion and outlines future work. 

 

 

2. MATERIALS AND METHODS 

 

2.1 EMG dataset 

 

The proposed feature is evaluated with two databases, 

Ninapro DB1 [33] and DB2 [34], a widely used benchmark 

dataset for myoelectric prostheses. A collection of 52 

movements were selected from the DB1, which were split up 

into three exercises, namely A, B, and C. Exercise A is 

comprised of 12 basic finger movements; Exercise B 

incorporates 17 hand postures and basic wrist movements; and 

Exercise C contains 23 functional and grasping movements of 

the hands correlated with daily life actions. DB2 comprises 49 

hand gestures from 40 subjects and includes finger gestures 

and functional and grasping movements. The details of the 

datasets utilized are summarized in Table 1. OttoBock 

MyoBock 13E200 sEMG electrodes were used to record the 

surface EMG (SEMG) data. These electrodes amplified, 

filtered, and rectified the signals. We used MyoBock 13E200-

50 electrodes to measure the muscle activity of DB2 in 40 

healthy individuals. sEMG signals were gathered from 12 

electrodes placed on the forearm, flexor Digitorum 

Superficialis, muscle extensor Digitorum Superficialis, triceps 

brachii, and biceps brachii. 

 

Table 1. Details of the dataset 

 
Parameter Ninapro DB1 Ninapro DB2 

No. of subjects, classes 27, 52 40, 49 

No. of repetitions 10 6 

No. of channels 10 12 

Sampling frequency (Hz) 100 2000 

Duration (sec) 5 5 

Total patterns 14040 11760 

Training patterns 8424 7840 

Test patterns 5616 3920 

 

2.2 Proposed feature extraction 

 

2.2.1 Conditional spectral moment 

Figure 1 depicts the work carried out in this paper. The raw, 

multichannel EMG signal undergoes a pre-processing stage, a 

feature extraction stage, and finally the classification stage. 

The conditional spectral moment of a non-stationary EMG 

signal is obtained from the EMG signal spectrum. This is taken 

from the time-frequency distribution, P(t, 𝜔) of the signal and 

is given by: 

 

〈𝜔𝑖〉𝑡 =
1

𝑃(𝑡)
∫𝜔𝑖𝑃(𝑡, 𝜔)𝑑𝜔 (1) 

 

P(t) defines the marginal distribution and describes the 

order. 

Eq. (1) is termed the ‘instantaneous frequency’ or mean. 

The variance, or ‘instantaneous bandwidth’ is given by: 

 

𝜎𝜔 𝑡⁄
2 = ∫(𝜔 − 〈𝜔〉𝑡)

2  𝑃(𝜔|𝑡)𝑑𝜔 (2) 

 
Skewness and kurtosis are the third and fourth-order 

moments, respectively. This is described as: 

 

∁𝜔 𝑡⁄ = 1𝜎𝜔 𝑡⁄
3 ∫(𝜔 − 〈𝜔〉𝑡)

3 𝑃(𝜔|𝑡)𝑑𝜔 (3) 

 

𝐾𝜔 𝑡⁄ = 1𝜎𝜔 𝑡⁄
4 ∫(𝜔 − 〈𝜔〉𝑡)

4  𝑃(𝜔|𝑡)𝑑𝜔 (4) 

 
The first four moments mentioned above, namely mean, 

variance, skewness, and kurtosis, are extracted from the EMG 

signal for the Ninapro DB1 and DB2 for each class of 

movements. 

 
2.2.2 Modified TD-PSD 

In the work TD-PSD [5], an improvement in classification 

accuracy of 6% to 8% was reported. In the current work, a 

modified TD-PSD feature is proposed and obtained from the 

TD-PSD by convolving each descriptor 

(𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6) mentioned in Figure 1 with the low-pass 

wavelet filter coefficients of the input EMG signal. 

The time domain descriptors (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6)  are 

extracted from the pre-processed EMG signal, and each 

feature takes the shape of (1 × 𝑀), 𝑤ℎ𝑒𝑟𝑒𝑖𝑛 𝑀 is the length 

of the EMG channel. These features are reshaped into an array 

of sizes (𝑎 × 𝑏), such that the product of a and b gives M. The 

wavelet filter coefficient is obtained by wavelet decomposing 

the input EMG with a decomposition level of 2. The reshaped 

feature array (𝑅 1 , 𝑅 2 , … , 𝑅 6 )  is convolved with the filter 

coefficient L, which is further flattened and concatenated, 

forming a new feature 𝐹4. 

The EMG signal is decomposed with a wavelet transform, 

which uses the Daubechies wavelet family, ‘db44’. The reason 

behind the selection of ‘db44’ is that it possesses more 

resemblance in the signal and mother wavelet function. Most 

biological signals like EMG possess sharp spikes, which can 

be analyzed with Daubechies wavelets since these wavelets 

experience asymmetric spikes. Thus, ‘db44’ seems to have a 

similar function to EMG amid the 324 mother wavelets [35]. 

The time domain descriptors are derived from the relation 

obtained by Parseval’s theorem and are given in the Appendix. 

Let L denote the filter coefficients obtained by wavelet 

decomposing the input EMG signal to a decomposition level 

of 2. The coefficients in general can be expressed as: 

 

𝐿 = [
𝑙1 𝑙2
𝑙3 𝑙4

] (5) 

 
The modified TD-PSD is obtained as follows: 

 
𝑟1 = 𝑅1 ∗ 𝐿; 𝑟2 = 𝑅2 ∗ 𝐿; 𝑟3 = 𝑅3 ∗ 𝐿 (6) 

 
𝑟4 = 𝑅4 ∗ 𝐿; 𝑟5 = 𝑅5 ∗ 𝐿; 𝑟6 = 𝑅6 ∗ 𝐿 (7) 

 
𝐹4 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒[𝑟1; 𝑟2; 𝑟3; 𝑟4; 𝑟5; 𝑟6] (8) 
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Figure 1. Proposed feature extraction and classification 

 

2.3 Feature sets for investigation 

 

The following feature sets were also taken from the 

literature to compare the effectiveness of the proposed feature. 

AR-HTD [36]: This is the combination of 6th-order 

autoregressive coefficients and Hudgins Time Domain 

features MAV, IAV, RMS, WL, SSC, and ZC. 

AR-RMS [37]: Combination of autoregressive coefficients 

of 6th order and RMS value. 

MWTD [38]: The multisignal wavelet transform 

decomposition coefficients can be extracted from the wavelet 

transform coefficients of each node, including energy, 

variance, standard deviation, waveform length, and entropy. 

The entire set of feature sets for investigation is mentioned in 

Table 2. 
 

Table 2. Features used for classification 
 

Features under Investigation 

AR-HTD F1 

AR-RMS F2 

MWTD F3 

Modified TD-PSD F4 

Conditional spectral moments F5 

 

2.4 Classification of EMG signals 

 

The proposed feature was investigated with four different 

classifiers: SVM, KNN, Decision Tree Classifier, and 

Decision Tree Ensemble with Bagging. The pseudocode for 

the feature extraction and classification is given in Table 3. 

SVM represents a category of supervised machine learning 

techniques employed in tasks involving classification and 

regression [18]. They are well-suited for classifying hand 

gestures with EMG signals. The objective of this classification 

algorithm is to find an optimal hyperplane within the feature 

space, effectively distinguishing various classes of hand 

movements. Training the SVM model involves utilizing a 

labeled dataset of EMG signals, each associated with a specific 

hand gesture, which enables the SVM to identify the most 

suitable hyperplane for separating the distinct hand gesture 

classes [19]. In KNN, data points with similar features tend to 

have the same class labels. When classifying a new data point, 

KNN looks at the class labels of its nearest neighbors in feature 

space and assigns the majority class as the predicted label. 

When classifying a new EMG signal corresponding to a hand 

gesture, KNN calculates the distance between the feature 

vector and all feature vectors in the training dataset. The 

decision tree algorithm navigates through the tree structure, 

comparing the feature values of the EMG signal to the criteria 

at each node. The path followed through the tree leads to a leaf 

node, which represents the predicted hand gesture class. If the 

data is high-dimensional and if the single classifier fails to 

perform well, ensemble classifiers provide better results. 

Decision trees with ensemble bagging classifiers combine the 

principles of decision trees and ensemble learning, which 

involves aggregating the predictions of multiple individual 

models to improve accuracy and robustness. The feasibility of 

the bagging and boosting ensemble classifiers for basic hand 

movement recognition is evaluated using EMG signals 

captured during grasping actions with different objects for the 

six hand movements [39]. 

 

Table 3. Pseudo code for the proposed feature extraction 

 
Pseudocode: sEMG signal classification scheme with the 

proposed feature extraction 

Input: n×m sEMG signals xn×m(i), each with class labels 

1. for each n = 1 to N, m = 1 to M. 

2. for winsize = 250ms, wininc = 75ms. 

3. Compute f1=m0, f2=m2, f3=m4, f4=Sparseness, f5=IRF, f6=WL. 

4. Wavelet decompose xn×m(i), with 'db44' & extract the filter 

coefficients by decomposing xn×m(i): L= Wavelet filter 

coefficients 

5. R1=Reshape(f1), R2=Reshape(f2), R3=Reshape(f3), 

R4=Reshape(f4), R5=Reshape(f5), R6=Reshape(f6). 

[features of size (1×M) are reshaped into the shape a×b, such that 

multiplication of a and b gives the channel M. 

6. Convolution: R1*L, R2*L, R3*L, R4*L, R5*L, R6*L 

7. Flatten and concatenate → Feature F4. 

8. Compute the first four conditional spectral moments using Eqs. 

(1), (2), (3), and (4), feature F5. 

9. Classify features with SVM, KNN, Decision Tree, and 

Ensemble Bagging. 

 

 

3. RESULTS AND DISCUSSION  

 

3.1 EMG data pre-processing model training 

 

This research was conducted on an HP DESKTOP-

F26D10N running Windows 10 Pro 64-bit, equipped with an 

AMD A8-5500B APU featuring Radeon HD Graphics with a 

3.20 GHz processor and 8.00 GB of installed RAM. The data 

pre-processing, feature extraction, and classification were 

done in MATLAB 2022 software to obtain both the training 

and testing datasets. Each dataset undergoes different 

preprocessing procedures. The Ninapro DB1 is sampled at 100 

Hz, and wavelet denoising using the Daubechies wavelet of 
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order 44 ['db44'] wavelet is applied. NinaPro DB2 was 

sampled at 2 kHz. It undergoes low-pass filtering with a 500 

Hz cutoff, line noise filtering at 50 Hz, and wavelet denoising 

using the 'db44' wavelet since the ‘db44’ family of wavelets 

possesses similar characteristics as the EMG signal. Ten-fold 

cross-validation is performed to obtain a robust estimate of the 

model performance and also for better generalization 

capability. All the classifiers were trained with 70% cross-

validation and 30% test sets for all the exercises. Both the 

training and testing datasets are standardized, ensuring that the 

resulting data exhibits a mean of zero and a variance of one. 

Let 𝑇𝑃 and 𝑇𝑁 denotes the True positive and True Negative 

values, 𝐹𝑃  and 𝐹𝑁  denotes the False Positive and False 

Negative values, the classification accuracy is given by: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (9) 

 

3.2 Results of Ninapro DB1 and DB2 

 

The proposed features (F4 and F5) are evaluated on the two 

benchmark datasets, Ninapro DB1 and DB2. Ten-fold cross-

validation is used, in which the data is randomly divided into 

ten equal parts, ensuring that each class is represented 

proportionally as it appears in the entire dataset. The Ninapro 

DB1 includes 52 hand gestures, which are categorized into 3 

exercises, namely E1 (12 classes), E2 (17 classes), and E3 (23 

classes), respectively. Ninapro DB2 contains 49 hand gestures, 

which are categorized into 3 exercises: E1 (17 classes), E2 (23 

classes), and E3 (9 classes). Two experiments were conducted 

on the aforementioned datasets: 

(1) Model evaluation for 12, 17, and 23 classes: The choice 

of window length and overlap impacts the temporal resolution 

of feature extraction, influencing the ability to capture detailed 

temporal aspects. Hence, evaluating the proposed features F4 

and F5 with different window lengths and overlaps [(250 ms, 

75 ms) and (200 ms, 50 ms)] for the classifiers SVM, KNN, 

DT, and Bagged Ensemble DT and exploring the best feature-

classifier combination. The analysis is conducted separately 

on three exercises within each dataset to reveal the 

implications of classification accuracy across different 

numbers of gestures. 

(2) Model evaluation for 52 classes: evaluating the proposed 

features for all the hand gestures in Ninapro DB1 and DB2. 
 

3.2.1 Model evaluation for 12, 17, and 23 classes 

The classification accuracy of Ninapro DB1 for window 

lengths of 250 ms and 200 ms and overlap of 75 ms and 50 ms 

is tabulated in Table 4 for all the features mentioned in Table 

2. The features F4 and F5 provide better classification 

accuracy with a bagged ensemble classifier for the window 

length and overlap of 250 ms and 75 ms, respectively. Similar 

results are found for all the features. The feature sets F1, F2, 

and F3 give higher classification accuracy with a bagged 

ensemble classifier for window length and overlap of 250 ms 

and 75 ms, respectively. The accuracy of the KNN classifier is 

higher than that of the SVM for features in F1 and F2. A 

statistical significance test was conducted for all feature 

combinations and classifiers and found that the bagged 

ensemble classifier with features F4 and F5 significantly 

outperformed all other classifiers (p<0.01). 

 

Table 4. Classification accuracies of Ninapro DB1for 12, 17, 23 classes 

 

Feature Exercise (Win Len, Overlap) 
Classification Accuracy (%) 

SVM KNN DT Ensem. Bagg. 

F1 

E1 

E2 

E3 

(250ms,75ms) 

69.6 

66 

65.2 

68.3 

67.8 

65.8 

74.6 

72.9 

72.2 

82.5 

80.4 

77.5 

F1 

E1 

E2 

E3 

(200ms,50ms) 

66.3 

65.8 

63.7 

68.1 

66.3 

65.2 

73.9 

72 

71.6 

81.4 

80.1 

76.4 

F2 

E1 

E2 

E3 

(250ms,75ms) 

76.7 

74.8 

73.5 

82.3 

81.4 

80.7 

80.1 

78.6 

78.1 

84.1 

82.9 

81.4 

F2 

E1 

E2 

E3 

(200ms,50ms) 

76.1 

73.9 

73.2 

81.8 

81.3 

79.1 

79 

78.1 

76.4 

83.6 

81.8 

80.3 

F3 

E1 

E2 

E3 

(250ms,75ms) 

67.3 

65.4 

64 

65.9 

64.8 

64.2 

76.2 

74.8 

73.3 

83.2 

83 

81.2 

F3 

E1 

E2 

E3 

(200ms,50ms) 

66.8 

63.9 

63.7 

65.3 

64.2 

63.8 

75.8 

74.2 

72.8 

83.1 

82.6 

80.1 

F4 

E1 

E2 

E3 

(250ms,75ms) 

88.7 

88.1 

85.4 

87.8 

84.1 

83.3 

80.4 

78.1 

86.3 

89.3 

87.1 

87.2 

F4 

E1 

E2 

E3 

(200ms,50ms) 

82.6 

81.8 

79 

87.5 

83 

82.6 

80 

77.8 

76 

88.1 

86.3 

85.3 

F5 

E1 

E2 

E3 

(250ms,75ms) 

79.3 

77.1 

76.3 

83.1 

81.8 

80.9 

85.8 

84.1 

82.1 

95.2 

94.6 

93.2 

F5 

E1 

E2 

E3 

(200ms,50ms) 

79 

76.8 

75.1 

81.8 

80.1 

80.3 

84.3 

83.6 

81.8 

94.8 

93.7 

91.8 
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Table 5. Classification accuracies of Ninapro DB2 for 12, 17, 23 classes 

 

Feature Exercise (Win Len, Overlap) 
Classification Accuracy (%) 

SVM KNN DT Ensem. Bagg. 

F1 

E1 

E2 

E3 

(250ms,75ms) 

66.3 

64.8 

64.2 

70.4 

68.6 

68.3 

72.4 

71.6 

68.3 

79.7 

78.6 

76.3 

F1 

E1 

E2 

E3 

(200ms,50ms) 

65.9 

63.6 

62.1 

70.1 

68.3 

67.1 

71.8 

71.1 

70.3 

78.4 

77.1 

76.1 

F2 

E1 

E2 

E3 

(250ms,75ms) 

73.2 

71.4 

71.1 

80.2 

78.6 

79 

77.4 

77.1 

74.3 

84.9 

84.2 

82.6 

F2 

E1 

E2 

E3 

(200ms,50ms) 

72.1 

70.2 

70 

79.1 

78.1 

78.3 

76.3 

76.1 

73.3 

84.3 

84.1 

81.3 

F3 

E1 

E2 

E3 

(250ms,75ms) 

68.5 

67.1 

66.8 

65 

64.1 

63.2 

73.1 

72.6 

70.3 

75.9 

75.1 

74.6 

F3 

E1 

E2 

E3 

(200ms,50ms) 

67.7 

66.3 

65.9 

64.2 

63.6 

62.2 

72.1 

71.9 

70.1 

74.8 

74.9 

73.2 

F4 

E1 

E2 

E3 

(250ms,75ms) 

82.9 

81.3 

80.8 

85.8 

84.6 

84.1 

81.4 

78.3 

78.1 

87.2 

85.6 

85.5 

F4 

E1 

E2 

E3 

(200ms,50ms) 

81.7 

80.7 

80.2 

84.7 

83.5 

83.9 

80.2 

77.9 

 7.5 

86.7 

85.5 

85.3 

F5 

E1 

E2 

E3 

(250ms,75ms) 

79.5 

77.6 

76.2 

83.4 

82.1 

80.9 

82.4 

80.3 

80.1 

91.9 

91.1 

90.3 

F5 

E1 

E2 

E3 

(200ms,50ms) 

79.5 

77 

76.1 

83 

81.9 

80.7 

82.1 

80.1 

79.4 

91.3 

90.9 

89.7 

 

  
  

Figure 2. Comparison chart of classification accuracies for 

Ninapro DB1 for different feature sets 

Figure 3. Comparison chart of classification accuracies for 

Ninapro DB2 for different feature sets 
 

 
 

Figure 4. Confusion matrix for 12 gestures of Ninapro DB1 

 
 

Figure 5. Confusion matrix for 17 gestures of Ninapro DB1 
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Figure 6. Confusion matrix for 23 gestures of Ninapro DB1 

 

The classification accuracy of Ninapro DB1 for window 

lengths of 250 ms and 200 ms and overlap of 75 ms and 50 ms 

is tabulated in Table 5 for all the features mentioned in Table 

2. For Ninapro DB2, the features F4 and F5 give the highest 

classification accuracy for the bagged tree ensemble classifier 

compared to the features F1, F2, and F3. The performance of 

the KNN classifier is better than that of SVM for features F1, 

F2, F4, and F5. The SVM classifier is better than KNN for 

feature F3. A statistical significance test was conducted for all 

the feature-classifier combinations; the bagged ensemble 

classifier for the features F4 and F5 significantly outperformed 

(p<0.01) the other feature sets. The classification accuracy of 

the DT classifier for feature sets F1, F2, and F3 is higher than 

that of the SVM and KNN classifiers. For F4 and F5, the 

accuracies of SVM and KNN are higher than DT classifiers. 

Figures 2 and 3 show the classification accuracies of Ninapro 

DB1 and DB2. 

The confusion matrix of Ninapro DB1 for the three 

exercises is given in Figures 4-6. This depicts the model 

performance for the feature F5 classified with the Ensemble 

Bagging classifier. In exercise E1, gesture number 8 is 

misclassified along with neighboring gestures. In exercise E2, 

gestures 17 and 21 are misclassified. In exercise E3, gestures 

33 and 41 are misclassified along with neighboring gestures. 

All other gestures show better performance. The effect of 

window length on classification accuracy, according to the 

work done by Menon et al. [40], was investigated by adopting 

different window sizes for feature extraction. From the results 

based on the window length and overlap, a window length of 

250 ms and 75 ms works better than a window length of 200 

ms and 50 ms. The studies focused on classifying finger and 

wrist movements, which include the most complex muscle 

activations. To best utilize the processing capability of the 

prosthetic device, the overlapping windowing approach was 

proposed, in which the analysis window is increased by the 

processing delay, which is the time it takes to extract features 

and to make a decision. Also, this model can be compared with 

deep learning (DL) models with respect to its classification 

performance and the ability to extract both spatial and 

temporal information. 

 

3.2.2 Model evaluation for 52 classes 

The classification accuracies of Ninapro DB1 and DB2 for 

the 52 classes of movements for the window length of 250 ms 

and overlap of 75 ms are tabulated in Table 6. Using Ninapro 

DB1 and DB2, the features F4 and F5 show more promising 

results for the bagged ensemble classifier. The highest 

classification accuracy is reported for feature F5, followed by 

feature F4. The performance of SVM is better than the KNN 

classifier for the features F1, F2, F4, and F5 for Ninapro DB1. 

For feature F3, the KNN classifier gives better accuracy than 

SVM. For Ninapro DB2, for all the features, the performance 

of the SVM classifier is better than that of the KNN classifier. 

 

Table 6. Classification accuracies of Ninapro DB1 and DB2 for 52 classes 

 

Feature  
Ninapro DB1 Ninapro DB2 

SVM KNN DT Bagged Ensemble SVM KNN DT Bagged Ensemble 

F1 78.5 76.3 80.9 83.4 76.4 73.9 80.3 81.4 

F2 75.3 72.4 77.3 80.3 73.9 71.3 78.6 80.1 

F3 76.4 79.3 81.4 84.9 77.4 72.9 80.1 82.9 

F4 84.5 81.3 86.3 87.1 80.3 77.3 81.7 85.3 

F5 87.6 85.7 90.1 92.9 86.6 83.4 88.3 90.8 

 

Table 7. Computation time for different feature extraction 

schemes 

 
Feature Computation Time (sec) 

F1 0.723 

F2 0.752 

F3 0.536 

F4 0.874 

F5 0.793 

 

3.3 Computation time 

 

The computation time for the feature extraction of the EMG 

signals is given below in Table 7.  

The computation time for extracting F4 and F5 is higher 

than F1, F2, and F3. Efforts to mitigate this limitation could 

involve exploring advanced hardware acceleration techniques, 

parallel processing strategies, or implementing more efficient 

algorithms for feature extraction. The increased computational 

requirements may impact the real-time applicability of the 

system, particularly in situations where low latency is essential. 

Despite the current computational time constraint, the study 

lays the foundation for future research endeavors aimed at 

improving the efficiency of EMG-based hand gesture 

classification systems. Incorporating multi-modal data, such 

as combining EMG signals with other sensor data like 

accelerometers or inertial sensors, can potentially enhance the 

robustness and accuracy of prosthesis control systems. 

 

3.4 Comparison with the literature 

 

The proposed feature extraction is compared with the 

literature as given in Table 8. Atzori et al. [23] have proposed 

an EMG classification with Ninapro DB1 and DB2 and 

provided an accuracy of 75.32% and 75.27%, respectively. 

Wei et al. [21] utilized the same dataset for gesture 
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classification and came up with an accuracy of 88.20% and 

83.70%. Karnam et al. [13] utilized energy features and 

attained an accuracy of 88.8% for energy features. Pancholi et 

al. [22], by utilizing Ninapro DB1, achieved an accuracy of 

92.18%. The modified time domain descriptor feature 

provides classification accuracies of 87.1% and 85.3% for 

Ninapro DB1 and DB2. The conditional spectral moments 

provide classification accuracies of 92.9% and 90.8% for 

Ninapro DB1 and DB2, respectively, which are higher than the 

literature. 

 

Table 8. Comparison of the proposed features with the 

literature values 

 

Authors Database Classes 
Accuracy 

(%) 

Atzori et al. [23] 
Ninapro DB1 50 75.32 

Ninapro DB2 49 75.27 

Wei et al. [21] 
Ninapro DB1 52 88.20 

Ninapro DB2 50 83.70 

Karnam et al. [13] Ninapro DB1 52 88.8 

Pancholi et al. [22] Ninapro DB1 53 92.18 

Proposed Feature 

F5 (Ensemble 

Bagging) 

Ninapro DB1 52 92.9 

Ninapro DB2 50 90.8 

 

 

4. CONCLUSION 

 

In this work, the feature extraction and classification of 

myoelectric signals, with a primary focus on enhancing the 

accuracy of classifying hand gestures with multiple DoF for 

prosthetic applications, have been presented. The pivotal role 

of feature extraction in the success of myoelectric pattern 

recognition has been underscored, and in this work, two 

features, namely conditional spectral moments and an 

enhanced time-domain descriptor, have been proposed to 

achieve improved classification performance. The conditional 

spectral moments, derived from the time-frequency 

distribution of EMG signals, effectively captured variations in 

muscle activity and movement, providing valuable insights for 

the classification of intricate hand gestures. Furthermore, the 

enhanced time-domain descriptor obtained through 

convolution with wavelet filter coefficients successfully 

extracted both spatial and temporal characteristics of muscle 

activity, contributing to a more robust representation of the 

myoelectric signal. Ninapro DB1 and DB2 were used to 

evaluate the efficacy of the enhanced time domain descriptors 

and conditional spectral moment features by using the 

classifiers SVM, KNN, DT, and ensemble bagging. The 

classification accuracies for the proposed TD-PSD and 

conditional spectral moment feature have improved 

significantly, with 87.1% and 92.9%, respectively, for Ninapro 

DB1 and 85.3% and 90.8% for Ninapro DB2, respectively. 

These findings showcase the ability of the features to capture 

spatial and temporal information from the EMG signal and 

provide multiple DoFs for prosthetic users. By incorporating 

feature selection and dimensionality reduction, the extensive 

computation time for feature extraction can be reduced, 

making the model more practical and scalable. This study can 

be further extended for more complex movements with 

multiple degrees of freedom to handle intricate hand gestures 

and diverse movement patterns. The feature engineering in 

myoelectric applications thus paves the way for more accurate 

and effective prosthetic control systems. 
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NOMENCLATURE 

 

k Frequency index 

Δ Derivative 

db44 Daubechies wavelet function  

p Probability under assumption 

 

 

APPENDIX 

 

Let 𝑋[𝑘] represent the corresponding Discrete Fourier 

Transform of the EMG input signal. It states that the sum of 

the square of 𝑥[𝑗] equals the sum of the square of 𝑋[𝑘]. It can 

be described by the equation: 

 

∑|𝑥[𝑗]2| =  
1

𝑁
∑|𝑋[𝑘]𝑋∗[𝑘]| = ∑ 𝑃[𝑘]

𝑁−1

𝑘=0

𝑁−1

𝑘=0

𝑁−1

𝑗=0

 (10) 

 

𝑃[𝑘] is the phase-excluded power spectrum derived from 

the multiplication of 𝑋[𝑘] by its conjugate, and ‘𝑘 ’ is the 

frequency index. The power spectral density cannot be directly 

accessed from the time domain, both positive and negative 

frequencies should be dealt with, in significance with the 

symmetry property, and statistically, all the odd moments 

become zero. The nth-order moment m of 𝑃[𝑘] is given by the 

following equation: 

 

𝑚𝑛 = ∑ 𝑘𝑛 𝑃[𝑘]

𝑁−1

𝑘=0

 (11) 

 

Eq. (10) uses Eq. (11) for n = 0 and non-zero values, it 

utilizes the time-differentiation property. According to this 

property, the nth derivative corresponds to multiplying the 

spectrum by kn for a discrete-time signal in the time domain.  

Mathematically, this can be given as: 

 

𝐹[∆𝑛𝑥[𝑗]] =  𝑘𝑛𝑋[𝑘] (12) 

 

The zero-order moment (power in frequency domain) or the 

strength of muscle contraction is stated as: 

 

𝑓1 = 𝑚0 = √∑ 𝑥[𝑗]2
𝑁−1

𝑗=0

 (13) 

 

Accordingly, the second and fourth-order moments can be 

given by the equations: 

 

𝑓2 = 𝑚2 = √∑ 𝑘2𝑃[𝑘]

𝑁−1

𝑘=0

= √
1

𝑁
∑ ∆𝑥[𝑗]2
𝑁−1

𝑗=0

 (14) 

 

A repetition of this yields the fourth-order moment. 

 

𝑓3 = √∑ 𝑘4𝑃[𝑘]

𝑁−1

𝑘=0

= √
1

𝑁
∑(∆2𝑥[𝑗])2

𝑁−1

𝑗=0

 (15) 

 

Sparseness is a feature that states how much energy is 

packed within a few components. It is represented by: 

 

𝑓4 = log (
𝑚0

√(𝑚0 − 𝑚2)(𝑚0 − (𝑚4)
) (16) 

 

The Irregularity Factor (IF) can be defined from the number 

of Zero Crossings (ZC) and the Number of Peaks (NP). Both 

the measures can be expressed merely by their spectral 

moments. The IF can be demonstrated expressively by: 

 

𝑓5 = log (
𝑍𝐶

𝑁𝑃
) = log

[
 
 
 √

𝑚2

𝑚0

√
𝑚2

𝑚2]
 
 
 

= log (
𝑚2

√𝑚0𝑚4

) (17) 

 

The Waveform Length Ratio (WL) feature can be obtained 

by summing the absolute value of the EMG signal derivatives. 

It can be expressed mathematically as: 

 

𝑓6 = log (
∑ |∆𝑥|1

𝑗=0

∑ |∆2𝑥|1
𝑗=0

) (18) 
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