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Tomatoes, a staple in culinary practices, are currently in high demand yet low supply in 

India, rendering them unaffordable to the general population. This issue largely stems from 

the inability of farmers to identify and control prevalent tomato leaf diseases, leading to 

significant crop losses. Early detection and classification of leaf diseases are paramount to 

mitigate this problem, thereby boosting crop productivity. Despite extensive research in this 

domain, the precise localization and identification of various tomato leaf diseases present a 

complex task. This complexity arises from the significant overlap between the healthy and 

diseased portions of the leaves. The process is further complicated by the minimal contrast 

between the background and foreground of the specimen under investigation. To address 

these challenges, this study conducts a comprehensive performance analysis of several 

Convolutional Neural Networks (CNNs) models, namely, ResNet-152, ResNet-101, 

VGGNet, Alex Net, and LeNet, applied to the PlantVillage dataset. The results indicate that 

the ResNet-152 and ResNet-101 models yield superior accuracy rates when applied to both 

full-resolution source images and their background-removed counterparts. The performance 

outcomes reported herein surpass those documented in the existing literature, demonstrating 

the potential for significant advancements in the early detection and classification of tomato 

leaf diseases. 
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1. INTRODUCTION

Vegetable cultivation is an essential facet of India's 

agricultural sector, with a multitude of factors influencing its 

yield [1]. Over the past few decades, India has seen substantial 

growth in vegetable production [2], positioning itself as a 

significant contributor to the global vegetable market, second 

only to China. As a cornerstone of the Indian economy [3], 

agriculture faces considerable challenges due to plant diseases, 

which, if unaddressed, can drastically reduce output [4]. 

Tomatoes are among the most consumed vegetables in India. 

However, every part of the tomato plant is susceptible to 

disease, with even minor phonological alterations in the leaves 

potentially leading to abnormal growth, discoloration, damage, 

and ultimately plant death [5]. Therefore, regular inspection of 

plants for pests, rodents, and other environmental threats is 

imperative [6]. Apart from insects, factors such as bacteria, 

viruses, fungi, and improper farming practices can also 

contribute to tomato diseases. 

These diseases encompass bacterial spots, leaf mold, 

Septoria leaf spots, early blight, mosaic virus, late blight, 

yellow curl virus, and target spot spider mites. With 

advancements in technology, the identification of plant leaf 

diseases can now be automated using computer vision, image 

processing, and deep learning techniques, as opposed to 

manual identification, which is prone to human error. 

Deep learning (DL) techniques have seen widespread use in 

the agriculture industry over the past two decades. 

Convolutional neural networks (CNN), a popular deep 

learning method, have shown promise in accurately 

categorizing diseases [7, 8]. Other alternative models such as 

ResNet-152, ResNet-101, GoogleNet, VGGNet, and LeNet 

have also been explored. 

Deep learning has emerged as the benchmark for diagnosis 

of tomato plant diseases. It enables the sorting of infected 

leaves and the pixelization of annotated images, providing 

additional data for analysis. Deep learning models, especially 

CNNs, are able to perform automatic feature extraction, which 

helps in image classification. Post feature extraction, the most 

informative features are selected for classification. 

CNNs are widely adopted for deep learning identification 

due to their inherent learning abilities, making them ideal for 

feature extraction and image categorization. The applications 

of CNNs span various domains including author recognition, 

object detection, and image text detection. CNNs learn feature 

extraction and categorization to better comprehend images, 

which has enabled advancements in text detection in sceneries, 

biological image analysis, and facial recognition. 

CNNs leverage global regional background information to 

infer more robust features and can correct for shadows, 

distortions, and brightness oscillations in natural photographs 

through image processing. The sensitivity of CNN algorithms 

to key features makes them particularly effective in plant leaf 

image analysis and leaf disease analysis. Their ability to utilize 
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a larger dataset has led to significant successes in plant disease 

identification. 

In this study, we evaluate and compare the performance of 

several convolutional neural network (CNN) models on the 

PlantVillage dataset. The evaluation metrics include image 

restoration and segmentation, accuracy, and other metrics used 

during the training, validation, and testing phases. Upon 

analysis, we found that, among all the models, ResNet-152 

demonstrated superior performance across all metrics. 

 

 

2. IMAGE PRE-PROCESSING STEPS 

 

To improve the quality of images and extract useful data for 

analysis, image pre-processing is a crucial stage in the disease 

detection process for tomato plant leaves. Pre-processing 

images in order to spot diseases on tomato plant leaves 

involves several steps as shown in Figure 1 Standardization 

and normalizing ensure image comparability. These methods 

standardize image scale, range, and color space for fair and 

meaningful comparisons. Standardization reduces 

illumination, camera, and image capture variances, making 

diseases classification algorithms more robust. Preprocessing 

approaches prepare images for feature extraction. Features like 

color histograms, texture descriptors, and form parameters are 

extracted from sick patches. Extracting discriminative 

characteristics helps classify damaged tomato leaves more 

accurately. Preprocessing pipeline data augmentation can 

enhance dataset diversity and size. Data augmentation boosts 

diseases classification model resilience and generalization by 

adding samples with different illumination, rotations, flips, or 

noise levels. Image preprocessing improves image quality, 

reduces noise, segments significant sections, and extracts 

useful characteristics. The preprocessing pipeline improves 

tomato plant leaf disease classification by improving data 

quality and relevance. It allows machine learning or deep 

learning models discover the patterns and correlations between 

image data and disease classes, enabling tomato disease 

control. 

 

 
 

Figure 1. Pre-processing steps for image diseases 

classification 

 

Data Acquisition: The dataset is made up of a set of 

different image classes and several images. These numbers 

were taken from the primary dataset that was collected from 

PlantVillage, ten classifications and 14529 images of tomato 

leaf diseases are included in the data collection. They are 

check leaves, stems, and fruits for discoloration, stains, wilting, 

and abnormalities. They document and image afflicted plants 

with notebooks, cameras, or phones. Tomato plant leaves are 

captured with digital cameras or sophisticated equipment. To 

see the leaves, several images are taken from different 

perspectives. Disease signs are highlighted in the images. 

Experts carefully outline impacted leaf parts. This stage helps 

deep learning models identify disease trends. 

The tests' findings diseases, severity, and other findings are 

recorded. This data trains and validates disease detection 

models. The dataset includes field observations, annotated 

images, and laboratory test findings. This dataset shows 

tomato plant diseases visually and diagnostically. Data 

integration connects sources for analysis. Images, annotations, 

and lab results are organized. Depending on project size and 

needs, it can be stored in a database, file system, or cloud. Data 

organization and documentation improves management and 

retrieval. Rotating, flipping, resizing, and adding noise to 

images creates more diversified and larger datasets. Data 

augmentation exposes deep learning models to more disease 

variants, improving their reliability and generalizability. Pre-

processed data is used to identify features, train models, and 

predict diseases. Using gathered data, deep learning 

algorithms automatically detect and classify tomato plant 

diseases based on visual signs. Disease detection models 

depend on data quality and representation. 

Pre-Processing: This is done in order to change the data 

into a form that can be used by the feature extraction approach 

as well as the stages that come after it. During this step, 

augmentation and normalization of the data are carried out. 

Feature Extraction: First, the important features are 

retrieved so that we may answer the categorization problem 

that we have. Color, form, and texture are all characteristics of 

an image. The texture feature is given a greater amount of 

attention by diagnostic algorithms that use photos of leaves to 

identify disorders. 

Feature extraction for tomato disease identification uses 

data such as tomato leaf images to represent healthy and 

diseased plants. This describes tomato disease detection 

feature extraction. Image pre-processing improves image 

quality and standardization before feature extraction. Resizing, 

color normalization, noise reduction, segmentation, and other 

techniques from image pre-processing may be used. First, 

select tomato leaf areas of interest (ROIs) if the image has 

many leaves. Image segmentation or leaf boundary delineation 

can do this next, identify tomato leaf disease symptoms in each 

ROI. Image processing algorithms like deep learning can 

segment diseases spots, lesions, discoloration, and other 

apparent indicators of disease. Localized symptoms of disease 

can be analyzed using feature extraction approaches. Common 

tomato disease detection feature extraction methods include: 

a. Colour Features: Color histograms, color moments, and 

color channel statistics can show color differences between 

healthy and unhealthy regions. 

b. Texture-based Features: Use Gabor filters, LBP, or 

GLCM statistics to define healthy and diseased areas' texture 

patterns. 

c. Shape-based Features: Calculate disease symptoms' 

geometric features such area, perimeter, circularity, and aspect 

ratio. 

d. Statistical Features: Extract mean, standard deviation, 

skewness, and kurtosis from disease symptom pixel intensities 

to record their statistical distributions. 

e. Deep Learning Features: Use VGG, ResNet, or Inception 
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pre-trained CNNs to extract high-level features from localized 

illness symptoms. Feature vectors are CNN intermediate 

layers. 

Depending on the collected features' dimensionality and 

modelling needs, feature selection or reduced dimensionality 

may reduce feature space complexity. This eliminates 

unnecessary data and improves model efficiency and 

generalization. Numerical feature vectors represent extracted 

features. Each tomato leaf ROI has traits that describe its 

disease symptoms. Machine learning or deep learning models 

are trained using extracted feature vectors and their labels 

signifying health or sickness. These models discover diseases 

class patterns using extracted features. Based on extracted 

attributes, trained algorithms may forecast disease in new 

tomato leaf samples. Feature extraction from tomato leaf 

images distinguishes healthy and sick plants. It allows the 

creation of precise and reliable disease detection models for 

tomato agriculture disease control. 

Classification: Image classification refers to the process of 

determining what something depicted in an image symbolizes. 

It is possible to train a model to recognize different kinds of 

images through the use of a categorization model. You may 

train a model, for instance, to recognize photographs depicting 

three distinct species of leaves. 

The image pre-processing methods that have been described 

so far can be used to carry out the same procedure on tomato 

leaf leaves and categorize them in accordance with their traits. 

 

 

3. TOMATO LEAF DISEASE CLASSIFICATION 

 

Both biotic (life-related) and abiotic (environmental) 

elements, such as rain, spring frosts, weather patterns, 

chemical burning, etc., can cause plant diseases. Less 

hazardous and avoidable diseases are those that are not 

infectious and transmittable. Biological diseases are the main 

source of agricultural damage. The three primary kinds of 

disorders are shown in Figure 2. 

Fungal Diseases: fungus or organisms that resemble fungus 

account for over 85% of plant diseases. Fungus spores are tiny 

and light, making it simple for them to travel to nearby plants 

or trees. Fungal diseases can impair tomato productivity, 

quality, and health. Fungal diseases in tomato plants: 

symptoms, causes, and effects. Tomato plant fungal diseases 

include Leaf Spots, Fruit Rot, Stem Cankers, Powdery Mildew, 

Damping-Off, and its symptoms. Pathogen presence, 

favorable environmental conditions, plant stress, and disease 

spread cause tomato plant fungal diseases, which reduce yield, 

quality, plant death, and disease spread. 

Early detection, fast intervention, and a holistic disease 

management approach are essential for tomato plant health 

and fungal disease mitigation. 

Leaf Mold: The main causes of this fungus disease are wet 

leaves and high humidity. One of the indications is yellowing 

of leaf surfaces [9, 10]. Tomato plants often suffer from Fulvia 

fulva (previously Cladosporium fulvum) leaf mold. Leaf Mold 

on tomato plants symptoms, causes, and effects. Leaf Mold 

causes leaf lesions, fuzzy growth, yellowing, leaf drop, and 

reduced photosynthesis in tomato plants. Fungal pathogens, 

humidity, overcrowding, and poor air circulation cause tomato 

leaf mold. Reduced Photosynthetic Capacity, Premature 

Defoliation, Yield Loss, Disease Spread, Remove and Destroy 

Infected Leaves. 

Early blight: It is brought on by fungus or bacteria. Initially, 

older leaves get black spots. The stem may get attached to or 

lose dead, dry leaves from diseased leaves [7, 8]. Early Blight, 

which is caused by the fungus Alternaria solani, is one of 

numerous diseases that affect tomatoes. Symptoms, causes, 

and consequences of early blight. On tomato plants, early 

blight enlarges the leaves, stems, fruits, and lesions. Fungal 

pathogens, warm and humid conditions, plant stress, and 

overcrowding cause early tomato blight. Early Blight reduces 

tomato plant leaf photosynthesis, defoliation, yield loss, and 

disease spread. Preventive methods and prompt management 

can reduce Early Blight's impact on tomato plants, enhancing 

output and quality. 

 

 
 

Figure 2. Tomato leaf diseases classification 

 

Late blight: Diseases brought on by a fungi disease. The 

late blight first manifests itself on leaves [9, 10]. Late Blight, 

caused by Phytophthora infesting, can devastate tomato plants. 

Late Blight in tomatoes: symptoms, causes, and effects. Late 

Blight in tomatoes causes leaf lesions, lesion spreading, stem 

lesions, white fungal growth, fruit lesions, and Late Blight in 

tomato plants is caused by fungal pathogens, favorable 

environmental conditions, host susceptibility, and rapid 

disease progression, yield loss, defoliation, plant decline, and 

disease spread. 

Late Blight can damage tomato plants if not treated quickly 

and thoroughly. Early detection, prevention, and cultural 

interventions can preserve tomato crops from this deadly 

disease. 

Bacterial Diseases: There are about 200 different types of 

bacteria responsible. Insects, water splashes, infected tools or 

plants, and wind can all spread the disease. Bacterial infections 

impair tomato productivity, quality, and health. Bacterial 

infections in tomato plants: symptoms, causes, and effects. 

Bacterial Diseases in Tomato Plants Caused by Bacterial 

Pathogens, Warm and Moist Conditions, Infected Plant 

Material, and Yield Reduction, Fruit Quality Decline, Plant 

Decline and Death, Disease Spread. 

Bacterial diseases on tomato plants must be detected early, 

treated quickly, and managed holistically. Preventive 

strategies, cultural practices, and tailored therapies can protect 

tomato crops from bacterial infections. 

Bacterial_spot: The disease is caused by Xanthomonas 
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species. Crops are compelled to shed their leaves due to the 

extreme temperatures and windy circumstances [9, 10]. 

Bacterial Spot, caused by Xanthomonas campestris is a 

frequent and severe tomato plant disease. Bacterial Spot in 

tomatoes: symptoms, causes, and effects. Bacterial Spot in 

Tomatoes causes Leaf Spots, Spot Enlargement, Leaf 

Blighting, Stem and Fruit Lesions, and Bacterial pathogens, 

warm, humid conditions, splashing water, and plant contact 

cause tomato plant bacterial spot. Bacterial Spot-on Tomato 

Plants Reduce Yield, Fruit Quality, Plant Decline and 

Defoliation, and Disease Spread. 

Bacterial Spot-on tomato plants must be detected early, 

treated quickly, and managed holistically. Preventive, cultural, 

and targeted treatments can protect tomato crops from this 

deadly disease. 

Septoria Leaf spot: It's connected to fungal. On the lower 

leaves, the first fruit develops. Each leaf has a number of 

rounds of dark-brown spots [9, 10]. Septoria Leaf Spot, caused 

by the fungus Septoria Lycopersicon, is a frequent tomato 

foliar disease. Septoria Leaf Spot in tomatoes: symptoms, 

causes, and effects. Septoria Leaf Spot in Tomato Plants 

causes Fungal Pathogen, Splashing Water and Humidity, 

Residue in Soil, Reduced Photosynthetic Capacity, 

Defoliation, Yield Loss, and Disease Spread. 

Septoria Leaf Spot can be minimized on tomato plants via 

early detection, quick response, and integrated disease control. 

Preventive, cultural, and targeted therapies can protect tomato 

crops from this foliar disease. 

Viral Diseases: Viral infection is the source of one of the 

strangest plant diseases. Because a virus cannot be treated 

chemically once it has infected a plant, it is necessary to 

destroy all suspect plants in order to stop the infection. Due to 

their requirement to physically enter the plant, insects are the 

most common vectors of these diseases. 

Viral infections can impair tomato productivity, quality, and 

health. This overview covers tomato plant viral infections' 

symptoms, causes, and effects. Tomato plant viral diseases 

cause mosaic patterns, leaf curling and deformation, stunted 

growth, reduced fruit quality, and fruit drop. and Vector 

Transmission, Infected Plant Material, Grafting Cause Tomato 

Plant Viral Diseases, which Reduce Yield, Fruit Quality, Plant 

Decline, and Disease Spread. 

There is no prevent for plant viral infections, but preventive 

measures and cultural practices can help tomato plants grow 

healthier. Managing viral infections requires early discovery, 

prompt action, and sound agricultural practices. 

Yellow leaf curl: This tropical and subtropical diseases 

results in monetary losses. Whiteflies are the carrier of it. This 

disease's symptoms include upward cupping or curling, 

decreased leaves, and stunting [9, 10]. Tomato plants are 

infected by the tomato yellow leaf curl virus (TYLCV) and 

other viruses. Tomato yellow leaf curl: signs, origins, and 

consequences. Leaf curling, yellowing, thickness, stunted 

development, and decreased fruit yield and quality are all signs 

of yellow leaf curl in tomato plants. Insect transmission and 

viral infections are some of the causes. Preventive methods 

and cultural practices can help tomato plants cope with Yellow 

Leaf Curl and develop healthier. Managing Yellow Leaf Curl 

requires early discovery, prompt action, and appropriate 

farming practices. 

Mosaic Virus: The tomato mosaic virus, which yellows and 

stunts plants, is to blame for crop loss. Curled, distorted, or 

undersized leaves are symptoms [9, 10]. Mosaic viruses like 

ToMV and TMV can infect tomato plants. Mosaic Virus in 

tomato plants: symptoms, causes, and effects. Mosaic Virus in 

Tomato Plants Causes are Viral Pathogens, Mechanical 

Transmission, Reservoir Hosts, and Impacts are Yield 

Reduction, Fruit Quality Decline, Plant Decline, and Disease 

Spread. 

Preventive measures and cultural practices can help tomato 

plants resist Mosaic Virus and generate healthier crops. 

Mosaic Virus management requires early discovery, prompt 

response, and sound agricultural practices. 

Target spot: Tomato growth is best at 68 to 82°F 

temperatures and 16-hour leaf wetness intervals. The end 

effect is concentrated leaf necrosis [9, 10]. Target Spot can 

severely damage tomato plants. Target Spot on tomato plants 

symptoms, causes, and effects. Target Spot in Tomato Plants 

causes Leaf Lesions, Lesion Enlargement, Leaf Blighting, 

Stem Lesions, Fruit Lesions, and Target Spot causes reduced 

leaf photosynthesis, defoliation, yield loss, and disease spread 

in tomato plants. 

Preventive and timely care can reduce Target Spot's 

influence on tomato plants, enhancing output and fruit quality. 

Two-spotted spider mite: Spider insects are the source of 

tomato leaf spots. After a few days of mite feeding, the leaves 

become yellow or grey and fall [9, 10]. Tetranychus urticae, a 

two-spotted spider mite, can affect common tomato plants. 

Symptoms, causes, and effects of the two-spotted spider mite 

on tomato plants. A two-spotted spider mite infestation on 

tomatoes causes leaf damage, webbing, decreased plant vigor, 

early leaf drop, warm, dry weather, the absence of natural 

predators, environmental stress, and other symptoms. Reduces 

Photosynthesis, Fruit Damage, Plant Stress and Decline, and 

Disease Transmission in Tomato Plants due to Two-Spotted 

Spider Mite Infestation. 

These management measures reduce Two-Spotted Spider 

Mite damage to tomato plants, preserving plant health, yield, 

and fruit quality. Control requires early detection and 

proactive pest treatment. 

Ten different forms of diseases, including the Leaf Curl 

Virus, Late Blight, Leaf Mold, Early Blight, Mosaic virus, 

Target Spot, Septoria Leaf Spot, Yellow Leaf Curl Virus, 

Spider Mites, Bacterial Spot, and Healthy Class, can infect the 

leaves of tomato plants. 

CNN architectures can classify tomato leaf diseases from 

input images. Here's their operation and differences. Deep 

CNNs ResNet-152 and ResNet-101 can extract complicated 

tomato leaf characteristics. Their deeper structures capture 

disease patterns and features. These structures suit datasets 

with several diseases and complex leaf symptoms. Their depth 

may need more processing resources and training time than 

other architectures. VGGNet has uniform architecture with 

modest 3x3 convolutional filters and max pooling layers. 

Hierarchical representations of incoming images—including 

diseases patterns—are learned. VGGNet is computationally 

intensive but accurate. It works well for datasets with many 

clinical symptoms and fine-grained feature extraction. 

Inception modules in GoogleNet capture features at different 

scales using numerous filter sizes (1×1, 3×3, 5×5). These 

modules' parallel convolutions capture different and multi-

scale disease-related characteristics. For large datasets and 

real-time applications, GoogleNet is accurate and 

computationally efficient. It can classify images and treat 

many diseases. LeNet is a shallow early CNN architecture. 

Convolutional and pooling layers precede fully linked layers. 

For basic disease identification applications, LeNet can still 

perform well. 
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It works well with little computational resources. These 

architectures differ in depth, network structure, and feature 

extraction difficulty. ResNet-152 and ResNet-101 can detect 

more complex illness patterns, while VGGNet and GoogleNet 

balance accuracy and processing efficiency. LeNet, however 

superficial, can detect minor diseases. The dataset complexity, 

computational resources, and tomato leaf disease detection 

accuracy-efficiency trade-off determine the architecture. 

ResNet-152 is the most layered architecture, followed by 

ResNet-101. VGGNet has fewer layers than ResNet models 

yet a deep structure. ResNet and VGGNet are deeper than 

GoogleNet and LeNet. Deeper architectures mean more 

parameters for ResNet-152 and ResNet-101. VGGNet, 

especially VGG16 and VGG19, contains several settings. 

Inception modules help GoogleNet use less parameters than 

the above designs. LeNet, an earlier and simpler architecture, 

has fewer parameters than the other variants. Computational 

Complexity Due to greater layers and parameters, ResNet-152 

and ResNet-101 are computationally more demanding. 

VGGNet's many parameters, especially in deeper variants, 

make it computationally costly. GoogleNet is less 

computationally intensive than ResNet and VGGNet because 

it balances accuracy and efficiency. LeNet's shallow 

architecture requires less computing. ResNet-152, ResNet-101, 

and VGGNet can improve accuracy, especially on 

complicated datasets. GoogleNet is accurate and efficient in 

image classification. LeNet, however shallow, can perform 

simple classification jobs well. These statistical discrepancies 

affect model performance, training, and inference 

computational resources. When choosing a CNN architecture 

for tomato leaf disease classification, consider resources, 

dataset complexity, and accuracy vs. computational efficiency. 

 

 

4. DEEP LEARNING TECHNIQUES FOR LEAVES 

DISEASE DETECTION  

 

Deep learning algorithms are used in studies to detect and 

manage diseases in fruits, vegetables, and field crops early. 

CNN models are more sensitive to key features and can 

analyze leaf diseases [11], Due to its several feature extraction 

processes, Accurate categorization is produced using CNN 

deep learning. The most recent Deep CNNs and meta-

architectures, including VGG Nets, Le-nets ResNet, R-CNN, 

Mask R-CNN, FCN, SSD, and other well-known object 

identification and segmentation architectures, were used to 

forecast tomato leaf disease. But they moved too slowly to 

produce better outcomes. These developments made the 

Convolutional Neural Network faster and more accurate. CNN 

leaf disease detection architecture is shown in Figure 3. 

 

4.1 LeNet 

 

After a first fully linked layer, the LeNet design moves onto 

convolutional and pooling layers. By adopting a condensed 

connection layer known as max-pooling to reduce picture size 

between convolutional layers, overfitting can be avoided and 

CNNs can train more effectively [12]. It has been used to 

recognize handwritten numbers, traffic signs, and even human 

faces [13]. The LeNet CNN is a straightforward but efficient 

model. Even though LeNet's design hasn't evolved much since 

it was built more than 20 years ago, it is still in broad usage as 

seen in Figure 4. 

In order to classify images, the LeNet convolutional neural 

network (CNN) architecture is frequently utilized. It is less 

useful for tomato leaf disease detection than more advanced 

designs. This article explains LeNet and provides pertinent 

examples of its use: 

LeNet design is LeNet has convolutional, pooling, and 

classification layers. For preliminary image categorization, the 

architecture is simple and efficient. Modern CNN 

architectures have more layers and parameters. It also 

classifies plant diseases and identifies plant stress. Such as: In 

"A Review on Detection of Plant Diseases using Image 

Processing Techniques," tomato diseases were classified using 

LeNet. The researchers diagnosed several illnesses using 

LeNet on tomato leaf photos. 

 

 
 

Figure 3. Deep convolutional neural networks architecture 

 

 
 

Figure 4. LeNet architecture 
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Limits and Challenges: 

LeNet may miss subtle patterns and subtleties due to its 

shallowness. Tomato leaves might hide modest diseases 

signals. 

LeNet's simplicity may prevent it from representing all 

tomato leaf disease features and variants, resulting in lower 

accuracy than more complicated structures. 

Lighting, camera position, and disease type can complicate 

tomato leaf disease data. LeNet could find this complexity 

challenging. Pre-trained models for tomato leaf disease 

detection may be harder to find because LeNet is an older 

design than other models. Recent CNN architectures like 

ResNet, VGGNet, and GoogleNet have become popular due 

to their deeper structures and improved performance. These 

patterns help researchers detect complex diseases and improve 

precision. 

Thus, while LeNet can still be utilized for tomato leaf 

disease identification, academics and practitioners prefer more 

contemporary systems tailored for disease detection and other 

complex image classification tasks. 

 

4.2 GoogleNet 

 

There are a total of 27 layers in the GoogleNet Model in 

Figure 5. Others, such as the Convolutional and Fully-

Connected layers, are parameterized while others, such as the 

Max-Pooling layer, are not. This module is built using a 

variety of tiny convolutions that greatly minimize the number 

of parameters. Their method is based on a 22-layer deep CNN 

even though they reduced the number of parameters from 60 

million (Alex Net) to merely 40 million. 

GoogleNet, a CNN architecture that pioneered Inception 

modules, categorizes images quickly and accurately. It has 

been used in comparable conditions but not to detect tomato 

leaf infections. GoogleNet is introduced and used to identify 

tomato leaf diseases. Inception modules distinguish 

GoogleNet Architecture. These modules' several filter sizes 

(1×1, 3×3, and 5×5) and parallel convolutions collect features 

at different scales. It maximizes calculation speed and 

precision. GoogleNet, a member of the Inception family, has 

been used to detect tomato leaf diseases. This architecture has 

been used for plant disease classification, but tomato leaf 

disease detection is rare. Some examples: The researchers [14] 

used GoogleNet to classify diseases of plants including tomato 

leaf diseases.  

Challenges and Limitations:  

There is a dearth of material dedicated to the detection of 

tomato leaf diseases using GoogleNet or Inception architecture. 

This points to the necessity for specialized study in this area. 

Fewer pre-trained models may be available for tomato leaf 

disease detection using GoogleNet than other popular 

architectures such as ResNet or VGGNet. This can make it 

harder to learn and adopt new skills. 

The availability, breadth, and diversity of datasets on 

tomato leaf diseases varies widely. An enormous quantity of 

labeled data is typically required to successfully train a deep 

architecture like GoogleNet. Performance and generalization 

may be affected if the dataset is small or unbalanced. 

Deeper designs, such as GoogleNet, can be computationally 

intensive due to their intricate design. It can be difficult to 

conduct training and inference in contexts with limited 

resources due to the potential need for increased processing 

resources, such as high-end GPUs. 

 

 
 

Figure 5. Google net architecture 

 

4.3 AlexNet 

 

Although AlexNet is larger and more complex than LeNet, 

the network architecture shown in Figure 6 is remarkably 

comparable to the use of numerous Convolutional Layers. 

Soon after its first release, the AlexNet architecture 

demonstrated excellent performance when used with big 

image datasets. AlexNet includes five convolutional layers in 

total, including two dropout layers, three fully connected 

layers, and two max-pooling levels. 

In 2012, Alex Krizhevsky & colleagues announced AlexNet, 

a revolutionary CNN architecture. In order to identify plant 

diseases and generally classify images, it has been widely used. 

Use AlexNet to detect tomato leaf disease. The AlexNet 

architecture consists of convolutional, maximum pooling, and 

totally linked layers. Deep learning became well-known in 

computer vision thanks to the ground-breaking result of the 

ImageNet Large-Scale Visual Recognition Challenge.  

Diagnostics for Plant Disease Although AlexNet has 

achieved success in more challenging plant disease detection 

tasks, there are few examples of tomato leaf disease detection. 

Some instances: According to the study "Plant Disease 

Recognition Using a Convolutional Neural Network," Alex 

Net was able to identify tomato plant diseases such citrus 

canker and bacterial leaf spot. The classification of disorders 

was excellent. The study [15] used AlexNet as a feature 

extractor. 

 

 
 

Figure 6. AlexNet architecture 
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Issues and Limitations: Applying AlexNet to tomato leaf 

disease detection or similar activities has various issues and 

limitations. 

 

4.4 VGGNet 

 

Input images up to 224×224 pixels in size can be processed 

using its 4096 convolutional features. While VGGNet excels 

at particular tasks, Large-filter CNNs are not the ideal solution 

for most image classification problems; CNN designs like 

Google Net's AlexNet architectures. This is particularly the 

case for input photographs ranging in size from 100×100 to 

350×350 pixels [16] as seen in Figure 7. The VGGNet CNN 

architecture competed and won the ILSVRC 2014 

classification competition, demonstrating its usefulness in 

real-world applications. When it comes to computer vision, 

many applications can benefit from the use of VGG CNN 

because of its processing efficiency [17]. It can be employed, 

among other things, for object detection. Its comprehensive 

feature representations are useful for many kinds of neural 

network architectures (YOLO, SSD, etc.). 

VGGNet is a deep convolutional neural network design. A 

well-known image classification is VGGNet. tool and plant 

disease detection, although tomato leaf disease detection 

applications are scarce. VGGNet may identify tomato leaf 

disease. The uniform VGGNet Architecture has numerous 

convolutional layers with modest 3x3 filters followed by max 

pooling layers. 

Plant diseases, in particular leaf diseases, have been 

successfully identified by VGGNet. There aren't many 

instances, despite the fact that VGGNet's ability in identifying 

plant diseases suggests it might be used to identify diseases in 

tomato leaves. Some instances: In "Deep Learning 

Approaches for Plant Disease Detection and Diagnosis," 

scientists examined tomato leaf disease using the VGGNet 

architecture.  

In the study [18] classified using VGGNet, successfully 

diagnosed disorders of tomato leaves. Transfer learning was 

used to enhance a pre-trained VGGNet model for precise 

disease classification on a dataset of tomato leaf diseases.  

Challenges and Limitations: Using VGGNet for tomato leaf 

disease detection or related tasks, such as Due to its complex 

nature, VGGNet has more parameters than other architectures. 

In order to train and infer with a VGGNet, powerful GPUs and 

CPUs are required. 

 

4.5 ResNet-101 

 

Simple two of the deep learning problems that ResNet was 

used to tackle at Microsoft Research Asia in 2016 and 2017 

were statement completion and machine understanding [19] as 

seen in Figure 8. Disciplines in ResNet Both ResNet-50 and 

ResNet-101 are supported. Microsoft's machine 

comprehension system uses CNNs to respond to one hundred 

thousand inquiries across twenty different domains. To match 

the processing power of GPUs, ResNet's CNN design may be 

scaled to meet your needs. 

Microsoft Research developed ResNet-101, a CNN 

architecture. ResNet-101 is frequently used in image despite 

the limited applications for tomato leaf disease detection, 

categorization and plant disease detection are both possible. 

Using ResNet-101, tomato leaf disease may be found. ResNet-

101 Architecture is 101-layer ResNet, among others Residual 

connections let the network learn residual mappings and solve 

the vanishing gradient problem. These connections help train 

deep networks and collect complicated information. ResNet-

101 has effectively detected plant diseases, including leaf 

diseases. Although ResNet-101's efficacy in detecting plant 

diseases supports its usage in detecting tomato leaf diseases, 

there aren't many examples. As an instance, consider [20] to 

identify tomato leaf disease, employed ResNet-101. With the 

use of a skilled ResNet-101 model, tomato leaf diseases could 

be distinguished with a high degree of accuracy [20, 21].  

Challenges and Limits: 

ResNet-101 has some drawbacks when used for tomato leaf 

disease detection: 

ResNet-101 is a deep architecture with several levels and 

parameters. ResNet-101 requires high-end GPUs for training 

and inference. 

 

 
 

Figure 7. VGGNet architecture 

 

 

 
 

Figure 8. ResNet101 architecture 
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Figure 9. ResNet152 architecture 

 

4.6 ResNet-152 

 

By learning the residual representation functions rather than 

the signal representation directly, ResNet-152 can have an 

extraordinarily deep network with up to 152 layers, as seen in 

Figure 9. ResNet-152 uses a skip connection, also known as a 

shortcut connection, to transport data directly from one layer 

to the next without altering it in any way [20-22]. 

While both AlexNet and ResNet-152 use over 60M 

parameters, the top-five accuracy between the two networks is 

roughly 10% different. ResNet-152 training, however, 

necessitates a great deal of calculations (about 10 times that of 

AlexNet), necessitating longer and more taxing training 

sessions. With more parameters and FLOP than ResNet-152, 

VGGNet also performs worse. Training an inaccurate 

VGGNet requires more time. 

 

Table 1. Statistical features comparison of different CNN 

architectures 

 

Architectures Overfitting 

Size and 

Diversity 

of Dataset 

Interpretability 

VGGNet 

May be 

prone to 

overfitting 

Beneficial 

with 

moderate 

dataset size 

Intermediate 

interpretability 

AlexNet 

Less prone 

to 

overfitting 

Relatively 

forgiving 

of dataset 

size 

Relatively 

interpretable due 

to simplicity 

GoogleNet 

May be 

prone to 

overfitting 

Beneficial 

with 

moderate 

dataset size 

Reduced 

interpretability 

due to Inception 

modules 

LeNet 

Less prone 

to 

overfitting 

Suitable 

for smaller 

datasets 

Relatively 

interpretable due 

to simplicity 

ResNet-101 
Prone to 

overfitting 

Requires 

large and 

diverse 

dataset 

Reduced 

interpretability 

due to depth 

ResNet-152 
Prone to 

overfitting 

Requires 

large and 

diverse 

dataset 

Reduced 

interpretability 

due to depth 

 

Deep convolutional neural network (CNN) ResNet-152 

makes use of ResNet (Residual Network). For general image 

categorization and plant disease detection, ResNet-152 has 

been extensively employed. The 152-layer ResNet 

architecture is known as ResNet. The network can learn 

residual mappings and resolve the vanishing gradient problem 

thanks to residual connections. These connections aid in the 

training of deep networks and the acquisition of complex data. 

Plant Disease Detection ResNet-152 has been used to detect 

plant diseases, although tomato leaf disease detection 

instances are scarce. However, the architecture's plant disease 

detection capabilities suggest its use for tomato leaf diseases. 

It is [23, 24] used a ResNet-152 version to detect plant diseases. 

The study showed ResNet-152's accuracy in diagnosing plant 

diseases, not just tomato leaf diseases. 

Challenges and Limitations: When using ResNet-152 for 

tomato leaf disease detection or related tasks, consider the 

following: 

ResNet-152 is a deep architecture with several layers and 

parameters. High-end GPUs are needed for ResNet-152 

training and inference. 

The Table 1 represents the comparison different CNN 

architectures with respect to statistical features. 

 

 

5. CNN MODEL IMPLEMENTATION 

 

The classification processes were substantially accelerated 

and the detection rate was raised by using CNN algorithms. 

On the basis of the top two best CNN models, which are 

employed and tested, a model will be developed to enhance 

CNN's performance and general accuracy. The ResNet-152 

residual network is utilized as the main model once VGGNet 

and ResNet-101 have been installed. In the experiment, leaf 

diseases position features were automatically collected by 

convolutional layers, and iterative learning was used to 

categorize the disorders. ResNet-152 surpasses the models in 

terms of object detection precision and error rate as well as 

eliminating the issue of gradient fading during testing by 

omitting the appropriate layers. 

 

Table 2. Classes data summary of training, validation, and 

testing 

 
S.No. Class Data 

Testing 

Data Training 

Training Validation 

1 Bacterial Spot 341 1089 272 

2 Mosaic Virus 60 192 47 

3 Early Blight 160 512 128 

4 Target Spot 225 487 121 

5 Healthy 255 815 203 

6 Late Blight 306 977 244 

7 Spider Mites 269 719 179 

8 Leaf Mold 284 907 226 

9 Septoria Leaf 

Spot 

284 858 214 

10 Yellow Leaf 

Curl 

858 2743 685 
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Using CNN algorithms significantly increased the detection 

rate and sped up the classification operations. In order to 

improve CNN's performance and overall accuracy, a model 

will be constructed based on the top two best CNN models, 

which are currently being used and tested. Once VGGNet and 

ResNet-101 are implemented, the ResNet-152 residual 

network is used as the primary model. In the experiment, leaf 

illness position features were automatically collected by 

convolutional layers, and iterative learning was used to 

categorize the disorders. By skipping the necessary layers, 

ResNet-152 outperforms the models in terms of object 

detection accuracy and error rate as well as resolving the 

problem of gradient fading during testing. As can be seen in 

Table 2, evaluators engage in activities such as data 

acquisition, data cleaning, and data classification. 

 

 

6. RESULTS AND DISCUSSIONS 

 

For the proposed study, we developed a convolutional 

neural network (CNN)-based model for disease identification 

in tomato crops. The suggested CNN-based design uses three 

convolution and maximum pooling layers with different 

numbers of filters. The PlantVillage dataset provided us with 

data on tomato leaves that we utilized in our tests. The dataset 

includes nine distinct diseases and a tenth "healthy" category. 

We employed data enhancement methods to ensure that each 

student had access to an equivalent number of high-quality 

images, and we evaluated CNN models and calculated 

corresponding evaluation parameters based on each disease 

class 

The PlantVillage Dataset provided the input data. One 

healthy label and nine disease labels (which include 

information about bacterial spot, black leaf mold, gray leaf 

spot, late blight, and powdery mildew) make up the 10 classes 

or labels in the data set. As seen in Table 2, the original dataset 

contains 14,529 images of tomato leaves in various 

arrangements. 

As per Table 2, out of the total of 14,529 pieces of 

information, 80% will be set aside for use in the training phase, 

and 20% will be used in the testing phase, respectively. The 

validation data section will make up 80% of the whole, 

whereas the testing data component will only make up 20%.  

ResNet-152's performance is compared to that of ResNet-

101, VGGNet, GoogleNet, AlexNet, and LeNet using a variety 

of criteria, including Accuracy and Precision, Recall, F1-Score. 

The metrics for the comparable models were gathered and are 

explained below.  

1. Accuracy: The ratio of accurate reports to all predictions 

is known as accuracy.  

The number of times the model is accurate when the 

predicted label matches the actual label. A false negative 

occurs when a model predicts the incorrect label for a specific 

case. The number of cases where the model accurately 

predicted a false label despite the fact that the actual label was 

true is referred to as the "True Negative". The number of False 

Positives in Eq. (1) is the number of occasions where the 

model correctly predicted the label but the label was incorrect. 

 

Accuracy = 
𝑇𝑃+𝑇𝑁 

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (1) 

 

2. Precision: By dividing the total number of positive 

predictions by the number of correct forecasts in Eq. (2), as 

shown in Table 3, one can determine the accuracy of a model's 

class predictions.  

 

Precision = 
𝑇𝑅𝑈𝐸 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸

𝑇𝑅𝑈𝐸 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸+𝐹𝐴𝐿𝑆𝐸 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸
 (2) 

 

The proportion of the test set's total examples that belong to 

each class is used to calculate that class's weight. 

3. Recall: Correctly identified observations as a percentage 

of total observations are one definition of accuracy in Eq. (3). 

The problem is that class differences in performance may not 

be accurately reflected. As a result, in Table 3, accuracy is just 

one of several metrics used to rank models these days. 

 

Recall = 
𝑇𝑅𝑈𝐸 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸 

𝑇𝑅𝑈𝐸 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸+𝐹𝐴𝐿𝑆𝐸 𝑁𝐸𝐺𝐴𝑇𝐼𝑉𝐸
 (3) 

 

4. F1-Score: If the F1 score is high, then means the output 

forecasts are accurate with few erroneous positive and 

negative results. When the F1 score drops below Table 3, the 

model is considered a complete failure in Eq. (4). 

 

Recall = 
𝑇𝑅𝑈𝐸 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸 

𝑇𝑅𝑈𝐸 𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸+𝐹𝐴𝐿𝑆𝐸 𝑁𝐸𝐺𝐴𝑇𝐼𝑉𝐸
 (4) 

 

The evaluated CNN model of ResNet-152, ResNet-101 and 

VGGNet calculated the corresponding evaluation parameters 

based on each disease class, as shown in Figures 10-12. 

In conclusion, both the ResNet-152 and the ResNet-101, 

both of which are VGGNet neural networks, have been 

implemented. The following factors can be taken into account 

when comparing ResNet-152, ResNet-101, and VGGNet for 

tomato leaf disease detection: 

 

Table 3. Accuracy classes summary of precision, F1-score and recall for ResNet-152, ResNet-101 and VGGNet 

 
Class Precision F1-Score Recall 

 ResNet-152 ResNet-101 
Vgg 

Net 
ResNet-152 ResNet-101 

Vgg 

Net 
ResNet-152 ResNet-101 

Vgg 

Net 

Bacterial 

spot 
0.95 0.95 0.94 0.96 0.96 0.95 0.98 0.98 0.98 

Spider Mites 0.94 0.94 0.93 0.99 0.98 0.96 0.99 0.98 0.97 

Early Blight 0.96 0.95 0.95 0.95 0.96 0.98 0.97 0.99 0.98 

Target Spot 0.99 0.98 0.98 0.97 0.98 0.97 0.97 0.98 0.96 

Late Blight 0.94 0.97 0.94 0.97 0.97 0.97 0.97 0.97 0.97 

Mosaic Virus 0.98 0.96 0.97 0.99 0.98 0.98 0.99 0.98 0.97 

Leaf Mold 0.97 0.98 0.96 0.98 0.99 0.97 0.98 0.97 0.96 

Septoria Leaf Spot 0.96 0.99 0.98 0.96 0.97 0.98 0.99 0.99 0.98 

Yellow Leaf Curl 0.98 0.97 0.97 0.99 0.98 0.98 0.98 0.97 0.98 
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The computing requirements of ResNet-152 and ResNet-

101 are high because of their depth and number of parameters. 

It's important to note that VGGNet, especially in its deeper 

iterations, can be very computationally demanding. 

 

 
 

Figure 10. Performance evolution metrics for precision 

 

 
 

Figure 11. Performance evolution metrics for F1-score 

 

 
 

Figure 12. Performance evolution metrics for recall 

 

The more sophisticated and abstract properties of tomato 

leaves can be captured by models like ResNet-152 and 

ResNet-101. Tomato leaf disease traits are among those that 

can be captured by VGGNet's uniform design and tiny 

convolutional filters. 

The increased complexity of deeper architectures like 

ResNet-152, ResNet-101, and VGGNet makes it more 

difficult to evaluate the learnt features and their connection to 

disease patterns in tomato leaves. These designs are popular 

because they can use pre-trained models. Rather than spending 

instead of spending more time and effort learning from scratch, 

you can use these pre-trained models and refine them using 

transfer learning on particular datasets related to tomato leaf 

disease. 

The available dataset, computational resources, and the 

intended trade-off between accuracy and efficiency are only a 

few of the elements that influence the selection of the design. 

VGGNet strikes a good mix between depth and interpretability, 

while ResNet-152 and ResNet-101 give greater depth and may 

be able to capture more nuanced features. When deciding on 

an appropriate architecture for the tomato leaf disease 

detection task, it is important to consider both the availability 

of pre-trained models and the task-specific needs. 

Their accuracy on pre-trained networks has been tested 

using 50 and 80 epochs, and records of a range of events have 

been kept. ResNet-152 has been successfully trained to 

categorize Utilizing pictures of tomato plant leaves from the 

plantvillage dataset, a variety of diseases that can harm tomato 

plant leaves are shown. The best classification performance 

can be reached when ResNet-152 is trained with a variety of 

various batch sizes. Additionally, the experiment results show 

that it is possible to get the highest accurate categorization 

performance with a learning rate of 0.001 and a data division 

ratio of 80% to 20% between training and testing. In 

preparation for future work, each and every class in the Plant 

Village Data set will be tasked with identifying each and every 

sickness. 

 

 
 

Figure 13. Instance I with 50-epochs 

 

 
 

Figure 14. Instance-I with 80-epochs 
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Figure 15. Instance-II with 50-epochs 

 

The graphs in Figures 13-16 are drawn based on the result 

obtained, that reveals, irrespective of the epochs and instances 

ResNet-152 is found to have the highest accuracy than 

ResNet-101 and VGGNet at most of the points. 

 

 
 

Figure 16. Instance-II with 80-epochs 

 

 

7. CONCLUSIONS 

 

Nowadays, numerous challenges are faced by farmers in 

agriculture. Speedy and accurate detection of leaf diseases 

could indeed assist in meeting the constantly expanding 

requirement for tomato production. Deep learning-based 

approaches yield very good results in tomato leaf disease 

classification. In this regard the present research work 

implemented ResNet-152 and ResNet-101, both of which are 

VGGNet neural networks. The computing requirements of 

ResNet-152 and ResNet-101 are high because of their depth 

and number of parameters. It's important to note that VGGNet, 

especially in its deeper iterations, can be very computationally 

demanding. The increased complexity of deeper architectures 

like ResNet-152, ResNet-101, and VGGNet makes it more 

difficult to evaluate the learnt features and their connection to 

disease patterns in tomato leaves. These designs are popular 

because they can use pre-trained models. Rather than spending 

additional time and energy training from scratch, you may 

utilize these pre-trained models and fine-tune them on specific 

tomato leaf disease datasets through transfer learning. When 

deciding on an appropriate architecture for the tomato leaf 

disease detection task, it is important to consider both the 

availability of pre-trained models and the task-specific needs. 

Furthermore, the results proved the superiority of the 

experimental performance when compared with earlier 

research conducted for tomato leaf disease classification. 
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