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Electrocardiograms (ECGs) and photoplethysmography (PPG) facilitate non-invasive 

cardiovascular monitoring; however, the correlation between their respective waveforms, 

which exhibit high cycle correlation, remains underexplored. This study aims to estimate 

ECG signals from PPG data using an array of Deep Neural Networks (DNNs) across varied 

transformation feature domains, thereby making PPG measurements a more expedient and 

less effort-intensive alternative to ECG acquisition. A novel, subject-specific deep learning 

model is introduced, combining the architectures of Convolutional Neural Networks (CNN) 

and bidirectional Long Short-Term Memory (BiLSTM), termed ConvBiLSTM. This hybrid 

model proposes an automatic method for ECG signal reconstruction. To ensure model 

robustness against deformation, spatial characteristics are first extracted using CNNs, 

followed by the extraction of temporal characteristics from the CNN output via BiLSTM. 

The BiLSTM approach mitigates the issues of gradient disappearance and expansion 

without compromising accuracy, an improvement over traditional RNN and LSTM 

methods. The performance of four distinct feature domains, namely the Time Domain (TD), 

Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and Wavelet 

Scattering Transform (WST), is evaluated with regards to their efficacy in ECG signal 

reconstruction from PPG data using the ConvBiLSTM model. Superiority of the proposed 

DNN combination over individual DNNs was demonstrated through comparison of 

ConvBiLSTM performance. Simulation results reveal that our method achieves superior 

root mean square error (RMSE) in ECG signal reconstruction across all feature domains. 

Given the widespread application of RMSE in ECG monitoring, this metric was chosen as 

the key evaluation criterion. The combination of WST for PPG signals and DWT for ECG 

signal features demonstrated the lowest RMSE at 0.0654, indicating the potential of this 

approach for effective ECG signal reconstruction using PPG data. 
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1. INTRODUCTION

In terms of worldwide mortality rates, cardiovascular 

diseases (CVDs) stand alone. CVD encompass a range of 

conditions affecting the heart and circulatory system. The 

condition in question encompasses a collection of several 

disorders, with the primary etiology typically being 

atherosclerosis [1, 2]. Typically, symptoms are predominantly 

observed in cases with severe disease, with sudden death being 

a potential initial manifestation. For an extended period, they 

have been the primary factor contributing to untimely death on 

a global scale. According to projections, the annual mortality 

rate from cardiovascular disease (CVD) is anticipated to reach 

23.6 million individuals by the year 2030. CVD can be 

attributed to a combination of many variables. Certain factors 

are considered to be unchangeable, such as age, gender, and 

genetic ancestry, while others are considered to be modifiable, 

meaning they may be influenced. Examples of modifiable 

factors include smoking tobacco, physical inactivity, bad 

eating habits, increased blood pressure, type 2 diabetes, 

dyslipidemia, and obesity [3]. As reported by the World Health 

Organization (WHO), 16% of all deaths worldwide can be 

attributed to ischemic heart disease [4]. Continuous long-term 

monitoring can prove highly advantageous to medical 

practitioners in tracking the cardiovascular system's responses 

to specific medicines or medical interventions. The ability to 

alter treatment strategies and predict the occurrence of heart 

failure can be facilitated by this approach.  

In health care applications, the electrocardiogram (ECG) 

and photoplethysmogram (PPG) are the primary signals that 

are frequently employed. The ECG signal represents the 

heart’s electrical activity, while the PPG signal records 

changes in blood volume [5]. Factors such as the location and 

size of the heart, the body’s fat or thinness, the user’s anatomy, 

and the position of the electrode can present challenges for 

ECG, potentially leading to imprecise or abnormal heart rate 

(HR) readings [6]. ECG technology uses heart electrical 

impulses instead of blood volume to overcome these issues [5]. 
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The term "electrocardiogram," or "ECG" for short, refers to a 

recording of the heart's electrical activity. Since its invention 

in 1902, ECG has become a staple in clinical practice and the 

gold standard for cardiovascular diagnostics [7]. ECG signals 

are monitored for a variety of reasons, including general health 

checks, medical diagnosis, and patient observation prior to 

surgical procedures. Clinical laboratories currently do ECG 

monitoring utilizing specialized equipment after extensive 

training and preparation. In recent decades, numerous portable 

ECG monitoring devices have been commercially available. 

Lighter in weight (by a fraction of a pound) and more reliable 

than their predecessors. However, the durability of these 

devices is compromised for extended use, as the material 

employed to ensure satisfactory electrode signal transmission 

can lead to dermal discomfort and inflammation.  

The limitations of the current ECG monitoring devices can 

be illustrated as follows:  

• In contrast to the methodology employed in the prior 

study [8], our approach involves the estimation of ECG 

data on a beat-by-beat basis, as opposed to a signal-wide 

basis. 

• In contrast to the methodology employed by Hannun et al. 

[9], our approach involved utilizing the scattering wavelet 

domain instead of the time domain in order to enhance the 

system's resilience against scaling and shifting. The usage 

of the WST as a feature domain is preferred over the TD 

[8], DCT [9] domain, or DWT domain due to its 

insensitivity to scaling and shifting.  

• In contrast to the prior study [10], our research introduces 

a novel approach of utilizing a Hybrid Conv-BiLSTM 

model for estimating ECG. This differs from the use of 

just LSTM models. Furthermore, we conduct a 

comparative analysis with other DNNs to demonstrate the 

superiority of our suggested system. Additionally, we 

suggest a novel combination of the -DWT, which exhibits 

improved performance compared to the combination of 

the WST-TD. 

There is a non-invasive method of measuring the pulsating 

blood volume in tissues called photoplethysmography (PPG) 

[7]. Typical PPG techniques involve illuminating the tissue 

using a light-emitting diode and then measuring the intensity 

of the light that is reflected or transmitted through the tissue 

using a photodetector on the same or opposite side of the 

sample. The PPG varies in the opposite direction of blood 

volume [11], and a pulse of blood modifies the light intensity 

at the photodetector. When compared to ECG, PPG has a 

number of advantages, including being cheaper, easier to use, 

and less time-consuming to set up. Finger/toe clips and pulse 

oximeters are commonplace in hospitals and clinics, but PPG 

is also gaining appeal as a consumer-grade wearable gadget 

because of its ability to monitor patients in real time over 

extended periods of time without irritating their skin.  

PPGs are increasingly recognized as a viable substitute for 

ECGs, given their ability to capture crucial cardiovascular data. 

Consequently, there is a surge in research aimed at creating 

wearable technology that can facilitate constant ECG 

monitoring, making it a feasible option for daily use. The 

proposed method involves the perpetual measurement of PPG 

signals, which are then used to regenerate ECG signals. Patient 

physiological monitoring with PPG has become popular in 

recent years. Its non-invasive nature, simplicity, and 

continuous readings make it ideal for pulse oximetry and 

personal portable devices. The signal also provides 

cardiovascular and respiratory information. This strategy is 

versatile and easy to collect patient physiological data [12]. 

The PPG signal does not require complex circuitry like the 

ECG. Without a reference signal, PPG sensors can be 

integrated into wristbands. These technologies are more 

accessible than ECG monitoring methods, which need 

electrodes on the patient's chest [13, 14]. 

For instance, research has shown that a number of features 

extracted from PPG [6] are strongly correlated with 

comparable metrics extracted from ECG [15]. These findings 

come from a couple of different studies. PPG is now the 

industry standard for continuous HR tracking in smartwatches, 

smartphones, and other wearable and mobile devices. PPG has 

several drawbacks compared to traditional ECG monitoring 

devices, including inaccurate HR estimation due to skin tone, 

diverse skin types, motion artifacts, and signal crossovers. 

ECG waveforms also indicate cardiac function. P-wave 

suggests sinus rhythm, while long PR intervals indicate first-

degree heart blockage. Thus, cardiologists use ECG to 

evaluate cardiac function. 

The main significance of this study is to develop a 

methodology for reconstructing the entire ECG waveform 

using the PPG waveform. This approach aims to enable 

comprehensive patient monitoring and facilitate the 

acquisition of all necessary data for medical treatment, while 

also mitigating potential inaccuracies associated with ECG 

measurement instruments. 

The key findings of this study can be encapsulated as 

follows:  

• Estimating ECG signal from PPG signal using different 

DNNs. 

• Different transformation features domain for DNNs for 

estimating ECG from PPG. 

• Proposed a combination of NNs (CNN and BiLSTM) 

known as Conv-BiLSTM with different feature domains 

promising NNs and feature domains for ECG signal 

estimation.  

The remainder of this paper is structured in the following 

manner: Section 2 delves into the literature relevant to the 

topic, Section 3 outlines the proposed ConvBiLSTM-based 

method for reconstructing ECG signals across various feature 

domains, Section 4 provides a detailed analysis of the 

experimental outcomes, and finally, Section 5 wraps up the 

paper with concluding remarks.  

 

 

2. RELATED WORK 

 

The connection between ECGs and PPGs has been the 

subject of some research. PPG and ECG readings for heart rate 

variability are strongly correlated [16]. PPG periodicity is thus 

strongly correlated with ECG periodicity. They are also highly 

linked during episodes of arrhythmia [14, 17, 18]. Some of the 

most crucial parameters of an ECG are also linked to a 

pulmonary artery (PPG) pressure reading [19]. You can use 

information in the PPG to make educated guesses about the 

PR, QRS, QT, and RR periods. If an ECG can be synthesized 

from a PPG, we can utilize both the extensive clinical 

knowledge of signals identified in an ECG and the readily 

available PPG signals to more accurately assess cardiovascular 

health.  

Benefiting from the association between the two signals can 

help us gain insight into not only the ECG metrics but also the 

process of reconstructing the ECG waveform from the PPG 

reading.  
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We can divide the related work for the reconstruction of 

ECG signals into two categories, Generating Synthetic ECG 

which is based on both signal processing or mathematical 

modeling, and machine learning for the Signal and ECG 

Synthesis from PPG which is based on the translation of PPG-

to-ECG. 

Generating Synthetic ECG Signal: The concept of 

synthesizing an ECG has been investigated in the past using a 

variety of methods, including model-driven (such as signal 

processing or quantitative modeling) and data-driven 

(machine learning and deep learning) approaches. When it 

comes to generating ECG segments, some of the earlier works, 

such as the study [16, 17], suggested solutions that were 

founded on differential equations and Gaussian models.  

Even though deep learning has been used to process ECG 

for a variety of applications including biometrics [16], 

arrhythmia detection [18], emotion recognition [19], cognitive 

load analysis [20, 21], and others, surprisingly few studies 

have addressed synthesis of ECG signals with deep neural 

networks [22-24]. Initial studies on the application of 

Generative Adversarial Networks (GANs) for the synthesis of 

electrocardiograms proposed the use of a bidirectional Long 

Short-Term Memory-Convolutional Neural Network (LSTM-

CNN) structure. This was employed to create ECG signals 

from Gaussian noise [25]. The objective was to generate 

synthetic ECG signals that are specific to each patient, using 

noise as the input, the research [26] proposed PGAN or 

Personalized GAN. To simulate the shape of ECG waveforms, 

a novel loss function was suggested, which incorporated cross-

entropy loss and mean squared error to approximate the 

difference between the two.  

Several other studies have attempted to address this issue; 

for instance, the proposal of Emotional GAN was made in the 

study [27], which suggested using synthetic ECG to 

supplement the existing ECG data in order to enhance mood 

classification accuracy. A new ECG was produced by the 

suggested GAN using noise as input. Last but not least, related 

research [28] improved arrhythmia detection performance by 

generating ECG from input noise to supplement the existing 

ECG training set. 

ECG Synthesis from PPG: To the best of our knowledge, 

only [9, 10, 29] has been published on the topic of the highly 

specialized issue of PPG-to-ECG translation. In place of deep 

learning [9], the discrete cosine transformation (DCT) method 

was used to convert between PPG and ECG cycles. To do this, 

we first aligned the PPG signal onsets with the R-peaks of the 

ECG signals, and then we performed a de-trending procedure 

to get rid of the noise. After that, we used temporal scaling 

with linear interpolation to preserve a constant section length 

for each cycle of ECG and PPG. Finally, the correlation 

between PPG segment DCT coefficients and their associated 

ECG segments was learned using a linear regression model. 

Another study established a mapping connection between PPG 

and ECG beats by creating a cross-domain joint dictionary 

learning (XDJDL) model [29]. In the study [10], the authors 

suggested a method for ECG reconstruction that does not rely 

on PPG scaling and shifting. The suggested method employs 

the Wavelet Scattering Transform (WST) as a feature space, 

which is combined with a deep neural network. This deep 

learning architecture is capable of discerning the non-linear 

relationship between ECG and PPG signals when WST is 

applied, even when the available datasets are limited in size. 

It's important to note that the suggested system is not signal-

based but rather ECG beat-by-beat-based, which means that it 

learns local features rather than global ones. 

 

 

3. THE PROPOSED ECG RECONSTRUCTION BASED 

ON CONVBILSTM 

 

In this study, all systems leveraged the structural 

resemblance between PPG and ECG beats for estimation 

purposes. The process of using deep learning to estimate ECG 

beats from PPG beats is illustrated in Figure 1. The proposed 

methodology is implemented through a series of steps: (1) 

creation of the dataset, (2) preprocessing of the data, (3) 

establishment of the feature domain, (4) partitioning of the 

data, (5) training of the Deep Learning Neural Network (Conv-

BiLSTM) models, and (6) estimation of ECG.

 

 
 

Figure 1. Block diagram for the proposed system model 
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3.1 Data setup  

 

The joint PPG / ECG data used to train the deep learning 

network is available in the Physionet MIMIC II dataset (Multi-

parameter Intelligent Monitoring in Intensive Care) [30]. The 

authors [31] presented a more organized compilation of the 

same dataset. There are almost 12,000 records in this 

collection. Every single record is composed of data from three 

sources: ECG (from channel II), PPG (from the fingertip), and 

ABP (invasive arterial blood pressure measured in mmHg). 

These data are sampled at a rate of 125 samples per second. 

However, the PPG signals and the labeled ECG signals are of 

specific interest to us. Records are segmented into 1024 

sample sections for proper handling and filtering. To achieve 

good performance, Sarkar and Etemad [32] get ready a dataset 

free of artifacts for use in training and testing a deep learning 

estimator for a combined PPG / ECG cleaning technique. We 

use this dataset that contains 175000 cleaned beats instead of 

309000 beats of uncleaned data because of the uncleaned data 

can make an illusion for the deep networks. The dataset is 

available on their website (https://cibpm.com/). 

 

3.2 Data preprocessing  

 

In the event that the morphology of PPG signals remains 

constant, it is possible to apply pre-processing enhancement 

techniques such as bandpass filtering within the frequency 

range of [0.5-8] Hz exclusively to these PPG signals. Any 

ECG signals or beats that exhibit significant distortion should 

be omitted [24]. The pre-processed signals that result from this 

process are then utilized for feature extraction and the training 

of learning models.  

 

3.3 Transformation features domain 

 

This section delineates a comparative study among four 

distinct transformation feature domains, as well as their 

various combinations. These domains include the Time 

Domain (TD), the Discrete Cosine Transform (DCT), the 

Discrete Wavelet Transform (DWT), and the Wavelet 

Scattering Transform (WST). Specifically, the input series in 

the time domain already contains the beat interval data. The 

following are some benefits that can be obtained from each 

feature domain: The beat interval and the PPG's behavior are 

time-domain features that are linked to the ECG's behavior in 

the time domain. Deep features cannot be extracted directly 

from the PPG beats in the time domain without a massive 

dataset and complicated network.  

Conversely, the DCT feature domain can help reduce the 

input size with less distortion thanks to the compression of the 

beats features into a small number of points. For the purpose 

of this investigation, however, we employed the complete 

DCT features. One major drawback of this feature domain is 

the potential for destructive outcomes in ECG prediction due 

to inaccurate forecasts of the DC and low-frequency 

components. 

Because the DWT domain possesses combinational 

characteristics that are time and frequency, it is well suited for 

the estimation of ECG. On the other hand, it is sensitive to 

signal displacement and scaling, which is something that 

frequently occurs with PPG sensors. This is a drawback of the 

product. As a consequence of this, it could result in mistakes 

brought on by scaling and shifting. 

In contrast to DWT, WST is not negatively impacted by the 

effect caused by the shifting and scaling of the PPG beats. 

Therefore, WST is an appropriate candidate for use as a feature 

extraction tool in order to assist the proposed Conv-BiLSTM 

network in learning the connection between PPG and ECG. 

This paper employs seven distinct combinations of input-

output, each utilizing different feature domains. These 

combinations are systematically catalogued in Table 1 as 

follows: 
 

Table 1. Combinations between input-output for different 

feature domains 
 

Scheme 
PPG Input 

Domain 

ECG Output 

Domain 
Abbreviation 

TT TD TD PPG-TD / ECG-TD 

CT DCT TD PPG-DCT / ECG-TD 

CC DCT DCT PPG-DCT / ECG-DCT 

WT DWT TD PPG-DWT / ECG-TD 

WW DWT DWT PPG-DWT / ECG-DWT 

ST WST TD PPG-WST / ECG-TD 

SW WST DWT PPG-WST / ECG-DWT 

 

3.4 Proposed transfer learning method (Conv-BiLSTM) 

 

 
 

Figure 2. A schematic representation for the suggested method that integrates scattering wavelet transform with a Conv-BiLSTM 

deep neural network for the prediction of ECG signals 
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The ECG beats are estimated using Proposed Conv-

BiLSTM sequence-to-sequence regression, with the 

associated PPG features serving as predictors. With the help 

of a CNN and BiLSTM, we suggest a method for 

reconstructing ECG signals from PPG signals as shown in 

Figure 2. The ECG signal is extracted from the PPG signal 

using a deep learning approach, which solves a prediction 

problem. Hybrid model with CNN and BiLSTM is suggested 

for automatic feature extraction to reconstruct the ECG signal. 

Our first step in making the model robust to this kind of 

deformation is to extract spatial features using CNNs [33], 

which have proven to be effective in the domains of image 

identification [34, 35] and signal classification [36]. Following 

the retrieval of spatial features, we apply BiLSTM to CNN's 

output to pull out temporal features. To get at temporal 

characteristics, we employ BiLSTM. BiLSTM, a classifier 

with forward and backward phases, can be suggested for 

predicting the ECG waveform. Unlike conventional RNN and 

LSTM, BiLSTM avoids the issues of gradient disappearance 

and gradient expansion without sacrificing accuracy. However, 

as stated before, noise can distort a PPG signal. The 

characteristics extracted by the CNN and BiLSTM are used to 

generate an electrocardiogram signal.  

Convolutional neural networks (CNNs) are a powerful deep 

learning method [34] due to their capacity for extracting 

spatial features. (i) the convolutional operation, (ii) the ReLU 

Function, (iii) the Batch Normalization, and (iv) the pooling 

operation are the four typical processes in a CNN.  

In contrast to the succeeding layers, the filter size in the first 

convolution layer of the convolution process is set to a wide 

value. This structure is superior at damping high-frequency 

impulses when compared to smaller kernels in terms of its 

ability to do so. When multiple convolutional and pooling 

layers are stacked on top of one another, it is possible to 

retrieve higher-level features from the input data. This 

contributes to a more accurate representation of the input data. 

Here, we'll use 𝑥𝑖𝑗
𝑙  to represent the features in layer 𝑙 of the 

feature map and 𝑤𝑝,𝑞  to represent the convolutional filter's 

kernel size of 𝑃 × 𝑄. When using a convolutional filter with a 

stride size of 𝑠, the convolutional process is carried out as:  
 

𝑢𝑖,𝑗 = ∑ ∑ 𝑋𝑠𝑖 + 𝑝, 𝑠𝑗 + 𝑞𝑤𝑝,𝑞
𝑄−1
𝑞=0

𝑝−1
𝑝=0   (1) 

 

To improve the convergence rate and prevent gradient 

vanishing and eruption in the feature extraction block, we use 

the Rectified Linear Unit (ReLU) as the activation function. 

An improved version of the retrieve feature 𝑢𝑖,𝑗  is then 

obtained by applying the ReLU activation function, and the 

corresponding layer 𝑥𝑖𝑗
𝑙+1 element of the feature map is then 

calculated as: 

 

𝑥𝑖𝑗
𝑙+1 = 𝑅𝑒𝐿𝑈(𝑢𝑖,𝑗)  (2) 

 

After each convolution layer, the network employs the 

Maxpooling layer to further decrease the dimensions and 

parameters. The training period can be cut short by using the 

pooling procedure to reduce the number of features in the 

feature map. As a standard method for shrinking the feature 

map, we employ the max pooling algorithm in our suggested 

model. For a given pooling region 𝑂 in a given layer 𝑙, the max 

pooling algorithm is executed as: 

 

𝑥𝑖𝑗
𝑙+1 = max

(𝑝,𝑞)∈𝑂
𝑥𝑝,𝑞

𝑙   (3) 

An efficient regularization approach is a batch 

normalization (BN) algorithm applied after each convolution 

layer. Since the BiLSTM layer expects its incoming data to be 

a one-dimensional array, the Convolution layer's 

multidimensional output data must be flattened by the flatten 

layer. The LSTM network on the other hand, is a type of RNN 

that has seen widespread use for analysing time sequence data 

because of its outstanding performance of the temporal feature 

extraction. In most cases, an LSTM will have the following 

components: (i) the LSTM block, (ii) the input gate, (iii) the 

forget gate, and (iv) the output gate. 

Following this procedure, the hidden stat e (ℎ𝑡) is formed: 

• By multiplying 0 to a given location in the matrix, the 

forget gate (𝑓𝑡) instructs the cell state to disregard that bit 

of data. 
 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (4) 
 

• The information that should be allowed to enter the cell 

state is decided by the input gate. 

 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (5) 

 

• Memory may be forgotten in the cell state thanks to the 

modulation input gate. 

 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (6) 

 

• The output gate is responsible for determining what 

the subsequent hidden state will be. 

 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (7) 

 

where,  𝑊𝑖 ,𝑊𝑜,𝑊𝑓 , 𝑎𝑛𝑑 𝑊𝑐  presents the weights vector for 

input, output, forget, and cell gates respectively, 𝜎 the sigmoid 

function, and 𝑏𝑖 , 𝑏𝑜, 𝑏𝑓 , 𝑎𝑛𝑑 𝑏𝑐 are the bias for input, output, 

forget, and cell gates respectively. Hidden state (ℎ𝑡) refers to 

the working memory. Predictions are made with the help of 

the hidden state, which stores data about prior inputs. 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡) (8) 

 

Specifically, the cell's present state is denoted by the symbol 

𝑐𝑡: 

 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡 (9) 

 

where, 𝑡𝑎𝑛ℎ  is the activation function of the hyperbolic 

tangent. Dot multiplication, denoted by the notation ⊙. 

In the BiLSTM structure, ℎ⃗ 𝑡, ℎ⃖⃗𝑡 represents the forward and 

backward hidden sequences respectively, and 𝒴𝑡  is output 

sequence. 
 

ℎ⃗ 𝑡 = 𝓗(𝑾𝒙 �⃗⃗� 𝑥𝑡 + 𝑾�⃗⃗�  �⃗⃗� ℎ⃗
 
𝑡−1 + 𝒃�⃗⃗� ) (10) 

 

ℎ⃖⃗𝑡 = 𝓗(𝑾𝒙 �⃗⃗⃖�𝑥𝑡 + 𝑾�⃗⃗⃖� �⃗⃗⃖�ℎ⃖⃗𝑡−1 + 𝒃�⃗⃗⃖�) (11) 

 

𝒴𝑡 = 𝑾�⃗⃗�  𝓨ℎ⃗ 𝑡 + 𝑾�⃗⃗⃖� 𝓨ℎ⃖⃗𝑡 + 𝒃𝓨 (12) 

 

Specifically, the following is the mathematical equation of 

the ConvBiLSTM in the newer gates: 
 

ℎ⃗ 𝑡 = 𝓗(𝑾𝒙 �⃗⃗� ⊛ 𝑥𝑡 + 𝑾�⃗⃗�  �⃗⃗� ⊛ ℎ⃗ 𝑡−1 + 𝒃�⃗⃗� ) (13) 
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ℎ⃖⃗𝑡 = 𝓗(𝑾𝒙 �⃗⃗⃖� ⊛ 𝑥𝑡 + 𝑾�⃗⃗⃖� �⃗⃗⃖� ⊛ ℎ⃖⃗𝑡−1 + 𝒃�⃗⃗⃖�) (14) 
  

𝒴𝑡 = 𝑾�⃗⃗�  𝓨 ⊗ ℎ⃗ 𝑡 + 𝑾�⃗⃗⃖� 𝓨 ⊗ ℎ⃖⃗𝑡 + 𝒃𝓨 (15) 

 

where, ⊗  denotes the Hadamard product and ⊛  is the 

convolution function.  

In a ConvBiLSTM network, we introduce an additional 

operation: the Hadamard product (denoted by ⊗). The 

Hadamard product combines the output of a convolutional 

layer with the hidden states from the BiLSTM layers. 

Specifically, the output sequence in a ConvBiLSTM is 

obtained by applying the Hadamard product to the 

convolutional features and the BiLSTM hidden states. 

The dropout layer is implemented in between the two fully 

connected layers. The dropout method is employed to avoid 

the over-fitting problem. With dropout, only a subset of the 

network's neurons are taught instead of all of them. Simply 

stated, some proportion of neurons in each iteration train 

receive no input and are thus disabled. It encourages the 

network to home in on more useful characteristics, which 

improves the model's adaptability. 

Including an output layer, the prediction block contains two 

completely connected layers. After the attention block has 

collected feature values, the fully connected layer applies a 

sequence of nonlinear transformations to those values. The 

ultimate forecasting outcomes are then produced. 

The suggested NN for ECG signal estimation from PPG was 

compared with two state-of-the-art networks namely, 

BiLSTM and Alexnet. 

4. SIMULATION SETUP 

 

We trained our models with 90% of the total data and the 

remaining 10% for testing. There was no overlap between the 

training and testing datasets. The network is trained using the 

training dataset, and its parameters are adjusted based on the 

training error. In this way, the performance of the network can 

be objectively evaluated. The Adam and SGD optimizers were 

employed to train the model, both of which are widely utilized 

for parameter estimation. Notably, the best outcomes were 

achieved while employing these two optimizers. The choice 

was made to utilize the Root Mean Square Error (RMSE) loss 

function in order to assess the accuracy of the reconstructed 

ECG signal. The initial learning rate, max epochs, and 

minimum batch size were set to 0.001, 50 and 20, respectively. 

Both the learning rate and the batch size of the network were 

optimised through experimentation. MATLAB was used to 

write all of the codes. Table 2 shows the network's 

specifications. 

 

4.1 ECG waveform simulation analysis results 
 

In this section, we use the ConvBiLSTM network with a 

120 × 1  sequence regressor output layer to infer the ECG 

beats from the associated PPG beats. For ECG estimation, 

there are seven distinct feature domains to choose from, as the 

output reflects a sequence, and we are interested in the time 

series ECG. These combinations illustrated before in Table 1. 

 

Table 2. Network specifications 

 
Number of Signals 154540 

Signal length 120 

Number of channels 14 

Layer specifications 

Sequence input with 120 dimensions 

Convolution 1d Layer 

Batch Normalization Layer 

ReLU Layer 

Max Pooling 1d Layer 

Convolution 1d Layer 

Batch Normalization Layer 

ReLU Layer 

Max Pooling 1d Layer 

BiLSTM Layer 

Fully Connected Layer 

Dropout Layer 

Fully Connected Layer 

Regression Output RMSE 

Learning rate 0.001 

Max epochs 50 

Minimum batch size 20 

Optimization function L2-Norm 

Optimization method ADAM / SGDM 

Table 3. PPG / ECG RMSE comparison for ADAM 

optimizer 
 

Network 
BiLSTM Alexnet ConvBiLSTM 

Transformation 

SW 0.0693 0.07194 0.0654 

ST 0.0703 0.0734 0.0682 

WW 0.075 0.0723 0.0668 

WT 0.0755 0.0749 0.066 

CC 0.0736 0.0754 0.0722 

CT 0.0726 0.0747 0.0706 

TT 0.0801 0.0749 0.0686 

Table 4. PPG / ECG RMSE comparison for SGDM 

optimizer 

 
Network 

BiLSTM Alexnet ConvBiLSTM 
Transformation 

SW 0.06308 0.0726 0.0346 

ST 0.05328 0.0703 0.0499 

WW 0.0511 0.0726 0.05 

WT 0.0509 0.0704 0.0546 

CC 0.0614 0.07073 0.0569 

CT 0.0618 0.0744 0.059 

TT 0.0532 0.0744 0.0538 
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Table 5. PPG / ECG RMSE comparison for rmsprop 

optimizer 

 
Network 

BiLSTM Alexnet ConvBiLSTM 
Transformation 

SW 0.0694 0.1628 0.0671 

ST 0.0741 0.1734 0.072 

WW 0.0713 0.1671 0.0692 

WT 0.0703 0.1676 0.0694 

CC 0.073 0.1516 0.068 

CT 0.0711 0.1812 0.0761 

TT 0.0744 0.1557 0.0737 

 

From the simulation results shown in Table 3, we can see 

that, for ADAM optimizer with the ConvBiLSTM network has 

the best result in sense of RMSE for all combinations when 

using different feature domains (SW, ST, WW, WT, CC, CT 

and TT). Finally, for ADAM optimizer, the best result is 

obtained when using ConvBiLSTM NN with SW feature 

domain. From the simulation results shown in Table 4, we can 

find that, for SGDM optimizer ConvBiLSTM have a best 

result in sense of RMSE when using feature domains (SW, ST, 

WW, CC, and CT). BiLSTM NN have best results for the 

remaining feature domains (WT and TT). Finally, for SGDM 

optimizer, the best result is obtained when using 

ConvBiLSTM NN with SW feature domain. 

In addition to ADAM and SGDM, we also evaluate the 

performance of Rmsprop as an optimizer as shown in Table 5. 

However, the results obtained with Rmsprop are notably 

inferior when compared to ADAM and SGDM, especially 

with Alexnet DNN. 

Table 6 presents the results for the proposed Conv-BiLSTM 

model. It is observed that the optimizer SGDM achieves a 

superior performance of 0.0346 when utilizing the proposed 

WST-DWT (SW) domains, outperforming other optimizers.

 

 
 

  

Figure 3. The reconstruction of ECG signals utilizing various 

DNNs and diverse transformation techniques, in conjunction 

with the ADAM optimizer 

Figure 4. The reconstruction of ECG signals utilizing various 

DNNs and diverse transformation techniques, in conjunction 

with the SGDM optimizer 
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Table 6. PPG / ECG RMSE comparison for the proposed 

Conv-BiLSTM with various optimizers 

 
Network ADAM SGDM Rmsprop 

Transformation 

SW 0.0654 0.0346 0.0671 

ST 0.0682 0.0499 0.072 

WW 0.0668 0.05 0.0692 

WT 0.066 0.0546 0.0694 

CC 0.0722 0.0569 0.068 

CT 0.0706 0.059 0.0761 

TT 0.0686 0.0538 0.0737 

 

4.2 ECG beat reconstruction results 

 

The plot of the reconstructed ECG beats is displayed in 

Figure 3 for ADAM optimizer and Figure 4 for SGDM 

optimizer, along with a variety of feature domains and 

individual instances. These figures demonstrate that there is a 

strong relationship and correlation between the estimated ECG 

beat and the ground truth ECG beat for the proposed 

ConvBiLSTM NN method when WST-DWT combination is 

used to analyze the data. 

 

4.3 ECG signal reconstruction results 

 

In this section, we collect 200 beats which indicate the 

complete ECG signal of one patient and try with the proposed 

ConvBiLSTM to estimate the patient ECG Signal from the 

PPG signal. As shown in Figure 5 we can see that the ECG 

signal can be estimated well at the peak of the signal and at the 

Beginning of the signal but except the notch at the end of the 

beat.  

 

 
 

Figure 5. ECG signal reconstruction using the proposed 

ConvBilSTM with SW domain for collecting of 200 beats for 

the 1st patient 

 

 

5. CONCLUSIONS 

 

In this article, we introduced a method for the estimation of 

ECG signals from PPG signals using DNNs. The proposed 

system is based on the hybrid combination of deep learning 

networks with CNN and BiLSTM known as ConvBiLSTM for 

various feature domains. The algorithm was successfully 

evaluated with both the proposed Conv-BiLSTM DNN Model 

and with the combination of WST-DWT domains for PPG to 

ECG signal reconstruction. The effectiveness of the proposed 

ConvBiLSTM in estimating ECG signals is demonstrated by 

comparison with various other DNNs. An examination of a 

variety of distinct feature domains is conducted to demonstrate 

the efficacy of a combination of Wavelet Scattering Transform 

(WST) at PPG signal and DWT at ECG signal for the 

estimation of ECG signals. One of the primary benefits of 

utilizing the WST is its inherent independence from shifting 

and scaling operations. Hence, the ability to identify the ECG 

signal remains unaffected by any potential shifting or scaling 

of the PPG signal. The utilization of the DWT is preferred over 

the WST for ECG signal analysis due to the unavailability of 

an inverse function for WST. Consequently, the DWT is 

employed as a substitute for WST in ECG signal processing. 

The Proposed ConvBiLSTM scheme demonstrated superior 

performance when compared to the BiLSTM and Alexnet 

schemes, as highlighted by the results obtained from the 

simulation, so the superiority of the proposed system added a 

new system with better performance for extracting ECG signal 

from the PPG signal. 
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NOMENCLATURE 

 

ECG Electrocardiogram  

PPG Photoplethysmography 

CNN Convolutional neural network 

DCT Discrete cosine transform 

DNN Deep neural network 

DWT Discrete wavelet transform  

GAN Generative adversarial network 

BiLSTM Bidirectional Long short-term memory 

PGAN Personalized GAN  

PPG Photoplethysmography 

WST Wavelet Scattering transform  

HR Heart rate 

TD Time domain 

𝑅𝑒𝐿𝑈 Rectified Linear Unit 

 

Subscripts 

 

𝑤𝑝,𝑞  Convolutional filter's kernel size of 𝑃 × 𝑄 

ℎ⃗ 𝑡  Forward hidden sequences 

ℎ⃖⃗𝑡  Backward hidden sequences 

 
 

260




