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Task scheduling in cloud computing represents a pivotal challenge, necessitating the 

efficient allocation of computing tasks to available resources. This challenge is crucial in 

diverse sectors such as e-commerce, e-learning, and e-health, and is compounded by the 

heterogeneity of tasks and resources, fluctuating demands, and the need to optimize multiple 

objectives like Makespan, resource utilization, and throughput. In the quest to resolve these 

complexities, meta-heuristic algorithms inspired by natural phenomena have gained 

prominence. Among them, the Tuna Swarm Optimization (TSO) algorithm stands out for 

its proficient ability to navigate and exploit the search space effectively. This paper 

introduces a novel algorithm, the Discrete Tuna Swarm Optimization for Task Scheduling 

(DTSO-TS), derived from the TSO algorithm. DTSO-TS algorithm's goal is to efficiently 

distribute tasks among virtual machines, balance workloads and improve resource 

utilization to minimize Makespan while increasing throughput. A fitness function provides 

optimal solutions to this goal. Creates a swarm before evaluating and refining solutions 

which have proven their worth. By contrasting it with well-known scheduling algorithms 

such as Ant-Colony-Based, Particle Swarm Optimisation, Genetic Algorithm, First Come 

First Serve, Round Robin, and Shortest Job First, we may evaluate DTSO-TS's 

effectiveness. According to the comparison results, DTSO-TS is the best option for 

scheduling tasks in cloud computing contexts. 
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1. INTRODUCTION

Cloud computing, often recognized as an innovative 

computer model, enables organizations to access an on-

demand pool of computing resources while only paying for 

what they use [1]. This model offers many benefits, such as 

instant resource availability and cost efficiency. However, one 

major challenge encountered by organizations today is task 

scheduling: the efficient allocation of resources to tasks that is 

termed task allocation. Task scheduling in cloud computing, 

essential to efficiently allocating computing resources [2, 3], 

strives to maximize Makespan, energy consumption and 

resource utilization metrics. Due to cloud environments' 

dynamic environments and multiple possible task/resource 

allocation scenarios, its difficulty makes this challenge an NP-

hard problem [4], which must be met efficiently if optimal 

performance metrics are to be attained. 

Recently, studies have found evidence that inefficient task 

scheduling in cloud computing can negatively impact 

performance efficiency and drastically increase resource use 

[5]. The suboptimal allocation of tasks using traditional 

scheduling strategies such as First Come First Served (FCFS), 

Round Robin (RR) and Shortest Job First (SJF) has proven 

insufficient for dynamic cloud environments [6]. These linear 

optimization approaches often lack scalability and fail to 

deliver satisfactory results. Metaheuristic algorithms are 

becoming widely sought after due to their ability to quickly 

search complex spaces for near-optimal solutions within 

realistic timeframes [7], including the Bat Algorithm (BA) [8], 

Grey Wolf Optimization (GWO) [9], Ant Colony 

Optimization (ACO) [10], Dragonfly Algorithm (DA) [11], 

Genetic Algorithm (GA) [12], Artificial Bee Colony (ABC) 

[13], and Particle Swarm Optimization (PSO) [14]. 

Nonetheless, some metaheuristics may require high 

computational complexity or exhibit poor performance. 

This study introduces the DTSO-TS algorithm based on 

tuna swarm intelligence systems designed explicitly for 

discrete task-scheduling aimed at attaining optimal metrics 

like Makespan Resource utilization. Throughput response 

time average waiting period with an emphasis placed on Cloud 

Computing settings. 

The performance of the DTSO-TS algorithm was evaluated 

in simulations using the CloudSim simulator [15]. The AC-

based algorithm [16], PSO [17], GA-based load balancing [18], 

FCFS, RR and SJF were established scheduling algorithms 

used for comparison purposes. Evaluations were focused on 

several metrics such as Makespan, resource utilization, 

response time throughput time average waiting times. Results 

showed that the DTSO-TS algorithm outperformed its 

counterparts by achieving higher throughput times while 

optimizing Makespan and maintaining low response times and 

average waiting times. This work introduces the DTSO-TS 

algorithm, filling a crucial research gap in efficient task 

scheduling methods for cloud computing environments. 
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Deployment of this algorithm in such environments aims to 

produce significant gains across various performance metrics; 

its efficacy against competing scheduling algorithms was 

tested through simulations to provide an evaluation. 

To facilitate comprehension, this study employs various 

performance metrics that are commonly utilized when 

assessing task scheduling algorithms in cloud computing. 

These performance metrics include: 

 

• Makespan: This metric gauges the total time 

required to complete all tasks and reducing it is a 

prime objective of task scheduling [19]. 

 

• Resource Utilization: The percentage of resources 

used at any given moment indicates system 

efficiency. Higher resource utilization enables 

more tasks to be completed with limited resources 

[20]. 

 

• Response Time: Referring to the duration between 

task assignment and execution initiation as well as 

user delays, minimizing response time improves 

system efficiencies by decreasing user waiting 

periods [19]. 

 

• Throughput: Measuring successful task completion 

rate during a defined timeframe, higher throughput 

leads to an improved processing quality of more 

assignments within said period for better system 

efficacy [21]. 

 

• Average Waiting Time (AWT): AWT conveys 

how long each job waits before getting assigned its 

respective allocation; curtailing average wait times 

can decrease overall workload completion 

durations while improving equitable allocation 

distribution among available resources [22]. 

 

The paper's organization includes Section 2 offering 

insights into literature review on cloud computing task 

schedules outlining research gaps pertinent towards 

motivations behind carrying out our work. This article also 

discusses TSO algorithm in Section 3 alongside problem 

formulation regarding DTSO-TS technique described 

extensively under Section 4. In Sections 5-6, the 

implementation design choices combined with simulation 

results & evaluations' coverage involving existing approach 

comparisons precedes concluding remarks highlighting 

contributions made whilst discussing future directions 

impacting further related studies. 

 

 

2. RELATED WORK 

 

Task scheduling is a crucial element of cloud computing 

that plays an important role in performance and efficiency. 

This process involves assigning tasks to available resources 

like virtual machines or physical servers, while considering 

various constraints such as minimizing execution time, 

maximizing resource utilization and reducing energy 

consumption. 

To address these complexities, Meta-heuristic algorithms 

offer an effective solution to these complexities, such as 

genetic algorithms, particle swarm optimization and simulated 

annealing. These powerful optimization techniques use 

iterative exploration of solution spaces with iterative refining 

according to heuristic rules to find near-optimal solutions in 

complex optimization situations. Their success relies on 

proper problem formulation and parameter selection. 

Over the years there has been extensive research aimed at 

incorporating these meta-heuristics into task scheduling within 

Cloud Computing environments. Sefati et al. [23] utilized 

Grey Wolf Optimization Algorithm (GWO), known for 

improving resource search costs and response times while 

being computationally intensive for complex tasks; Mishra 

and Majhi [24] implemented Bird Search Optimization 

Algorithm (BSO), famous for web balancing capabilities but 

which also tends to be computationally heavy and slow to 

converge. 

Ebadifard et al. [25] presented a dynamic approach using 

the honeybee algorithm to improve load balancing and 

reliability in cloud computing systems; this may not be 

suitable for larger systems due to computational demands. 

Devaraj et al. [26] developed the FIMPSO algorithm, 

combining firefly technique with Improved Multi-Objective 

Particle Swarm Optimization (IMPSO), to optimize resource 

usage and task response times. 

Latchoumi and Parthiban [27] presented the Quasi 

Oppositional Dragonfly Algorithm for Load Balancing 

(QODA-LB), which showed optimal efficiency. The ABC 

algorithm, mentioned by Ullah et al. [13], succeeded in 

balancing loads by managing resource allocation to tasks. 

However, its performance varied significantly based on the 

nature of the optimization problem. Singh et al. [28] 

introduced a crow search inspired metaheuristic algorithm for 

load balancing that optimized resources and performed well 

against other techniques like Ant Colony Optimization-based 

Load Balancing Algorithm (ACOLBA). Mangalampalli et al. 

[29] proposed the Whale Optimization Algorithm (WOA) for 

task scheduling, focusing on power cost and energy 

consumption aspects. 

Ebadifard and Babamir [17] combined PSO with a load-

balancing technique, resulting in improved resource utilization 

and system response time. Raj et al. [8] integrated Min-Min, 

Max-Min, and Alpha-Beta pruning methods within their Bat 

algorithm for task scheduling, optimizing execution time.  

Yakhchi et al. [30] introduced a model utilizing the Cuckoo 

Optimization Algorithm (COA) for energy saving in cloud 

computing infrastructures. Dasgupta et al. [18] advocated a 

GA-based approach for load balancing in cloud computing 

systems, using natural selection principles to improve 

solutions over generations. Another study by Guo [16] focused 

on a Multi-objective Optimization Algorithm for Cloud 

Computing Task Scheduling based on an Improved Ant 

Colony Algorithm (MO-ACO), excelling under certain 

conditions but requiring careful parameter tuning to avoid 

slow convergence. 

Table 1 presents a summarized comparison of the various 

algorithms discussed for task scheduling in cloud computing 

environments. This table is instrumental in providing 

researchers and practitioners with a concise overview of the 

strengths and limitations of each algorithm. 
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Table 1. Advantages and limitations of optimization algorithms for task scheduling in cloud computing 

 
Algorithm 

Category 
Algorithm Advantages Limitations Objective 

Nature-inspired 

Algorithms 

Gray Wolf 

Optimization [23] 

Improved response time, Identifies 

unemployed/occupied nodes 

Complex, may require more 

resources, may not converge 

optimally 

Load balancing 

Binary Search 

Optimization [24] 

Simple, easy to implement, good 

convergence properties 

Computationally expensive, slow to 

converge 

Task-resource allocation 

optimization 

Honeybee 

Algorithm [25] 

Enhanced load balancing, 

incorporates fault tolerance 

Computationally expensive, not 

suitable for large-scale problems 

Load balancing and 

reliability 

Artificial Bee 

Colony [13] 

Excellent performance in load 

balancing 

Effectiveness relies on problem 

characteristics and formulation 

Load balancing, resource 

allocation 

WOA [29] 
Reduced energy consumption and 

power costs 

Slow convergence, may get trapped 

in local optima 

Task scheduling, 

minimizing energy 

consumption 

Enhanced Bat 

Algorithm [8] 

Improved task allocation, reduced 

execution time 

Higher processing time with the 

Alpha-Beta pruning method 

Task scheduling, load 

balancing 

COA [30] 
Simplicity, ease of implementation, 

good convergence properties 

Difficulties in fine-tuning may 

struggle with complex problems 

Energy conservation, load 

balancing 

PSO-LB [17] 

Improved resource utilization, 

performance, response time, and 

system balance 

Complexity in combining PSO and 

load balancing, may not always 

yield optimal solutions 

Task scheduling, load 

balancing, and 

performance enhancement 

MO-ACO [16] 

Adaptable, manages a large number 

of tasks, better makespan, and 

utilization 

Requires careful parameter tuning, 

and may have slow convergence in 

scenarios 

Task scheduling, 

minimizing makespan and 

costs 

Hybrid Algorithms FIMPSO [26] 
Improved resource usage, reduced 

response time, better reliability 

Increased complexity, may not 

guarantee an optimal solution 

Performance enhancement, 

load balancing 

Opposition-based 

Learning 

Algorithms 

QODA-LB [27] 
Efficient load balancing, optimal 

resource scheduling 

Computational overhead, may not 

always yield a better global optimal 

solution 

Load balancing efficiency 

Search-based 

Algorithms 
CSLBA [28] 

Optimizes power consumption, cost, 

and data center loading 

Real-world effectiveness and 

scalability not explored 
Task-to-resource mapping 

Genetic 

Algorithms 

Genetic 

Algorithm [18] 

Better performance compared to 

other strategies 

Requires careful parameter tuning, 

may have slow convergence 
Load balancing 

 

 

3. TSO ALGORITHM 

 

The tuna have an incredible hydraulic control system in 

their fins that allows them to move very quickly and with great 

precision [7]. Its two main modes of pursuit hunting (spiral 

foraging and parabolic foraging) involve tuna groups 

swimming in spiral motion around the prey to ensure that it is 

herded into short waters so that they can attack it more easily 

or making parabolic movements while surrounding their prey 

on either side. 

The Tuna Swarm Optimization (TSO) algorithm, based on 

the tuna foraging mechanism, applies swarm intelligence to 

search for a solution. Spiral and parabolic foraging patterns 

correspond to search strategies in solution spaces--just like the 

tuna of a school would adjust their formation to surround the 

prey fish. 

In comparison to other swarm-based algorithms, the major 

advantages of TSO lie in its strength at escaping local optima, 

which gives it a decisive lead over competitive methods with 

respect to dealing with complex optimization problems. In 

addition, it is less fussy about parameters than others. Tuning 

for any particular problem is easy. 

The TSO algorithm mimics the foraging behavior of tuna to 

guide its search for solutions. Here's an overview of its 

workings: 

• Initialization: Each element in the population of solutions 

that the algorithm generates represents one potential solution 

to the problem. So, the solutions for each problem are treated 

like a school of tuna. 

• Spiral Foraging Behavior: In this phase, tuna swim in an 

undulating spiral formation in order to explore their solution 

space and potentially avoid local optima. This behavior has 

proven particularly useful when trying to escape local optima. 

• Parabolic Foraging Behavior: Tuna fish swim in an 

upward trajectory in order to encase their prey, using this 

behavior in an algorithmic context to take advantage of 

promising areas within its solution space. 

• Update Positions: The foraging activities are related to 

the updating of the tuna (solutions) positions. This is done to 

attract the swarm upwards, towards the best solutions found so 

far. 

• Termination: Once the algorithm reaches an agreed-upon 

stopping requirement - such as maximum iterations count or 

suitable solution - it stops. 

We begin by setting up the tuna’s population. The algorithm 

then immediately produces a group of solutions that each 

represent one 'tuna', in our group? In addition, we choose 

values for parameters a and z, which are used to regulate such 

things as how fast the algorithms converge, the so long sought 

after optimal ratio between exploring new solutions in each 

generation vs. exploiting those already discovered, and just 

how much weight is given to the best so far found solution. 

Calculate the tunas' fitness values: The fitness function is 

used to assess the fitness of each solution (tuna) in the 

population. Then, the most effective solution is chosen. 

Update the global best solution 𝐗best
𝑡 : The best solution 

found so far in the population is updated. This solution has the 

highest fitness value. 

Update variables α1, α2, and p: These variables are updated 

for each tuna in the population. They are used to control the 
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movement of the tunas in the solution space. 

Update the tuna’s position using Eqs. (1)-(3) or Eq. (4): The 

position of each tuna in the solution space is updated based on 

one of four equations. The choice of the equation depends on 

the values of rand (a random number), z, and the ratio 
𝑡

𝑡𝑚𝑎𝑥
 

(current iteration number over maximum iteration number). 

These equations model the foraging behaviors of tuna and 

guide the search for solutions. 

Increment t by 1: The iteration counter t is incremented by 

1. 

Return the best individual 𝐗best
𝑡  and its fitness value 

𝐹(𝐗best
𝑡 ) : Once the stopping criterion is met (e.g., the 

maximum number of iterations reached), the algorithm returns 

the best solution found and its fitness value.  

The parameter 𝑡 denotes the number of the current iteration, 

and tmax is the maximum number of iterations that the 

optimization process is allowed to run. 

The parameter b is a random number uniformly distributed 

between 0 and 1. In the TSO algorithm, b plays a crucial role 

in determining the search process’s direction, as it is used to 

calculate the parameter β (see Eq. (8)). This introduces 

randomness into the search process, contributing to the 

exploration and exploitation balance of the algorithm. 

In the Tuna Swarm Optimization (TSO) algorithm, rand is 

a variable whose usual definition is to generate random 

number in the range 0-1. As a means of adding randomness 

and diversity into the algorithm, it is employed in several 

places throughout to promote an exploratory approach to 

solution space. 

𝐗best
𝑡 : The "best" individual in the population at ith 

generation. 

𝑋rand
𝑡 : An arbitrary individual from the population at ith 

generation. One of the update rules used by the TSO uses this 

individual to inject randomness and diversity into search. 

𝐗𝑖
𝑡: The ith individual of the population at the ith generation. 

𝐗𝑖−1
𝑡 : The (i-1)th, or previous, particle of the population at 

the ith generation. 

In general, the overall design of the Tuna Swarm 

Optimization (TSO) algorithm --modeling the behavioral 

realities of foraging tuna--represents an entirely different 

methodological perspective on problems. This approach is 

truly an ideal way to strike a balance between exploring and 

exploiting. That's really the key to solving large-scale 

optimization problems. It’s all due to the unusual foraging 

behavior of this algorithm, which prevents it from falling into 

local optima-thereby increasing the chances of finding a global 

optimum. Because it has very few parameters to adjust, unlike 

other types of algorithms, it is easier to use and customize for 

any given problem. The TSO algorithm can be used for a broad 

scope of problems, from continuous optimization to fully 

discrete or combinatorial problems. It also has a fast 

convergence speed, requiring less recharging to produce good 

solutions. Such advantages are sufficient to make the TSO 

algorithm an extremely useful tool for resolving difficult 

optimization problems. 
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Algorithm 1: The Tuna Swarm Optimization Algorithm 

1: Initialize the population of tunas and set free parameters a and z 

2: While t<tmax do 

3:  Calculate the fitness values of the tunas 

4:  Update the global best solution Xbest 

5:  For each tuna in the population do 

6:   Update variables α1, α2, and p 

7:   if rand<z then 

8:    Update the tuna’s position using Eq. (1) 

9:   else if rand≥z then 

10:   if rand<0.5 then 

11:   if 
𝑡

𝑡𝑚𝑎𝑥
< 𝑟𝑎𝑛𝑑 then 

12:   Update the tuna’s position using Eq. (3) 

13:   else if 
𝑡

𝑡𝑚𝑎𝑥
≥ 𝑟𝑎𝑛𝑑 then 

14:   Update the tuna’s position using Eq. (2) 

15:   end if 

16:   else if rand≥0.5 then 

17:   Update the tuna’s position using Eq. (4) 

18:   end if 

19:   end if 

20:  end for 
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21:  Increment t by 1 

22:  end while 

23:  return the best individual Xbest and its fitness value F(Xbest) 

 

 

4. PROBLEM FORMULATION  
 

This task scheduling algorithm is inspired by TSO; tuna 

fishes symbolize how tasks should be allocated across 

resources in this algorithm. This algorithm seeks to maximize 

virtual machine allocations for tasks, balance workload 

distribution and improve resource use while simultaneously 

minimizing Makespan and increasing throughput. To achieve 

this, the algorithm utilizes a school of tuna fish to explore 

various combinations of task and virtual machine allocations 

until finding one with optimal fitness value. Our task 

scheduling algorithm monitors Makespan, Throughput and 

Resource Utilization metrics of virtual machines on an 

ongoing basis in order to maintain an optimum solution. By 

employing TSO algorithms that consider both Makespan and 

Resource Usage Metrics our task scheduling algorithm can 

effectively balance workload distribution while increasing 

resource use in cloud environments. 

The optimization problem involves scheduling a set of tasks 

(T1, T2, T3, …, Tn) on a set of virtual machines (VM1, VM2, 

VM3, …, VMm). 

The processing (execution) time of the task Ti on VMj is 

represented by ETij, and the completion time of VMj is 

represented by CTj. 

In task scheduling: 

Makespan: is the total time required to complete all tasks. 

It is the maximum completion time among all tasks, i.e., the 

time at which the last task is completed. 

Throughput: is the number of tasks that can be completed 

in a given time. A higher throughput means more tasks are 

being completed, leading to better resource utilization. 

Completion time: refers to the time at which a specific task 

or set of tasks is completed. 

Reducing task completion time means increasing 

throughput; shorter completion times enable more tasks to be 

accomplished in any given period of time. Cloud computing 

environments present particular challenges when trying to 

process multiple tasks as rapidly as possible to maximize 

resource use and efficiency. This becomes even more essential 

with regard to cloud environments where speed of execution 

often is of the utmost importance in meeting organizational 

goals and optimizing resource usage and utilization. 

Throughput can provide an insightful measure of task 

scheduling algorithm performance; however, its complex 

mathematical properties make it challenging to use as the 

target objective in fitness function optimization models. 

Commonly used fitness functions aim for completion time as 

the objective, since this provides a more direct measure of an 

algorithm's overall performance. By optimizing task 

scheduling to reduce completion times efficiently and increase 

throughput to increase resource utilization. This approach 

leads to enhanced resource utilisation and efficiency within 

cloud services environments. 

The objective of the optimization problem is to minimize 

the overall Makespan, which is defined by Eq. (10) while 

maximizing the resource utilization, as defined by Eq. (11), 

and minimizing total competition time, which is defined by Eq. 

(12). 
 

(max { {1,2, , })jMakespan CT j m= =   (10) 
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Total CT CT
=
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The average utilization is defined by Eq. (13).  
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4.1 Multi-Objective Function 

 

Eq. (14) defines the fitness function for our algorithm and 

determines its overall quality by measuring how well particle 

positions (i.e., task allocation to virtual machines) meet 

specific objectives such as minimising Makespan, optimizing 

resource utilization and decreasing total completion time. We 

utilize a weighted sum approach where each objective receives 

weight according to its importance in solving our problem 

context. 

 

1

2 3

Fitness w Makespan

w Averageutilization w TotalCT

=  +

 + 
 (14) 

 

In Eq. (14), w1, w2, and w3 are the weights assigned to 

Makespan, average utilization, and total completion time, 

respectively. These weights are normalized so that 

w1+w2+w3=1. The weights can be adjusted depending on the 

priorities of the specific cloud computing environment. For 

example, in a scenario where minimizing Makespan is more 

important, a higher weight can be assigned to w1. 

For example, in scenarios in which resource utilization is 

prioritized over minimizing total completion time, assigning 

more weight to w2 would ensure that solutions that maximize 

resource utilization would receive priority from the algorithm. 

Vice versa; assign more weight to w3, should this become 

important. 

Overall, the fitness function aims to reduce fitness value; 

thus a particle with lower fitness value would be considered 

more ideally situated. Furthermore, an optimization algorithm 

seeks out particle with the lowest fitness value to find its 

counterpart as part of an ideal scheduling of virtual machines 

tasks. 

The proposed task scheduling algorithm is inspired by TSO 

algorithm, where tuna fish symbolize task assignment to 

resources. The algorithm seeks to allocate tasks efficiently 

across virtual machines, balance workload and improve 

resource usage while minimizing Makespan and maximizing 

Throughput. To accomplish this task, the algorithm employs a 

swarm of tuna fish as part of its search for optimal 

combinations for task and virtual machine allocations based 

on fitness value. Our task scheduling algorithm uses our TSO 

algorithm and metrics such as Makespan and Resource 

Utilization Rate to monitor virtual machines' workload and 
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resource consumption and to allocate task accordingly to 

ensure an optimum solution in cloud computing environments. 

By taking into account both metrics, our task scheduling 

solution effectively balances workload while increasing 

resource utilization rates in our cloud environment. 

 

4.2 Demonstration example 

 

In this example, there are 6 tasks and 3 virtual machines, 

with each task having a length and each virtual machine 

having a speed processing Millions of Instructions Per Second 

(MIPS). The execution time of each task on each virtual 

machine is given in Table 2, and is calculated as follows in Eq. 

(15): 

 
( )

( ) ( )
( )

( )*

i i

ij

j j j

L T SI T
ET

S VM Pe VM BW VM
= +

 
(15) 

 

where, L(Ti): The length of the Taski in MIPS; S(VMj): The 

speed of the virtual machine (VMj) in MIPS; Pe(VMj)): The 

number of processors (cores) of the virtual machine (VMj)); 

SI(Ti): The file size of the Taski; BW(VMj): The bandwidth of 

the virtual machine (VMj).  

In this case, and for ease of calculation, we take the number 

of processors=1, the task file size=1, and the virtual machine's 

bandwidth=1). The execution time of Task 1 on VM 1 is 

calculated as follows: Execution time on 

VM1=(600/1000)=0.6 Similarly, the execution time of each 

task on each virtual machine can be calculated based on the 

given information. 

The completion time of each virtual machine is calculated 

based on the execution time of the tasks assigned to it , as 

illustrated in Table 3. Simultaneously, the utilization of each 

virtual machine is calculated by Eq. (11). For example, the 

completion time of Virtual Machine 1 is calculated as follows: 

Completion time of Virtual Machine1=Execution time of 

Task1+Execution time of Task6=0.6+0.6=1.2. 

For this vector, the fitness function is calculated based on 

Eq. (14): Fitnessfunction=(γ ⋅ (0.8+0.86+1))+(δ ⋅

(1.2+1.3+1.5))+((1-γ-δ) ⋅ 1.5)=0.3 ⋅ (2.66)+0.3 ⋅ (4)+0.4 ⋅
(1.5)=2.56. 

 

Table 2. Execution time of tasks on VMs 

 
 Task 1: 600 Task 2: 450 Task 3: 1000 Task 4: 1500 Task 5: 2000 Task 6: 6000 

VM1: 1000 0.6 0.45 1 1.5 2 0.6 

VM2: 1500 0.4 0.3 0.66 1 1.33 0.4 

VM3: 2000 0.3 0.22 0.5 0.75 1 0.3 

 

Table 3. Completion time and utilization of each VM 

 
Machines Assigned Tasks Completion Time Utilization 

VM1 Task1, Task6 0.6+0.6=1.2 1.2/1.5=0.8 

VM2 Task2, Task4 1.0+1.3=1.3 1.3/1.5=0.86 

VM3 Task3, Task5 0.5+1=1.5 1.5/1.5 =1 

 

 
5. THE PROPOSED DTSO-TS 

 

In the TSO algorithm, the position of particles is typically 

updated using Eqs. (2,3, and 4). This results in floating point 

values in the continuous domain. However, in some cases, it 

may be desirable to maintain the stochastic nature of the TSO 

algorithm while working with discrete values. To achieve this, 

new operators are introduced to modify the equations used to 

update the position of particles. This results in a new position 

that is a discrete value rather than a continuous value. This 

modification allows the algorithm to retain its stochastic 

nature while working with discrete values, which may be more 

appropriate for certain problem domains or optimization task 

scheduling. 

Eq. (1) remains unchanged. Eq. (2) is modified by the 

inclusion of Eq. (16). Eq. (3) is also modified, this time by the 

inclusion of Eq. (17). Finally, Eq. (4) is modified through the 

addition of Eq. (18). 

New operators are also defined as follows: 

(1) The ⊛  operator between a vector and a percentage 

parameter value returns a new vector where a certain 

percentage of the elements in the original vector have been 

randomly swapped. 

(2) The ⊝ operator between two vectors returns a new 

vector that combines elements from the two vectors. If the 

element at a given index in the two vectors is the same, the 

combined vector will contain either a random element from 

the first vector or a random element from the second vector. If 

the elements at a given index are different, the combined 

vector will contain either the element from the first vector or 

the element from the second vector, chosen randomly. 

(3) The ⊕  operator between two vectors returns a new 

vector that combines elements from the two vectors. The new 

vector will contain the first half of the elements from the first 

vector and the second half of the elements from the second 

vector.  

From the previous example given in Table 4, the vector 

<1,2,3,2,3,1> represents the same allocation of tasks to virtual 

machines: {(Task 1:VM 1), (Task 2:VM 2), (Task 3:VM 3), 

(Task 4:VM 2), (Task 5:VM 3), (Task 6:VM 1)} 
 

Table 4. The random allocation of tasks on VMs 
 

Task1 Task2 Task3 Task4 Task5 Task6 

VM1 VM2 VM3 VM2 VM3 VM1 

 

• ⊛ operator with parameter equal to 0.5: 

If the ⊛ operator is applied to the vector <1,2,3,2,3,1> with 

a parameter equal to 0.5 , the resulting vector might be 

<2,1,3,2,3,1> if the elements at indices 1 and 2 are swapped, 

or it might be <1,3,3,2,3,1> if the elements at indices 2 and 3 

are swapped. 

• ⊝ operator with another vector <1,2,1,1,3,2>:  

If the ⊝ operator is applied to the vectors <1,2,3,2,3,1> and 
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<1,2,1,1,3,2>, the resulting vector might be <1,2,3,1,3,1> if 

the elements at indices 3 and 4 are combined, or it might be 

<1,2,1,1,3,1> if the elements at indices 4 and 5 are combined. 

• ⊕ operator with another vector <3,2,2,2,1,1>:  

The resulting vector will be <1,2,2,2,1,1>. 

 
5.1 The DTSO-TS algorithm 

 

In this section, we introduce how the discrete version of 

DTSO-TS is applied to allow task scheduling in cloud 

computing.  

The DTSO-TS algorithm iteratively improves the allocation 

of tasks to virtual machines based on the defined fitness 

function. It explores different combinations of task and virtual 

machine allocations to find the best possible solution. The 

algorithm ensures the optimization of task scheduling in cloud 

computing environments. The DTSO-TS algorithm retains the 

stochastic nature of the TSO algorithm while working with 

discrete values, which may be more appropriate for certain 

problem domains or optimization task scheduling. The 

algorithm uses new operators to modify the equations used to 

update the position of particles, resulting in a new position that 

is a discrete value rather than a continuous value. This 

modification allows the algorithm to effectively explore 

different combinations of task and virtual machine allocations 

and find the optimal solution to the task scheduling problem. 

 
Algorithm 2: The Discrete Tuna Swarm Optimization Algorithm for Task Scheduling 

1: Step 1: Initialize the population of tunas (tasks) and set free parameters 𝑎 and 𝑧 

2: Step 2: Generate the initial allocation vector for each tuna (task to a VM) using Eq. (1) 

3: Step 3: Calculate the fitness value of the initial allocation vector using the objective function with Eq. (9) 

4: While t<tmax do /*Step 9:Repeat until maximum iterations*/ 

5:  Calculate the fitness values for each allocation of tasks to VMs 

6:  Update the global best solution Xbest 

7:  For each tuna (task) in the population do 

8:   Update variables α1, α2, and p 

9:   if rand<z then /*Step 4: Update position with rules of DTSO-TS*/ 

10:    Update the allocation of the task to VMs using Eq. (1) 

11:   else if rand≥z then 

12:   if rand<0.5 then 

13:   if 
𝑡

𝑡𝑚𝑎𝑥
< 𝑟𝑎𝑛𝑑 then 

14:   Update the allocation of the task to VMs using Eq. (17) 

15:   else if 
𝑡

𝑡𝑚𝑎𝑥
≥ 𝑟𝑎𝑛𝑑 then 

16:   Update the allocation of the task to VMs using Eq. (16)  

17:   end if 

18:   else if rand≥0.5 then 

19:   Update the allocation of the task to VMs using Eq. (18) 

20:   end if 

21:   end if 

22:  end for 

23:  Step 5: Update the allocation vector based on the new allocations of tasks to VMs 

24:  Step 6: Re-assign the tasks to the VMs according to the updated allocation vector 

25:  Step 7: Calculate the fitness value of the updated allocation vector 

26:  Step 8: If the fitness value of the updated allocation vector is better than the previous one, update Xbest and F(Xbest) 

27:  Increment 𝑡 by 1 

28:  end while 

29:  Step 10: return the best allocation vector Xbest and its fitness value F(Xbest) 

 

This process (Algorithm 2) can be explained in the 

following steps: 

Step 1. Initialize the population of tuna fish, representing 

the allocation of the tasks to the virtual machines. 

Step2. Generate the initial allocation vector, which assigns 

each task to a virtual machine based on the id of the virtual 

machine using Eq. (1): The id of each virtual machine is a 

number between 1 and the number of virtual machines. 

Step3. Calculate the fitness value of the initial allocation 

vector using the objective function using Eq. (9). 

Step 4. Update the position of each tuna fish according to 

the rules of the DTSO-TS algorithm (using the new operators 

⊛, ⊝ and ⊕). 

Using these new operators, the updated positions of the tuna 

fish will stay within the search space and remain within the 

defined district values, allowing the algorithm to effectively 

explore different combinations of task and virtual machine 

allocations and find the optimal solution to the task scheduling 

problem. 

Step5. Update the allocation vector based on the new 

positions of the tuna fish. 

Step6. Re-assign the tasks to the virtual machines according 

to the updated allocation vector. 

Step7. Calculate the fitness value of the updated allocation 

vector. 

Step 8. If the fitness value of the updated allocation vector 

is better than the previous one, update the best position and 

best fitness value for each tuna fish. 

Step 9. Repeat steps 4-8 for a predefined number of 

iterations. 

Step 10. Return the final allocation vector as the solution to 

the task scheduling problem. 

The algorithm ensures the optimization of task scheduling 

in cloud computing environments by iteratively improving the 

allocation of tasks to virtual machines based on the defined 

fitness function. It explores different combinations of task and 

virtual machine allocations to find the best possible solution. 
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6. SIMULATION & DISCUSSION RESULTS 

 

CloudSim [15] is an experimental Java-based platform for 

cloud system modelling at a high level with the aim of 

efficiently simulating various aspects of their performance. In 

a simple and flexible environment, users can define what type 

of cloud resources--hosts, VMs, network pools and storage 

capacities or setting data center brokers, allocation policies for 

virtual machines (VMs), bandwidth provisions for RAM 

provisioning or any other necessary variables--are to be 

available in which instance. CloudSim provides one of the 

main advantages for cloud modeling: For example, users need 

not concern themselves with a company's infrastructure or 

services. Instead, they can concentrate on simulating their own 

clouds system [31]. CloudSim is an open-source, free platform 

that can be used to cost effectively and efficiently evaluate 

various cloud architecture models and strategies, including 

load balancing methods or resource allocation policies. In sum, 

they provide an invaluable method of testing proposed models 

by costing them. 

In this paper we tested our proposed DTSO-TS algorithm 

for a cloud computing environment using the CloudSim 

simulator. Three cloud data centers were set up, with three 

hosts in each center (see Table 5 for hardware specifications). 

These hosts were ready to run virtualization technology and 

share resources with 50 virtual machines (VMs). For each VM, 

it would select a speeds at random chosen from a list of values 

(100, 200, 300, 400, 500, 700, 1000). and use those to 

determine the number of instructions executed per second for 

the VM. Hosts and specifications (number of processors, 

bandwidth) are all different. Three hosts were used to run the 

VMs. The tasks vary in length and specifications from 400 to 

5000. The purpose of this simulation was to compare the 

effectiveness of the DTSO-TS algorithm with respect to 

Makespan, resource utilization, response time, throughput 

time and average waiting time. The results were compared 

with those provided by other scheduling algorithms to 

determine how well the DTSO-TS algorithm performed. 

We were able to assess the performance of this version of 

the DTSO-TS algorithm in a virtualized cloud services 

environment only by specifying appropriate simulation 

parameters and designing a suitable scenario based on existing 

literature. To examine the feasibility of the scale-up process, 

we graded up to 1000 tasks (the first scenario) and then 10000 

tasks (the second scenario). Hardware configurations were 

chosen to simulate a typical cloud data center architecture, 

with hardware running virtualization technology and sharing 

resources among many VMs. The different VM speeds were 

set to mimic the actual variation in resource capabilities in a 

real cloud environment. 

We run the DTSO-TS algorithm in comparison with several 

other algorithms, including FCFS (first come first serves), GA 

[18], MO-ACO [16], SJF, and LB-PSO [17]. The following 

metrics were used to evaluate the performance of the 

algorithms: Makespan, response time; throughput and average 

waiting time The results obtained from the simulations are 

presented in a series of graphs (Graph 1-10), showing a 

comparison between the DTSO-TS algorithm and other 

algorithms. 

 

Table 5. Hardware specifications of hosts 

 
Host 

Id 

Number of Pe 

(Cores) 

Processing Speed in 

MIPS 

RAM in 

GB 

1 4 7000 20 

2 2 5000 12 

3 1 3000 8 

 

6.1 First scenario 

 

In the first scenario, we increased the number of tasks from 

10 to 1000 and evaluated the results for each metric 

(Makespan, resource utilization, response time, throughput 

time, and average waiting time). 

Response time: Figure 1 shows the response time for 

different task scheduling algorithms with various numbers of 

tasks. The response time is defined as the time it takes for a 

task to be completed from the moment it is submitted to the 

system. Minimizing response time is important for ensuring 

efficient task execution and good performance in cloud 

computing systems. 

The DTSO-TS algorithm consistently had the lowest 

response time among the algorithms tested, with values 

ranging from 140.11 seconds for tasks of 10 to 5181.86 

seconds for tasks of 200. Hence, this suggests that the DTSO-

TS algorithm is able to carry out tasks in a shorter time than 

other algorithms. The highest response times were for tasks of 

10, from the FCFS, GA [18] and SJF algorithms, being 

respectively 419.50 seconds for tasks of 10 to 8626.72 seconds 

for tasks of 200. This implies that these algorithims move 

rather slowly, perhaps because of how they order and assign 

tasks. 

 

 
 

Figure 1. Response time comparison for different task 

scheduling algorithms 

 

Makespan: Figure 2 depicts Makespan for different task 

scheduling algorithms with various task counts. Reducing 

Makespan is key for optimizing use of resources and 

performance in cloud computing systems. The DTSO-TS 

algorithm displayed the lowest Makespan values across tasks 

of 10, 50, 100, 200, and 300; with values ranging from 9 

seconds for tasks of 10 up to 125 seconds for 300 tasks - 

evidence that it could complete tasks within shorter time 
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frames than other algorithms. MO-ACO [16], GA [18], and 

LB-PSO [17] algorithms had relatively low Makespan values 

for tasks 10-50 but much higher Makespan values when 

applied to 100 or higher tasks. This suggests that these 

algorithms may be more efficient at handling smaller numbers 

of tasks but may become less so as their workload increases. 

FCFS, RR and SJF algorithms had the highest Makespan 

values ranging from 45 seconds for tasks of 10 up to 13778.99 

seconds when dealing with 300 tasks. When dealing with 1000 

tasks however, only the DTSO-TS algorithm achieved a lower 

Makespan of 204 seconds than all of the other algorithms - 

suggesting it can complete tasks relatively rapidly even when 

faced with high task volumes. 

Throughput: Throughput can be defined as the number of 

tasks completed within a certain time period, and having high 

throughput is critical for optimizing resource utilization and 

increasing productivity within cloud computing systems. As 

illustrated by Figure 3, the DTSO-TS algorithm consistently 

had the highest throughput values for tasks 10, 50, and 100; its 

throughput values ranged from 0.75 to 4.14 tasks per second 

indicating its capability of handling multiple tasks quickly. 

MO-ACO [16] and LB-PSO [17] algorithms produced 

relatively high throughput values for tasks 10-50 but had lower 

throughput for 100+ tasks, whereas GA [18] and RR 

algorithms yielded low throughput values for all tasks, with 

values between 2.9-3.17 tasks per second. For 1000 tasks, the 

DTSO-TS algorithm had the highest throughput among all 

other algorithms at 5.99 tasks/second. This shows that it can 

complete more tasks more quickly compared to its 

counterparts. 

 
 

Figure 2. Makespan comparison 

 
 

Figure 3. Throughput 

Average waiting time: The AWT measures how long tasks 

spend waiting to be assigned a resource. Figure 4 clearly 

displays the results of our tests of various algorithms; among 

those tested, the DTSO-TS algorithm consistently had the 

lowest average waiting time ranging from 0.38 seconds for 

tasks of 10 up to 74.79 seconds when testing 1000 tasks. This 

indicates that the DTSO-TS algorithm can allocate tasks and 

resources more rapidly compared to other algorithms, with 

MO-ACO [16] and LB-PSO [17] having generally shorter 

waiting times compared with FCFS, GA [18], and SJF. FCFS, 

GA [18], and SJF algorithms had the highest average waiting 

times; values ranged from 0.75 seconds for tasks of 10 up to 

111.70 seconds when processing 1000 tasks. RR algorithms 

had particularly high average waiting times, ranging from 9.36 

seconds for tasks of 10 up to 1383.11 seconds for 1000 tasks. 

This suggests that these algorithms may take longer to assign 

tasks to resources; decreasing this average waiting time is 

crucial to speeding up workload execution times and 

improving resource fairness. 

 
 

Figure 4. AVG waiting time to resources 

 

Our simulations show that the DTSO-TS algorithm 

consistently outperformed the other algorithms regarding 

response time makespan throughput and average waiting time 

this suggests that the DTSO-TS algorithm is more efficient at 

scheduling tasks in a cloud computing environment the lower 

response time and makespan values indicate that the DTSO-

TS algorithm can complete tasks more quickly while the 

higher throughput values suggest that it can handle a larger 

number of tasks in a given time period. 

 

6.2 Second scenario 

 

In our second scenario, we increased the number of tasks 

from 1000 to 10000 and increased both hosts (9 total) and 

virtual machines (VMs), to 200 each in our simulation 

environment. This enabled us to further assess the efficiency 

of the DTSO-TS algorithm as well as assess its scalability in 

large-scale cloud computing environments. 

Figures 5-8 present the results of simulations showing how 

well the DTSO-TS algorithm performed for tasks of 10000 

with regard to response time, Makespan and AVG AVG 

waiting times as well as throughput value for all tested 

algorithms; its values being among the lowest of any algorithm 

tested; additionally, it had the highest throughput value among 

them all. Other algorithms like MO-ACO [16], GA [18], and 

LB-PSO [17] also achieved low values but lower throughput 
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values compared with that of DTSO-TS while the FCFS, RR, 

and SJF algorithms had relatively high values for response 

time, Makespan, and AVG waiting time and lower throughput 

values compared to the DTSO-TS algorithm. 

Total cost is a metric that measures the overall expense 

associated with performing all tasks within an environment, 

whether cloud computing or not. When used within cloud 

environments, total costs can vary based on factors like 

number of virtual machines deployed and amount of energy 

consumed to complete tasks. As demonstrated by Figure 9, our 

study revealed that DTSO-TS had the lowest total cost among 

all algorithms tested for task 10000 tasks; this indicated it to 

be relatively efficient with regards to resource utilization when 

compared to its counterparts. MO-ACO [16], GA [18], and 

LB-PSO [17] algorithms also had relatively low total cost 

values; FCFS, RR, and SJF algorithms exhibited higher costs; 

while overall the DTSO-TS algorithm displayed the least total 

costs among all algorithms tested; suggesting it as being most 

suitable to task scheduling in cloud environments. 

Figure 10 provides a comparative analysis of the Makespan, 

a performance metric in task scheduling that represents the 

total completion time of all tasks, for the LB-PSO [17] and 

DTSO-TS algorithms over various numbers of iterations (from 

10 to 100). 

In the case of the LB-PSO [17] algorithm, a clear downward 

trend is visible in the Makespan as the number of iterations 

increases. The values decrease from 364.97118 at 10 iterations 

to 292.13193 at 100 iterations. This suggests an improvement 

in efficiency with more iterations, indicating that the algorithm 

requires less time to complete tasks. However, it is noteworthy 

that the global minima, the point at which the algorithm is 

most efficient, is not reached until after 60 iterations. 

On the other hand, the DTSO-TS algorithm consistently 

shows lower Makespan values across all iteration counts, 

showing that it can complete tasks faster. Makespan for 

DTSO-TS decreases significantly from 174.78548 at 10 

iterations to 143.56733 after 100 iterations; its global minima 

can be achieved as early as the 30th iteration, and Makespan 

does not change significantly thereafter, suggesting it reaches 

optimal efficiency earlier than LB-PSO [17] algorithm. 

These observations demonstrate that the DTSO-TS 

algorithm outshone its counterpart, the LB-PSO [17], both in 

terms of Makespan values across all iteration counts tested, as 

well as reaching peak efficiency more quickly - evidence of its 

superior computational efficiency that makes it a sound choice 

regardless of iterations count. 

 

 
 

Figure 5. Comparison of response time 

 
 

Figure 6. Throughput 

 

 
 

Figure 7. Makespan 

 
 

Figure 8. AVG waiting time 

 

From a performance point of view, DTSO-TS algorithm 

was superior to all the other algorithms; it had the lowest 

response time, Makespan, average waiting time, and highest 

throughput of any. This indicates that it excels at scheduling 

tasks as well as optimizing resource use in cloud computing 

environments. Other algorithms also performed competitively 

but could not match its efficiency especially as task numbers 

increased. 
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Figure 9. Comparison of the total cost for 10000 tasks using 

various algorithms 

 

 
 

Figure 10. Depicts the convergence rate for both our 

proposed algorithm DTSO-TS and LB-PSO 

 

An analysis of convergence rate showed that the DTSO-TS 

algorithm achieved its maximum efficiency faster than any of 

the other algorithms; this means it quickly finds optimal 

solutions - essential in cloud computing environments where 

tasks must be scheduled and completed on schedule. 

 

 

7. CONCLUSIONS 

 

This paper proposes an innovative task scheduling approach 

in cloud computing environments using a discrete version of 

Tuna Swarm Optimization for Task Scheduling (DTSO-TS) 

algorithm. Our approach stands out from others by adhering to 

its core principles; specifically optimizing task allocation to 

virtual machines while improving various performance 

metrics is at its heart. 

Experimental validation demonstrates that the DTSO-TS 

algorithm significantly enhances workload balance and 

resource utilization, providing a competitive edge in cloud 

computing environments for task scheduling. With high 

throughput and resource utilization achieved by this algorithm, 

its high throughput directly impacts efficiency and 

performance metrics directly influencing cloud environments 

- leading to cost savings and enhanced service delivery. 

Note, however, that our current work makes certain 

assumptions which could alter its conclusions. For instance, 

we assume a stable cloud environment with no network 

failures or resource outages; real world implementations need 

to account for such factors. Looking ahead, we see an 

opportunity for further investigation of how changing random 

variable parameters impact DTSO-TS's performance. 

We also suggest exploring new problem formulations, 

techniques, and extensions to the DTSO-TS algorithm. A 

comparative study between the DTSO-TS and other bio-

inspired optimization algorithms for task scheduling could 

yield valuable insights, further driving the evolution of cloud 

computing environments. 

In conclusion, the DTSO-TS algorithm offers promising 

opportunities for implementation and further scrutiny within 

real-world contexts, reinforcing its applicability and potential 

impact on the field. 
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NOMENCLATURE 

 

TSO Tuna Swarm Optimization 

DTSO-TS 

Discrete Tuna Swarm Optimization for Task 

Scheduling) - A modified version of the TSO 

algorithm that works with discrete values, 

suitable for task scheduling problems. 

t Current iteration 

Xbest 
The best position (solution) found so far 

during the optimization process. 

Xrand 
A randomly selected position from the 

population. 

𝑋𝑖
𝑡  The position of the 𝑖-th tuna at time 𝑡 

tmax 
The maximum number of iterations allowed 

in the algorithm. 
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NP The number of particles in the population. 

w1 
Weight assigned to Makespan in the fitness 

function. 

w2 
Weight assigned to average utilization in the 

fitness function. 

w3 
Weight assigned to total completion time 

(Total CT) in the fitness function. 

TF 

A parameter used in Eq. (18) to adjust the 

influence of the global best position on the 

update of a particle’s position. 

⊛, ⊝, ⊕ 
New operators introduced in the DTSO-TS 

algorithm to handle discrete values and 

maintain the stochastic nature of the 

algorithm. 

p A random value between 0 and 1. 

 

Greek symbols 

 

α1, α2 

Tunable parameters that control the balance 

between exploration and exploitation in the 

algorithm. 

β 

A scaling factor applied to the difference 

between the best position and the current 

position. 
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