
Optimizing Task Scheduling in Cloud Computing Using Discrete Tuna Swarm Optimization

Abdeldjalil Ledmi* , Makhlouf Ledmi , Mohammed El Habib Souidi , Hichem Haouassi , Dalal Bardou

Department of Mathematics and Computer Science, ICOSI Lab, Abbes Laghrour University of Khenchela, Khenchela 40000,

Algeria

Corresponding Author Email: abdeldjalil.ledmi@univ-khenchela.dz

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290132 ABSTRACT

Received: 5 September 2023

Revised: 23 November 2023

Accepted: 5 December 2023

Available online: 27 February 2024

Task scheduling in cloud computing represents a pivotal challenge, necessitating the

efficient allocation of computing tasks to available resources. This challenge is crucial in

diverse sectors such as e-commerce, e-learning, and e-health, and is compounded by the

heterogeneity of tasks and resources, fluctuating demands, and the need to optimize multiple

objectives like Makespan, resource utilization, and throughput. In the quest to resolve these

complexities, meta-heuristic algorithms inspired by natural phenomena have gained

prominence. Among them, the Tuna Swarm Optimization (TSO) algorithm stands out for

its proficient ability to navigate and exploit the search space effectively. This paper

introduces a novel algorithm, the Discrete Tuna Swarm Optimization for Task Scheduling

(DTSO-TS), derived from the TSO algorithm. DTSO-TS algorithm's goal is to efficiently

distribute tasks among virtual machines, balance workloads and improve resource

utilization to minimize Makespan while increasing throughput. A fitness function provides

optimal solutions to this goal. Creates a swarm before evaluating and refining solutions

which have proven their worth. By contrasting it with well-known scheduling algorithms

such as Ant-Colony-Based, Particle Swarm Optimisation, Genetic Algorithm, First Come

First Serve, Round Robin, and Shortest Job First, we may evaluate DTSO-TS's

effectiveness. According to the comparison results, DTSO-TS is the best option for

scheduling tasks in cloud computing contexts.

Keywords:

cloud computing, task scheduling, Discrete

Tuna Swarm Optimization (DTSO), load

balancing, performance evaluation,

makespan, throughput time, average waiting

time

1. INTRODUCTION

Cloud computing, often recognized as an innovative

computer model, enables organizations to access an on-

demand pool of computing resources while only paying for

what they use [1]. This model offers many benefits, such as

instant resource availability and cost efficiency. However, one

major challenge encountered by organizations today is task

scheduling: the efficient allocation of resources to tasks that is

termed task allocation. Task scheduling in cloud computing,

essential to efficiently allocating computing resources [2, 3],

strives to maximize Makespan, energy consumption and

resource utilization metrics. Due to cloud environments'

dynamic environments and multiple possible task/resource

allocation scenarios, its difficulty makes this challenge an NP-

hard problem [4], which must be met efficiently if optimal

performance metrics are to be attained.

Recently, studies have found evidence that inefficient task

scheduling in cloud computing can negatively impact

performance efficiency and drastically increase resource use

[5]. The suboptimal allocation of tasks using traditional

scheduling strategies such as First Come First Served (FCFS),

Round Robin (RR) and Shortest Job First (SJF) has proven

insufficient for dynamic cloud environments [6]. These linear

optimization approaches often lack scalability and fail to

deliver satisfactory results. Metaheuristic algorithms are

becoming widely sought after due to their ability to quickly

search complex spaces for near-optimal solutions within

realistic timeframes [7], including the Bat Algorithm (BA) [8],

Grey Wolf Optimization (GWO) [9], Ant Colony

Optimization (ACO) [10], Dragonfly Algorithm (DA) [11],

Genetic Algorithm (GA) [12], Artificial Bee Colony (ABC)

[13], and Particle Swarm Optimization (PSO) [14].

Nonetheless, some metaheuristics may require high

computational complexity or exhibit poor performance.

This study introduces the DTSO-TS algorithm based on

tuna swarm intelligence systems designed explicitly for

discrete task-scheduling aimed at attaining optimal metrics

like Makespan Resource utilization. Throughput response

time average waiting period with an emphasis placed on Cloud

Computing settings.

The performance of the DTSO-TS algorithm was evaluated

in simulations using the CloudSim simulator [15]. The AC-

based algorithm [16], PSO [17], GA-based load balancing [18],

FCFS, RR and SJF were established scheduling algorithms

used for comparison purposes. Evaluations were focused on

several metrics such as Makespan, resource utilization,

response time throughput time average waiting times. Results

showed that the DTSO-TS algorithm outperformed its

counterparts by achieving higher throughput times while

optimizing Makespan and maintaining low response times and

average waiting times. This work introduces the DTSO-TS

algorithm, filling a crucial research gap in efficient task

scheduling methods for cloud computing environments.

Ingénierie des Systèmes d’Information
Vol. 29, No. 1, February, 2024, pp. 323-335

Journal homepage: http://iieta.org/journals/isi

323

https://orcid.org/0000-0002-3984-3238
https://orcid.org/0000-0002-3780-637X
https://orcid.org/0000-0002-7417-317X
https://orcid.org/0000-0001-8465-499X
https://orcid.org/0000-0002-9169-863X
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290132&domain=pdf

Deployment of this algorithm in such environments aims to

produce significant gains across various performance metrics;

its efficacy against competing scheduling algorithms was

tested through simulations to provide an evaluation.

To facilitate comprehension, this study employs various

performance metrics that are commonly utilized when

assessing task scheduling algorithms in cloud computing.

These performance metrics include:

• Makespan: This metric gauges the total time

required to complete all tasks and reducing it is a

prime objective of task scheduling [19].

• Resource Utilization: The percentage of resources

used at any given moment indicates system

efficiency. Higher resource utilization enables

more tasks to be completed with limited resources

[20].

• Response Time: Referring to the duration between

task assignment and execution initiation as well as

user delays, minimizing response time improves

system efficiencies by decreasing user waiting

periods [19].

• Throughput: Measuring successful task completion

rate during a defined timeframe, higher throughput

leads to an improved processing quality of more

assignments within said period for better system

efficacy [21].

• Average Waiting Time (AWT): AWT conveys

how long each job waits before getting assigned its

respective allocation; curtailing average wait times

can decrease overall workload completion

durations while improving equitable allocation

distribution among available resources [22].

The paper's organization includes Section 2 offering

insights into literature review on cloud computing task

schedules outlining research gaps pertinent towards

motivations behind carrying out our work. This article also

discusses TSO algorithm in Section 3 alongside problem

formulation regarding DTSO-TS technique described

extensively under Section 4. In Sections 5-6, the

implementation design choices combined with simulation

results & evaluations' coverage involving existing approach

comparisons precedes concluding remarks highlighting

contributions made whilst discussing future directions

impacting further related studies.

2. RELATED WORK

Task scheduling is a crucial element of cloud computing

that plays an important role in performance and efficiency.

This process involves assigning tasks to available resources

like virtual machines or physical servers, while considering

various constraints such as minimizing execution time,

maximizing resource utilization and reducing energy

consumption.

To address these complexities, Meta-heuristic algorithms

offer an effective solution to these complexities, such as

genetic algorithms, particle swarm optimization and simulated

annealing. These powerful optimization techniques use

iterative exploration of solution spaces with iterative refining

according to heuristic rules to find near-optimal solutions in

complex optimization situations. Their success relies on

proper problem formulation and parameter selection.

Over the years there has been extensive research aimed at

incorporating these meta-heuristics into task scheduling within

Cloud Computing environments. Sefati et al. [23] utilized

Grey Wolf Optimization Algorithm (GWO), known for

improving resource search costs and response times while

being computationally intensive for complex tasks; Mishra

and Majhi [24] implemented Bird Search Optimization

Algorithm (BSO), famous for web balancing capabilities but

which also tends to be computationally heavy and slow to

converge.

Ebadifard et al. [25] presented a dynamic approach using

the honeybee algorithm to improve load balancing and

reliability in cloud computing systems; this may not be

suitable for larger systems due to computational demands.

Devaraj et al. [26] developed the FIMPSO algorithm,

combining firefly technique with Improved Multi-Objective

Particle Swarm Optimization (IMPSO), to optimize resource

usage and task response times.

Latchoumi and Parthiban [27] presented the Quasi

Oppositional Dragonfly Algorithm for Load Balancing

(QODA-LB), which showed optimal efficiency. The ABC

algorithm, mentioned by Ullah et al. [13], succeeded in

balancing loads by managing resource allocation to tasks.

However, its performance varied significantly based on the

nature of the optimization problem. Singh et al. [28]

introduced a crow search inspired metaheuristic algorithm for

load balancing that optimized resources and performed well

against other techniques like Ant Colony Optimization-based

Load Balancing Algorithm (ACOLBA). Mangalampalli et al.

[29] proposed the Whale Optimization Algorithm (WOA) for

task scheduling, focusing on power cost and energy

consumption aspects.

Ebadifard and Babamir [17] combined PSO with a load-

balancing technique, resulting in improved resource utilization

and system response time. Raj et al. [8] integrated Min-Min,

Max-Min, and Alpha-Beta pruning methods within their Bat

algorithm for task scheduling, optimizing execution time.

Yakhchi et al. [30] introduced a model utilizing the Cuckoo

Optimization Algorithm (COA) for energy saving in cloud

computing infrastructures. Dasgupta et al. [18] advocated a

GA-based approach for load balancing in cloud computing

systems, using natural selection principles to improve

solutions over generations. Another study by Guo [16] focused

on a Multi-objective Optimization Algorithm for Cloud

Computing Task Scheduling based on an Improved Ant

Colony Algorithm (MO-ACO), excelling under certain

conditions but requiring careful parameter tuning to avoid

slow convergence.

Table 1 presents a summarized comparison of the various

algorithms discussed for task scheduling in cloud computing

environments. This table is instrumental in providing

researchers and practitioners with a concise overview of the

strengths and limitations of each algorithm.

324

Table 1. Advantages and limitations of optimization algorithms for task scheduling in cloud computing

Algorithm

Category
Algorithm Advantages Limitations Objective

Nature-inspired

Algorithms

Gray Wolf

Optimization [23]

Improved response time, Identifies

unemployed/occupied nodes

Complex, may require more

resources, may not converge

optimally

Load balancing

Binary Search

Optimization [24]

Simple, easy to implement, good

convergence properties

Computationally expensive, slow to

converge

Task-resource allocation

optimization

Honeybee

Algorithm [25]

Enhanced load balancing,

incorporates fault tolerance

Computationally expensive, not

suitable for large-scale problems

Load balancing and

reliability

Artificial Bee

Colony [13]

Excellent performance in load

balancing

Effectiveness relies on problem

characteristics and formulation

Load balancing, resource

allocation

WOA [29]
Reduced energy consumption and

power costs

Slow convergence, may get trapped

in local optima

Task scheduling,

minimizing energy

consumption

Enhanced Bat

Algorithm [8]

Improved task allocation, reduced

execution time

Higher processing time with the

Alpha-Beta pruning method

Task scheduling, load

balancing

COA [30]
Simplicity, ease of implementation,

good convergence properties

Difficulties in fine-tuning may

struggle with complex problems

Energy conservation, load

balancing

PSO-LB [17]

Improved resource utilization,

performance, response time, and

system balance

Complexity in combining PSO and

load balancing, may not always

yield optimal solutions

Task scheduling, load

balancing, and

performance enhancement

MO-ACO [16]

Adaptable, manages a large number

of tasks, better makespan, and

utilization

Requires careful parameter tuning,

and may have slow convergence in

scenarios

Task scheduling,

minimizing makespan and

costs

Hybrid Algorithms FIMPSO [26]
Improved resource usage, reduced

response time, better reliability

Increased complexity, may not

guarantee an optimal solution

Performance enhancement,

load balancing

Opposition-based

Learning

Algorithms

QODA-LB [27]
Efficient load balancing, optimal

resource scheduling

Computational overhead, may not

always yield a better global optimal

solution

Load balancing efficiency

Search-based

Algorithms
CSLBA [28]

Optimizes power consumption, cost,

and data center loading

Real-world effectiveness and

scalability not explored
Task-to-resource mapping

Genetic

Algorithms

Genetic

Algorithm [18]

Better performance compared to

other strategies

Requires careful parameter tuning,

may have slow convergence
Load balancing

3. TSO ALGORITHM

The tuna have an incredible hydraulic control system in

their fins that allows them to move very quickly and with great

precision [7]. Its two main modes of pursuit hunting (spiral

foraging and parabolic foraging) involve tuna groups

swimming in spiral motion around the prey to ensure that it is

herded into short waters so that they can attack it more easily

or making parabolic movements while surrounding their prey

on either side.

The Tuna Swarm Optimization (TSO) algorithm, based on

the tuna foraging mechanism, applies swarm intelligence to

search for a solution. Spiral and parabolic foraging patterns

correspond to search strategies in solution spaces--just like the

tuna of a school would adjust their formation to surround the

prey fish.

In comparison to other swarm-based algorithms, the major

advantages of TSO lie in its strength at escaping local optima,

which gives it a decisive lead over competitive methods with

respect to dealing with complex optimization problems. In

addition, it is less fussy about parameters than others. Tuning

for any particular problem is easy.

The TSO algorithm mimics the foraging behavior of tuna to

guide its search for solutions. Here's an overview of its

workings:

• Initialization: Each element in the population of solutions

that the algorithm generates represents one potential solution

to the problem. So, the solutions for each problem are treated

like a school of tuna.

• Spiral Foraging Behavior: In this phase, tuna swim in an

undulating spiral formation in order to explore their solution

space and potentially avoid local optima. This behavior has

proven particularly useful when trying to escape local optima.

• Parabolic Foraging Behavior: Tuna fish swim in an

upward trajectory in order to encase their prey, using this

behavior in an algorithmic context to take advantage of

promising areas within its solution space.

• Update Positions: The foraging activities are related to

the updating of the tuna (solutions) positions. This is done to

attract the swarm upwards, towards the best solutions found so

far.

• Termination: Once the algorithm reaches an agreed-upon

stopping requirement - such as maximum iterations count or

suitable solution - it stops.

We begin by setting up the tuna’s population. The algorithm

then immediately produces a group of solutions that each

represent one 'tuna', in our group? In addition, we choose

values for parameters a and z, which are used to regulate such

things as how fast the algorithms converge, the so long sought

after optimal ratio between exploring new solutions in each

generation vs. exploiting those already discovered, and just

how much weight is given to the best so far found solution.

Calculate the tunas' fitness values: The fitness function is

used to assess the fitness of each solution (tuna) in the

population. Then, the most effective solution is chosen.

Update the global best solution 𝐗best
𝑡 : The best solution

found so far in the population is updated. This solution has the

highest fitness value.

Update variables α1, α2, and p: These variables are updated

for each tuna in the population. They are used to control the

325

movement of the tunas in the solution space.

Update the tuna’s position using Eqs. (1)-(3) or Eq. (4): The

position of each tuna in the solution space is updated based on

one of four equations. The choice of the equation depends on

the values of rand (a random number), z, and the ratio
𝑡

𝑡𝑚𝑎𝑥

(current iteration number over maximum iteration number).

These equations model the foraging behaviors of tuna and

guide the search for solutions.

Increment t by 1: The iteration counter t is incremented by

1.

Return the best individual 𝐗best
𝑡 and its fitness value

𝐹(𝐗best
𝑡) : Once the stopping criterion is met (e.g., the

maximum number of iterations reached), the algorithm returns

the best solution found and its fitness value.

The parameter 𝑡 denotes the number of the current iteration,

and tmax is the maximum number of iterations that the

optimization process is allowed to run.

The parameter b is a random number uniformly distributed

between 0 and 1. In the TSO algorithm, b plays a crucial role

in determining the search process’s direction, as it is used to

calculate the parameter β (see Eq. (8)). This introduces

randomness into the search process, contributing to the

exploration and exploitation balance of the algorithm.

In the Tuna Swarm Optimization (TSO) algorithm, rand is

a variable whose usual definition is to generate random

number in the range 0-1. As a means of adding randomness

and diversity into the algorithm, it is employed in several

places throughout to promote an exploratory approach to

solution space.

𝐗best
𝑡 : The "best" individual in the population at ith

generation.

𝑋rand
𝑡 : An arbitrary individual from the population at ith

generation. One of the update rules used by the TSO uses this

individual to inject randomness and diversity into search.

𝐗𝑖
𝑡: The ith individual of the population at the ith generation.

𝐗𝑖−1
𝑡 : The (i-1)th, or previous, particle of the population at

the ith generation.

In general, the overall design of the Tuna Swarm

Optimization (TSO) algorithm --modeling the behavioral

realities of foraging tuna--represents an entirely different

methodological perspective on problems. This approach is

truly an ideal way to strike a balance between exploring and

exploiting. That's really the key to solving large-scale

optimization problems. It’s all due to the unusual foraging

behavior of this algorithm, which prevents it from falling into

local optima-thereby increasing the chances of finding a global

optimum. Because it has very few parameters to adjust, unlike

other types of algorithms, it is easier to use and customize for

any given problem. The TSO algorithm can be used for a broad

scope of problems, from continuous optimization to fully

discrete or combinatorial problems. It also has a fast

convergence speed, requiring less recharging to produce good

solutions. Such advantages are sufficient to make the TSO

algorithm an extremely useful tool for resolving difficult

optimization problems.

int () , 1,2, ,i i NP=  − + = X rand ub lb lb (1)

()

()
1 best best 2

1

1 best best 2 1

, 1

, 2,3, ,

t t t t

i i
t

i
t t t t

i i

X X i

X X i NP

  

  

+

−

  +  − +  =


= 
 +  − +  = 



X X
X

X X

(2)

()

()
1 rand rand 2 ,

1

1 rand rand 2 1

, 1

, 2,3, ,

t t t t

i i
t

i
t t t t

i i

X X i

X X i NP

  

  

+

−

  +  − +  =


= 
 +  − +  = 



X X
X

X X

(3)

() ()1 2

best best best

t t t t t t

i i irand TF p+ = +  − +   −X X X X X X (4)

()max/

max

1

t t

t
p

t

 
= − 
 

 (5)

1

max

(1)
t

a a
t

 = + −  (6)

2

max

(1) (1)
t

a a
t

 = − − −  (7)

cos(2)ble b =  (8)

()()()max3cos 1/ 1t t

l e
+ −

= (9)

Algorithm 1: The Tuna Swarm Optimization Algorithm

1: Initialize the population of tunas and set free parameters a and z

2: While t<tmax do

3: Calculate the fitness values of the tunas

4: Update the global best solution Xbest

5: For each tuna in the population do

6: Update variables α1, α2, and p

7: if rand<z then

8: Update the tuna’s position using Eq. (1)

9: else if rand≥z then

10: if rand<0.5 then

11: if
𝑡

𝑡𝑚𝑎𝑥
< 𝑟𝑎𝑛𝑑 then

12: Update the tuna’s position using Eq. (3)

13: else if
𝑡

𝑡𝑚𝑎𝑥
≥ 𝑟𝑎𝑛𝑑 then

14: Update the tuna’s position using Eq. (2)

15: end if

16: else if rand≥0.5 then

17: Update the tuna’s position using Eq. (4)

18: end if

19: end if

20: end for

326

21: Increment t by 1

22: end while

23: return the best individual Xbest and its fitness value F(Xbest)

4. PROBLEM FORMULATION

This task scheduling algorithm is inspired by TSO; tuna

fishes symbolize how tasks should be allocated across

resources in this algorithm. This algorithm seeks to maximize

virtual machine allocations for tasks, balance workload

distribution and improve resource use while simultaneously

minimizing Makespan and increasing throughput. To achieve

this, the algorithm utilizes a school of tuna fish to explore

various combinations of task and virtual machine allocations

until finding one with optimal fitness value. Our task

scheduling algorithm monitors Makespan, Throughput and

Resource Utilization metrics of virtual machines on an

ongoing basis in order to maintain an optimum solution. By

employing TSO algorithms that consider both Makespan and

Resource Usage Metrics our task scheduling algorithm can

effectively balance workload distribution while increasing

resource use in cloud environments.

The optimization problem involves scheduling a set of tasks

(T1, T2, T3, …, Tn) on a set of virtual machines (VM1, VM2,

VM3, …, VMm).

The processing (execution) time of the task Ti on VMj is

represented by ETij, and the completion time of VMj is

represented by CTj.

In task scheduling:

Makespan: is the total time required to complete all tasks.

It is the maximum completion time among all tasks, i.e., the

time at which the last task is completed.

Throughput: is the number of tasks that can be completed

in a given time. A higher throughput means more tasks are

being completed, leading to better resource utilization.

Completion time: refers to the time at which a specific task

or set of tasks is completed.

Reducing task completion time means increasing

throughput; shorter completion times enable more tasks to be

accomplished in any given period of time. Cloud computing

environments present particular challenges when trying to

process multiple tasks as rapidly as possible to maximize

resource use and efficiency. This becomes even more essential

with regard to cloud environments where speed of execution

often is of the utmost importance in meeting organizational

goals and optimizing resource usage and utilization.

Throughput can provide an insightful measure of task

scheduling algorithm performance; however, its complex

mathematical properties make it challenging to use as the

target objective in fitness function optimization models.

Commonly used fitness functions aim for completion time as

the objective, since this provides a more direct measure of an

algorithm's overall performance. By optimizing task

scheduling to reduce completion times efficiently and increase

throughput to increase resource utilization. This approach

leads to enhanced resource utilisation and efficiency within

cloud services environments.

The objective of the optimization problem is to minimize

the overall Makespan, which is defined by Eq. (10) while

maximizing the resource utilization, as defined by Eq. (11),

and minimizing total competition time, which is defined by Eq.

(12).

(max { {1,2, , })jMakespan CT j m= =  (10)

1
VM

 makespan j

n

ij

i

ET

Utilization ==


(11)

1

m

j

j

Total CT CT
=

= (12)

The average utilization is defined by Eq. (13).

1

 UtilizationVM
m

j

j
Averageutilization

m

=

 
 
 

=



(13)

4.1 Multi-Objective Function

Eq. (14) defines the fitness function for our algorithm and

determines its overall quality by measuring how well particle

positions (i.e., task allocation to virtual machines) meet

specific objectives such as minimising Makespan, optimizing

resource utilization and decreasing total completion time. We

utilize a weighted sum approach where each objective receives

weight according to its importance in solving our problem

context.

1

2 3

Fitness w Makespan

w Averageutilization w TotalCT

=  +

 + 
 (14)

In Eq. (14), w1, w2, and w3 are the weights assigned to

Makespan, average utilization, and total completion time,

respectively. These weights are normalized so that

w1+w2+w3=1. The weights can be adjusted depending on the

priorities of the specific cloud computing environment. For

example, in a scenario where minimizing Makespan is more

important, a higher weight can be assigned to w1.

For example, in scenarios in which resource utilization is

prioritized over minimizing total completion time, assigning

more weight to w2 would ensure that solutions that maximize

resource utilization would receive priority from the algorithm.

Vice versa; assign more weight to w3, should this become

important.

Overall, the fitness function aims to reduce fitness value;

thus a particle with lower fitness value would be considered

more ideally situated. Furthermore, an optimization algorithm

seeks out particle with the lowest fitness value to find its

counterpart as part of an ideal scheduling of virtual machines

tasks.

The proposed task scheduling algorithm is inspired by TSO

algorithm, where tuna fish symbolize task assignment to

resources. The algorithm seeks to allocate tasks efficiently

across virtual machines, balance workload and improve

resource usage while minimizing Makespan and maximizing

Throughput. To accomplish this task, the algorithm employs a

swarm of tuna fish as part of its search for optimal

combinations for task and virtual machine allocations based

on fitness value. Our task scheduling algorithm uses our TSO

algorithm and metrics such as Makespan and Resource

Utilization Rate to monitor virtual machines' workload and

327

resource consumption and to allocate task accordingly to

ensure an optimum solution in cloud computing environments.

By taking into account both metrics, our task scheduling

solution effectively balances workload while increasing

resource utilization rates in our cloud environment.

4.2 Demonstration example

In this example, there are 6 tasks and 3 virtual machines,

with each task having a length and each virtual machine

having a speed processing Millions of Instructions Per Second

(MIPS). The execution time of each task on each virtual

machine is given in Table 2, and is calculated as follows in Eq.

(15):

()

() ()
()

()*

i i

ij

j j j

L T SI T
ET

S VM Pe VM BW VM
= +

(15)

where, L(Ti): The length of the Taski in MIPS; S(VMj): The

speed of the virtual machine (VMj) in MIPS; Pe(VMj)): The

number of processors (cores) of the virtual machine (VMj));

SI(Ti): The file size of the Taski; BW(VMj): The bandwidth of

the virtual machine (VMj).

In this case, and for ease of calculation, we take the number

of processors=1, the task file size=1, and the virtual machine's

bandwidth=1). The execution time of Task 1 on VM 1 is

calculated as follows: Execution time on

VM1=(600/1000)=0.6 Similarly, the execution time of each

task on each virtual machine can be calculated based on the

given information.

The completion time of each virtual machine is calculated

based on the execution time of the tasks assigned to it , as

illustrated in Table 3. Simultaneously, the utilization of each

virtual machine is calculated by Eq. (11). For example, the

completion time of Virtual Machine 1 is calculated as follows:

Completion time of Virtual Machine1=Execution time of

Task1+Execution time of Task6=0.6+0.6=1.2.

For this vector, the fitness function is calculated based on

Eq. (14): Fitnessfunction=(γ ⋅ (0.8+0.86+1))+(δ ⋅

(1.2+1.3+1.5))+((1-γ-δ) ⋅ 1.5)=0.3 ⋅ (2.66)+0.3 ⋅ (4)+0.4 ⋅
(1.5)=2.56.

Table 2. Execution time of tasks on VMs

 Task 1: 600 Task 2: 450 Task 3: 1000 Task 4: 1500 Task 5: 2000 Task 6: 6000

VM1: 1000 0.6 0.45 1 1.5 2 0.6

VM2: 1500 0.4 0.3 0.66 1 1.33 0.4

VM3: 2000 0.3 0.22 0.5 0.75 1 0.3

Table 3. Completion time and utilization of each VM

Machines Assigned Tasks Completion Time Utilization

VM1 Task1, Task6 0.6+0.6=1.2 1.2/1.5=0.8

VM2 Task2, Task4 1.0+1.3=1.3 1.3/1.5=0.86

VM3 Task3, Task5 0.5+1=1.5 1.5/1.5 =1

5. THE PROPOSED DTSO-TS

In the TSO algorithm, the position of particles is typically

updated using Eqs. (2,3, and 4). This results in floating point

values in the continuous domain. However, in some cases, it

may be desirable to maintain the stochastic nature of the TSO

algorithm while working with discrete values. To achieve this,

new operators are introduced to modify the equations used to

update the position of particles. This results in a new position

that is a discrete value rather than a continuous value. This

modification allows the algorithm to retain its stochastic

nature while working with discrete values, which may be more

appropriate for certain problem domains or optimization task

scheduling.

Eq. (1) remains unchanged. Eq. (2) is modified by the

inclusion of Eq. (16). Eq. (3) is also modified, this time by the

inclusion of Eq. (17). Finally, Eq. (4) is modified through the

addition of Eq. (18).

New operators are also defined as follows:

(1) The ⊛ operator between a vector and a percentage

parameter value returns a new vector where a certain

percentage of the elements in the original vector have been

randomly swapped.

(2) The ⊝ operator between two vectors returns a new

vector that combines elements from the two vectors. If the

element at a given index in the two vectors is the same, the

combined vector will contain either a random element from

the first vector or a random element from the second vector. If

the elements at a given index are different, the combined

vector will contain either the element from the first vector or

the element from the second vector, chosen randomly.

(3) The ⊕ operator between two vectors returns a new

vector that combines elements from the two vectors. The new

vector will contain the first half of the elements from the first

vector and the second half of the elements from the second

vector.

From the previous example given in Table 4, the vector

<1,2,3,2,3,1> represents the same allocation of tasks to virtual

machines: {(Task 1:VM 1), (Task 2:VM 2), (Task 3:VM 3),

(Task 4:VM 2), (Task 5:VM 3), (Task 6:VM 1)}

Table 4. The random allocation of tasks on VMs

Task1 Task2 Task3 Task4 Task5 Task6

VM1 VM2 VM3 VM2 VM3 VM1

• ⊛ operator with parameter equal to 0.5:

If the ⊛ operator is applied to the vector <1,2,3,2,3,1> with

a parameter equal to 0.5 , the resulting vector might be

<2,1,3,2,3,1> if the elements at indices 1 and 2 are swapped,

or it might be <1,3,3,2,3,1> if the elements at indices 2 and 3

are swapped.

• ⊝ operator with another vector <1,2,1,1,3,2>:

If the ⊝ operator is applied to the vectors <1,2,3,2,3,1> and

328

<1,2,1,1,3,2>, the resulting vector might be <1,2,3,1,3,1> if

the elements at indices 3 and 4 are combined, or it might be

<1,2,1,1,3,1> if the elements at indices 4 and 5 are combined.

• ⊕ operator with another vector <3,2,2,2,1,1>:

The resulting vector will be <1,2,2,2,1,1>.

5.1 The DTSO-TS algorithm

In this section, we introduce how the discrete version of

DTSO-TS is applied to allow task scheduling in cloud

computing.

The DTSO-TS algorithm iteratively improves the allocation

of tasks to virtual machines based on the defined fitness

function. It explores different combinations of task and virtual

machine allocations to find the best possible solution. The

algorithm ensures the optimization of task scheduling in cloud

computing environments. The DTSO-TS algorithm retains the

stochastic nature of the TSO algorithm while working with

discrete values, which may be more appropriate for certain

problem domains or optimization task scheduling. The

algorithm uses new operators to modify the equations used to

update the position of particles, resulting in a new position that

is a discrete value rather than a continuous value. This

modification allows the algorithm to effectively explore

different combinations of task and virtual machine allocations

and find the optimal solution to the task scheduling problem.

Algorithm 2: The Discrete Tuna Swarm Optimization Algorithm for Task Scheduling

1: Step 1: Initialize the population of tunas (tasks) and set free parameters 𝑎 and 𝑧

2: Step 2: Generate the initial allocation vector for each tuna (task to a VM) using Eq. (1)

3: Step 3: Calculate the fitness value of the initial allocation vector using the objective function with Eq. (9)

4: While t<tmax do /*Step 9:Repeat until maximum iterations*/

5: Calculate the fitness values for each allocation of tasks to VMs

6: Update the global best solution Xbest

7: For each tuna (task) in the population do

8: Update variables α1, α2, and p

9: if rand<z then /*Step 4: Update position with rules of DTSO-TS*/

10: Update the allocation of the task to VMs using Eq. (1)

11: else if rand≥z then

12: if rand<0.5 then

13: if
𝑡

𝑡𝑚𝑎𝑥
< 𝑟𝑎𝑛𝑑 then

14: Update the allocation of the task to VMs using Eq. (17)

15: else if
𝑡

𝑡𝑚𝑎𝑥
≥ 𝑟𝑎𝑛𝑑 then

16: Update the allocation of the task to VMs using Eq. (16)

17: end if

18: else if rand≥0.5 then

19: Update the allocation of the task to VMs using Eq. (18)

20: end if

21: end if

22: end for

23: Step 5: Update the allocation vector based on the new allocations of tasks to VMs

24: Step 6: Re-assign the tasks to the VMs according to the updated allocation vector

25: Step 7: Calculate the fitness value of the updated allocation vector

26: Step 8: If the fitness value of the updated allocation vector is better than the previous one, update Xbest and F(Xbest)

27: Increment 𝑡 by 1

28: end while

29: Step 10: return the best allocation vector Xbest and its fitness value F(Xbest)

This process (Algorithm 2) can be explained in the

following steps:

Step 1. Initialize the population of tuna fish, representing

the allocation of the tasks to the virtual machines.

Step2. Generate the initial allocation vector, which assigns

each task to a virtual machine based on the id of the virtual

machine using Eq. (1): The id of each virtual machine is a

number between 1 and the number of virtual machines.

Step3. Calculate the fitness value of the initial allocation

vector using the objective function using Eq. (9).

Step 4. Update the position of each tuna fish according to

the rules of the DTSO-TS algorithm (using the new operators

⊛, ⊝ and ⊕).

Using these new operators, the updated positions of the tuna

fish will stay within the search space and remain within the

defined district values, allowing the algorithm to effectively

explore different combinations of task and virtual machine

allocations and find the optimal solution to the task scheduling

problem.

Step5. Update the allocation vector based on the new

positions of the tuna fish.

Step6. Re-assign the tasks to the virtual machines according

to the updated allocation vector.

Step7. Calculate the fitness value of the updated allocation

vector.

Step 8. If the fitness value of the updated allocation vector

is better than the previous one, update the best position and

best fitness value for each tuna fish.

Step 9. Repeat steps 4-8 for a predefined number of

iterations.

Step 10. Return the final allocation vector as the solution to

the task scheduling problem.

The algorithm ensures the optimization of task scheduling

in cloud computing environments by iteratively improving the

allocation of tasks to virtual machines based on the defined

fitness function. It explores different combinations of task and

virtual machine allocations to find the best possible solution.

()

()
1 best best 2

1

1 best best 2 1

, 1

, 2,3, ,

t t t t

i i
t

i
t t t t

i i

X X i

X X i NP

  

  

+

−

   =


= 
  = 



X X
X

X X
 (16)

329

()

()
1 rand rand 2

1

1 rand rand 2 1

, 1

, 2,3, ,

t t t t

i i
t

i
t t t t

i i

X X i

X X i NP

  

  

+

−

   =


= 
  = 



X X
X

X X

(17)

() () ()1 2

best best best $ $t t t t t t

i i irand TF p+ =   X X X X X X (18)

6. SIMULATION & DISCUSSION RESULTS

CloudSim [15] is an experimental Java-based platform for

cloud system modelling at a high level with the aim of

efficiently simulating various aspects of their performance. In

a simple and flexible environment, users can define what type

of cloud resources--hosts, VMs, network pools and storage

capacities or setting data center brokers, allocation policies for

virtual machines (VMs), bandwidth provisions for RAM

provisioning or any other necessary variables--are to be

available in which instance. CloudSim provides one of the

main advantages for cloud modeling: For example, users need

not concern themselves with a company's infrastructure or

services. Instead, they can concentrate on simulating their own

clouds system [31]. CloudSim is an open-source, free platform

that can be used to cost effectively and efficiently evaluate

various cloud architecture models and strategies, including

load balancing methods or resource allocation policies. In sum,

they provide an invaluable method of testing proposed models

by costing them.

In this paper we tested our proposed DTSO-TS algorithm

for a cloud computing environment using the CloudSim

simulator. Three cloud data centers were set up, with three

hosts in each center (see Table 5 for hardware specifications).

These hosts were ready to run virtualization technology and

share resources with 50 virtual machines (VMs). For each VM,

it would select a speeds at random chosen from a list of values

(100, 200, 300, 400, 500, 700, 1000). and use those to

determine the number of instructions executed per second for

the VM. Hosts and specifications (number of processors,

bandwidth) are all different. Three hosts were used to run the

VMs. The tasks vary in length and specifications from 400 to

5000. The purpose of this simulation was to compare the

effectiveness of the DTSO-TS algorithm with respect to

Makespan, resource utilization, response time, throughput

time and average waiting time. The results were compared

with those provided by other scheduling algorithms to

determine how well the DTSO-TS algorithm performed.

We were able to assess the performance of this version of

the DTSO-TS algorithm in a virtualized cloud services

environment only by specifying appropriate simulation

parameters and designing a suitable scenario based on existing

literature. To examine the feasibility of the scale-up process,

we graded up to 1000 tasks (the first scenario) and then 10000

tasks (the second scenario). Hardware configurations were

chosen to simulate a typical cloud data center architecture,

with hardware running virtualization technology and sharing

resources among many VMs. The different VM speeds were

set to mimic the actual variation in resource capabilities in a

real cloud environment.

We run the DTSO-TS algorithm in comparison with several

other algorithms, including FCFS (first come first serves), GA

[18], MO-ACO [16], SJF, and LB-PSO [17]. The following

metrics were used to evaluate the performance of the

algorithms: Makespan, response time; throughput and average

waiting time The results obtained from the simulations are

presented in a series of graphs (Graph 1-10), showing a

comparison between the DTSO-TS algorithm and other

algorithms.

Table 5. Hardware specifications of hosts

Host

Id

Number of Pe

(Cores)

Processing Speed in

MIPS

RAM in

GB

1 4 7000 20

2 2 5000 12

3 1 3000 8

6.1 First scenario

In the first scenario, we increased the number of tasks from

10 to 1000 and evaluated the results for each metric

(Makespan, resource utilization, response time, throughput

time, and average waiting time).

Response time: Figure 1 shows the response time for

different task scheduling algorithms with various numbers of

tasks. The response time is defined as the time it takes for a

task to be completed from the moment it is submitted to the

system. Minimizing response time is important for ensuring

efficient task execution and good performance in cloud

computing systems.

The DTSO-TS algorithm consistently had the lowest

response time among the algorithms tested, with values

ranging from 140.11 seconds for tasks of 10 to 5181.86

seconds for tasks of 200. Hence, this suggests that the DTSO-

TS algorithm is able to carry out tasks in a shorter time than

other algorithms. The highest response times were for tasks of

10, from the FCFS, GA [18] and SJF algorithms, being

respectively 419.50 seconds for tasks of 10 to 8626.72 seconds

for tasks of 200. This implies that these algorithims move

rather slowly, perhaps because of how they order and assign

tasks.

Figure 1. Response time comparison for different task

scheduling algorithms

Makespan: Figure 2 depicts Makespan for different task

scheduling algorithms with various task counts. Reducing

Makespan is key for optimizing use of resources and

performance in cloud computing systems. The DTSO-TS

algorithm displayed the lowest Makespan values across tasks

of 10, 50, 100, 200, and 300; with values ranging from 9

seconds for tasks of 10 up to 125 seconds for 300 tasks -

evidence that it could complete tasks within shorter time

330

frames than other algorithms. MO-ACO [16], GA [18], and

LB-PSO [17] algorithms had relatively low Makespan values

for tasks 10-50 but much higher Makespan values when

applied to 100 or higher tasks. This suggests that these

algorithms may be more efficient at handling smaller numbers

of tasks but may become less so as their workload increases.

FCFS, RR and SJF algorithms had the highest Makespan

values ranging from 45 seconds for tasks of 10 up to 13778.99

seconds when dealing with 300 tasks. When dealing with 1000

tasks however, only the DTSO-TS algorithm achieved a lower

Makespan of 204 seconds than all of the other algorithms -

suggesting it can complete tasks relatively rapidly even when

faced with high task volumes.

Throughput: Throughput can be defined as the number of

tasks completed within a certain time period, and having high

throughput is critical for optimizing resource utilization and

increasing productivity within cloud computing systems. As

illustrated by Figure 3, the DTSO-TS algorithm consistently

had the highest throughput values for tasks 10, 50, and 100; its

throughput values ranged from 0.75 to 4.14 tasks per second

indicating its capability of handling multiple tasks quickly.

MO-ACO [16] and LB-PSO [17] algorithms produced

relatively high throughput values for tasks 10-50 but had lower

throughput for 100+ tasks, whereas GA [18] and RR

algorithms yielded low throughput values for all tasks, with

values between 2.9-3.17 tasks per second. For 1000 tasks, the

DTSO-TS algorithm had the highest throughput among all

other algorithms at 5.99 tasks/second. This shows that it can

complete more tasks more quickly compared to its

counterparts.

Figure 2. Makespan comparison

Figure 3. Throughput

Average waiting time: The AWT measures how long tasks

spend waiting to be assigned a resource. Figure 4 clearly

displays the results of our tests of various algorithms; among

those tested, the DTSO-TS algorithm consistently had the

lowest average waiting time ranging from 0.38 seconds for

tasks of 10 up to 74.79 seconds when testing 1000 tasks. This

indicates that the DTSO-TS algorithm can allocate tasks and

resources more rapidly compared to other algorithms, with

MO-ACO [16] and LB-PSO [17] having generally shorter

waiting times compared with FCFS, GA [18], and SJF. FCFS,

GA [18], and SJF algorithms had the highest average waiting

times; values ranged from 0.75 seconds for tasks of 10 up to

111.70 seconds when processing 1000 tasks. RR algorithms

had particularly high average waiting times, ranging from 9.36

seconds for tasks of 10 up to 1383.11 seconds for 1000 tasks.

This suggests that these algorithms may take longer to assign

tasks to resources; decreasing this average waiting time is

crucial to speeding up workload execution times and

improving resource fairness.

Figure 4. AVG waiting time to resources

Our simulations show that the DTSO-TS algorithm

consistently outperformed the other algorithms regarding

response time makespan throughput and average waiting time

this suggests that the DTSO-TS algorithm is more efficient at

scheduling tasks in a cloud computing environment the lower

response time and makespan values indicate that the DTSO-

TS algorithm can complete tasks more quickly while the

higher throughput values suggest that it can handle a larger

number of tasks in a given time period.

6.2 Second scenario

In our second scenario, we increased the number of tasks

from 1000 to 10000 and increased both hosts (9 total) and

virtual machines (VMs), to 200 each in our simulation

environment. This enabled us to further assess the efficiency

of the DTSO-TS algorithm as well as assess its scalability in

large-scale cloud computing environments.

Figures 5-8 present the results of simulations showing how

well the DTSO-TS algorithm performed for tasks of 10000

with regard to response time, Makespan and AVG AVG

waiting times as well as throughput value for all tested

algorithms; its values being among the lowest of any algorithm

tested; additionally, it had the highest throughput value among

them all. Other algorithms like MO-ACO [16], GA [18], and

LB-PSO [17] also achieved low values but lower throughput

331

values compared with that of DTSO-TS while the FCFS, RR,

and SJF algorithms had relatively high values for response

time, Makespan, and AVG waiting time and lower throughput

values compared to the DTSO-TS algorithm.

Total cost is a metric that measures the overall expense

associated with performing all tasks within an environment,

whether cloud computing or not. When used within cloud

environments, total costs can vary based on factors like

number of virtual machines deployed and amount of energy

consumed to complete tasks. As demonstrated by Figure 9, our

study revealed that DTSO-TS had the lowest total cost among

all algorithms tested for task 10000 tasks; this indicated it to

be relatively efficient with regards to resource utilization when

compared to its counterparts. MO-ACO [16], GA [18], and

LB-PSO [17] algorithms also had relatively low total cost

values; FCFS, RR, and SJF algorithms exhibited higher costs;

while overall the DTSO-TS algorithm displayed the least total

costs among all algorithms tested; suggesting it as being most

suitable to task scheduling in cloud environments.

Figure 10 provides a comparative analysis of the Makespan,

a performance metric in task scheduling that represents the

total completion time of all tasks, for the LB-PSO [17] and

DTSO-TS algorithms over various numbers of iterations (from

10 to 100).

In the case of the LB-PSO [17] algorithm, a clear downward

trend is visible in the Makespan as the number of iterations

increases. The values decrease from 364.97118 at 10 iterations

to 292.13193 at 100 iterations. This suggests an improvement

in efficiency with more iterations, indicating that the algorithm

requires less time to complete tasks. However, it is noteworthy

that the global minima, the point at which the algorithm is

most efficient, is not reached until after 60 iterations.

On the other hand, the DTSO-TS algorithm consistently

shows lower Makespan values across all iteration counts,

showing that it can complete tasks faster. Makespan for

DTSO-TS decreases significantly from 174.78548 at 10

iterations to 143.56733 after 100 iterations; its global minima

can be achieved as early as the 30th iteration, and Makespan

does not change significantly thereafter, suggesting it reaches

optimal efficiency earlier than LB-PSO [17] algorithm.

These observations demonstrate that the DTSO-TS

algorithm outshone its counterpart, the LB-PSO [17], both in

terms of Makespan values across all iteration counts tested, as

well as reaching peak efficiency more quickly - evidence of its

superior computational efficiency that makes it a sound choice

regardless of iterations count.

Figure 5. Comparison of response time

Figure 6. Throughput

Figure 7. Makespan

Figure 8. AVG waiting time

From a performance point of view, DTSO-TS algorithm

was superior to all the other algorithms; it had the lowest

response time, Makespan, average waiting time, and highest

throughput of any. This indicates that it excels at scheduling

tasks as well as optimizing resource use in cloud computing

environments. Other algorithms also performed competitively

but could not match its efficiency especially as task numbers

increased.

332

Figure 9. Comparison of the total cost for 10000 tasks using

various algorithms

Figure 10. Depicts the convergence rate for both our

proposed algorithm DTSO-TS and LB-PSO

An analysis of convergence rate showed that the DTSO-TS

algorithm achieved its maximum efficiency faster than any of

the other algorithms; this means it quickly finds optimal

solutions - essential in cloud computing environments where

tasks must be scheduled and completed on schedule.

7. CONCLUSIONS

This paper proposes an innovative task scheduling approach

in cloud computing environments using a discrete version of

Tuna Swarm Optimization for Task Scheduling (DTSO-TS)

algorithm. Our approach stands out from others by adhering to

its core principles; specifically optimizing task allocation to

virtual machines while improving various performance

metrics is at its heart.

Experimental validation demonstrates that the DTSO-TS

algorithm significantly enhances workload balance and

resource utilization, providing a competitive edge in cloud

computing environments for task scheduling. With high

throughput and resource utilization achieved by this algorithm,

its high throughput directly impacts efficiency and

performance metrics directly influencing cloud environments

- leading to cost savings and enhanced service delivery.

Note, however, that our current work makes certain

assumptions which could alter its conclusions. For instance,

we assume a stable cloud environment with no network

failures or resource outages; real world implementations need

to account for such factors. Looking ahead, we see an

opportunity for further investigation of how changing random

variable parameters impact DTSO-TS's performance.

We also suggest exploring new problem formulations,

techniques, and extensions to the DTSO-TS algorithm. A

comparative study between the DTSO-TS and other bio-

inspired optimization algorithms for task scheduling could

yield valuable insights, further driving the evolution of cloud

computing environments.

In conclusion, the DTSO-TS algorithm offers promising

opportunities for implementation and further scrutiny within

real-world contexts, reinforcing its applicability and potential

impact on the field.

REFERENCES

[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz,

R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,

Stoica, I., Zaharia, M. (2010). A view of cloud

computing. Communications of the ACM, 53(4): 50-58.

https://doi.org/10.1145/1721654.1721672

[2] Abid, A., Manzoor, M.F., Farooq, M.S., Farooq, U.,

Hussain, M. (2020). Challenges and issues of resource

allocation techniques in cloud computing. KSII

Transactions on Internet & Information Systems, 14(7):

2815–39. https://doi.org/10.3837/tiis.2020.07.005

[3] Goudarzi, H., Pedram, M. (2011). Maximizing profit in

cloud computing system via resource allocation. In 2011

31st International Conference on Distributed Computing

Systems Workshops, Minneapolis, MN, USA, pp. 1-6.

https://doi.org/10.1109/ICDCSW.2011.52

[4] Masdari, M., Salehi, F., Jalali, M., Bidaki, M. (2017). A

survey of PSO-based scheduling algorithms in cloud

computing. Journal of Network and Systems

Management, 25(1): 122-158.

https://doi.org/10.1007/s10922-016-9385-9

[5] Kantale, V. (2020). Statistical evaluation of task

scheduling algorithms in cloud environments. IJATCSE,

9: 1486–90.

https://doi.org/10.30534/ijatcse/2020/88922020

[6] Maniyar, B., Kanani, B. (2015). Review on round robin

algorithm for task scheduling in cloud computing.

Journal of Emerging Technologies and Innovative

Research, 2(3): 788-893.

[7] Xie, L., Han, T., Zhou, H., Zhang, Z.R., Han, B., Tang,

A. (2021). Tuna swarm optimization: A novel swarm-

based metaheuristic algorithm for global optimization.

Computational intelligence and Neuroscience, 2021: 1-

22. https://doi.org/10.1155/2021/9210050

[8] Raj, B., Ranjan, P., Rizvi, N., Pranav, P., Paul, S. (2018).

Improvised bat algorithm for load balancing-based task

scheduling. In Progress in Intelligent Computing

Techniques: Theory, Practice, and Applications:

Proceedings of ICACNI 2016, pp. 521-530.

https://doi.org/10.1007/978-981-10-3373-5_52

[9] Alzaqebah, A., Al-Sayyed, R., Masadeh, R. (2019). Task

scheduling based on modified grey wolf optimizer in

cloud computing environment. In 2019 2nd International

Conference on new Trends in Computing Sciences

(ICTCS), Amman, Jordan, pp. 1-6.

https://doi.org/10.1109/ICTCS.2019.8923071

333

[10] Asghari, S., Jafari Navimipour, N. (2023). The role of an

ant colony optimisation algorithm in solving the major

issues of the cloud computing. Journal of Experimental

& Theoretical Artificial Intelligence, 35(6): 755-790.

https://doi.org/10.1080/0952813X.2021.1966841

[11] Neelima, P., Reddy, A.R.M. (2020). An efficient load

balancing system using adaptive dragonfly algorithm in

cloud computing. Cluster Computing, 23: 2891-2899.

https://doi.org/10.1007/s10586-020-03054-w

[12] Mahmood, A., Khan, S.A., Bahlool, R.A. (2017). Hard

real-time task scheduling in cloud computing using an

adaptive genetic algorithm. Computers, 6(2): 15.

https://doi.org/10.3390/computers6020015

[13] Ullah, A., Nawi, N.M., Uddin, J., Baseer, S., Rashed,

A.H. (2019). Artificial bee colony algorithm used for

load balancing in cloud computing: Review. IAES

International Journal of Artificial Intelligence, 8: 156–

167. https://doi.org/10.11591/ijai.v8.i2.pp%p

[14] Awad, A.I., El-Hefnawy, N.A., Abdel_kader, H.M.

(2015). Enhanced particle swarm optimization for task

scheduling in cloud computing environments. Procedia

Computer Science, 65: 920-929.

https://doi.org/10.1016/j.procs.2015.09.064

[15] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose,

C.A., Buyya, R. (2011). CloudSim: A toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource provisioning

algorithms. Software: Practice and Experience, 41(1):

23-50. https://doi.org/10.1002/spe.995

[16] Guo, Q. (2017). Task scheduling based on ant colony

optimization in cloud environment. In AIP Conference

Proceedings, 1834(1): 040039.

https://doi.org/10.1063/1.4981635

[17] Ebadifard, F., Babamir, S.M. (2018). A PSO-based task

scheduling algorithm improved using a load-balancing

technique for the cloud computing environment.

Concurrency and Computation: Practice and Experience,

30(12): e4368. https://doi.org/10.1002/cpe.4368

[18] Dasgupta, K., Mandal, B., Dutta, P., Mandal, J.K., Dam,

S. (2013). A genetic algorithm (GA) based load

balancing strategy for cloud computing. Procedia

Technology, 10: 340-347.

https://doi.org/10.1016/j.protcy.2013.12.369

[19] Ghomi, E.J., Rahmani, A.M., Qader, N.N. (2017). Load-

balancing algorithms in cloud computing: A survey.

Journal of Network and Computer Applications, 88: 50-

71. https://doi.org/10.1016/j.jnca.2017.04.007

[20] Fang, Y., Wang, F., Ge, J. (2010). A task scheduling

algorithm based on load balancing in cloud computing.

In Web Information Systems and Mining: International

Conference, WISM 2010, Sanya, China, October 23-24,

2010. Proceedings, pp. 271-277.

https://doi.org/10.1007/978-3-642-16515-3_34

[21] Lakra, A.V., Yadav, D.K. (2015). Multi-objective tasks

scheduling algorithm for cloud computing throughput

optimization. Procedia Computer Science, 48: 107-113.

https://doi.org/10.1016/j.procs.2015.04.158

[22] Pal, S., Pattnaik, P.K. (2016). Adaptation of Johnson

sequencing algorithm for job scheduling to minimise the

average waiting time in cloud computing environment.

Journal of Engineering Science and Technology, 11(9):

1282-1295.

[23] Sefati, S., Mousavinasab, M., Zareh Farkhady, R. (2022).

Load balancing in cloud computing environment using

the Grey wolf optimization algorithm based on the

reliability: Performance evaluation. The Journal of

Supercomputing, 78(1): 18-42.

https://doi.org/10.1007/s11227-021-03810-8

[24] Mishra, K., Majhi, S.K. (2021). A binary Bird Swarm

Optimization based load balancing algorithm for cloud

computing environment. Open Computer Science, 11(1):

146-160. https://doi.org/10.1515/comp-2020-0215

[25] Ebadifard, F., Babamir, S.M., Barani, S. (2020). A

dynamic task scheduling algorithm improved by load

balancing in cloud computing. In 2020 6th International

Conference on Web Research (ICWR), pp. 177-183.

https://doi.org/10.1109/icwr49608.2020.9122287

[26] Devaraj, A.F.S., Elhoseny, M., Dhanasekaran, S., Lydia,

E.L., Shankar, K. (2020). Hybridization of firefly and

improved multi-objective particle swarm optimization

algorithm for energy efficient load balancing in cloud

computing environments. Journal of Parallel and

Distributed Computing, 142: 36-45.

https://doi.org/10.1016/j.jpdc.2020.03.022

[27] Latchoumi, T.P., Parthiban, L. (2022). Quasi

oppositional dragonfly algorithm for load balancing in

cloud computing environment. Wireless Personal

Communications, 122(3): 2639-2656.

https://doi.org/10.1007/s11277-021-09022-w

[28] Singh, H., Tyagi, S., Kumar, P. (2021). Cloud resource

mapping through crow search inspired metaheuristic load

balancing technique. Computers & Electrical

Engineering, 93: 107221.

https://doi.org/10.1016/j.compeleceng.2021.107221

[29] Mangalampalli, S., Swain, S.K., Mangalampalli, V.K.

(2022). Prioritized energy efficient task scheduling

algorithm in cloud computing using whale optimization

algorithm. Wireless Personal Communications, 126(3):

2231-2247. https://doi.org/10.1007/s11277-021-09018-6

[30] Yakhchi, M., Ghafari, S.M., Yakhchi, S., Fazeli, M.,

Patooghi, A. (2015). Proposing a load balancing method

based on Cuckoo Optimization Algorithm for energy

management in cloud computing infrastructures. In 2015

6th International Conference on Modeling, Simulation,

and Applied Optimization (ICMSAO), pp. 1-5.

https://doi.org/10.1109/ICMSAO.2015.7152209

[31] Calheiros, R.N., Ranjan, R., De Rose, C.A., Buyya, R.

(2009). Cloudsim: A novel framework for modeling and

simulation of cloud computing infrastructures and

services. arXiv preprint arXiv:0903.2525.

https://doi.org/10.48550/arXiv.0903.2525

NOMENCLATURE

TSO Tuna Swarm Optimization

DTSO-TS

Discrete Tuna Swarm Optimization for Task

Scheduling) - A modified version of the TSO

algorithm that works with discrete values,

suitable for task scheduling problems.

t Current iteration

Xbest
The best position (solution) found so far

during the optimization process.

Xrand
A randomly selected position from the

population.

𝑋𝑖
𝑡 The position of the 𝑖-th tuna at time 𝑡

tmax
The maximum number of iterations allowed

in the algorithm.

334

NP The number of particles in the population.

w1
Weight assigned to Makespan in the fitness

function.

w2
Weight assigned to average utilization in the

fitness function.

w3
Weight assigned to total completion time

(Total CT) in the fitness function.

TF

A parameter used in Eq. (18) to adjust the

influence of the global best position on the

update of a particle’s position.

⊛, ⊝, ⊕
New operators introduced in the DTSO-TS

algorithm to handle discrete values and

maintain the stochastic nature of the

algorithm.

p A random value between 0 and 1.

Greek symbols

α1, α2

Tunable parameters that control the balance

between exploration and exploitation in the

algorithm.

β

A scaling factor applied to the difference

between the best position and the current

position.

335

