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 This research aimed to develop computer vision and machine learning models to improve 

durum wheat quality control in Algeria. Durum wheat is a vital cereal crop in Algeria used 

for many staple foods. Currently, quality control relies on manual evaluation which is too 

lengthy and tedious. To address this, models utilizing image processing and 200 image 

descriptors, including 102 texture features, 8 morphological features, and 90 colour 

features, were developed to automate classification of durum wheat species, varieties, and 

impurities. An optimized Support Vector Machine (SVM) model was implemented 

hyperparameters tuning. The models achieved exceptional performance, classifying durum 

wheat species with 99% accuracy, varieties with 95% accuracy, and impurities with 94% 

accuracy. This illustrates the significant potential of tailored computer vision and machine 

learning techniques to enable automated quality control. The models could be integrated 

into crop certification workflows, increasing productivity. 
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1. INTRODUCTION 

 

Wheat is indeed one of the most important staple crops 

globally and for the Algerian population. It is a crucial 

component of the agri-food industry in Algeria due to the 

dietary patterns and habits of the population, particularly 

regarding semolina and flour derived from durum wheat. The 

significance of wheat in the global food supply chain is evident 

from its role as a staple food in many low- and middle-income 

countries, as well as its status as the most frequently cultivated 

crop in the world [1, 2]. 

Djermoun showed that the quality seeds of durum wheat has 

a deep impact on increasing production rates [3]. The quality 

of seeds is responsible for at least a 10-20% increase in 

productivity (IFPRI). Seed production demands meticulous 

care, precise procedures, and advanced technical skills. 

Ensuring access to high-quality seeds necessitates adherence 

to plant reproduction regulations. Expanding the number of 

producers would enable the availability of larger seed 

quantities for farmers. Implementing quality control measures 

guarantees the genetic and physiological integrity of seeds 

throughout the propagation, post-harvest, and storage stages 

until subsequent planting [4, 5]. 

Maintaining high quality wheat is essential for the proper 

functioning of the global food production system. Research 

conducted by Djermoun, has shown the profound impact of 

wheat seed quality on improving production rates [3]. One of 

the main concerns in ensuring this quality is to maintain the 

purity of the product by eliminating any foreign contaminants. 

In Algeria, the evaluation and certification of agricultural 

seeds, including durum wheat, are entrusted to two major 

agricultural entities: the Cooperative of Cereals and Food 

Legumes (CCLS) and the National Centre for Seed and Plant 

Control and Certification (CNCC). This certification process 

involves a thorough inspection of the harvest/crops. 

After delivering their crops to CCLS or CNCC centres in 

their respective provinces, farmers and seed multipliers submit 

samples for a detailed analysis. This analysis includes visual 

and manual inspections as well as categorization of impurities, 

including inert substances, plant residues, damaged grains, 

rotten grains, among others. Additionally, various varieties of 

wheat and other species such as barley, bread wheat and 

triticale are subjected to scrutiny and quantification in the 

same sample. It should be noted that this procedure strictly 

adheres to the standards outlined in the Official Journals of the 

Algerian Government 88/521 and 249/3 published in October 

1995. 

Until now, however, seed classification in Algeria has been 

based on manual visual inspection. It should be noted that a 

laboratory engineer spends almost four hours to perform this 

task on a single sample. This method is time-consuming and 

error prone due to the human element involved and the need 

for specialist expertise. 

Addressing these challenges, adopting cutting-edge 

technologies such as computer vision and artificial intelligence 

offers a more effective and accurate solution. The 

advancement in computer vision techniques and algorithms 

enables machines to comprehend and interpret visual 

information from their surroundings. Various articles, such as 

Velesaca [6], exemplify the potential of computer vision 

systems and machine learning algorithms for performing 

complex tasks related to seed quality control. Several studies 
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utilize machine learning algorithms [7-12], while others 

employ deep learning models [13-18], all of which have 

yielded promising. 

This study aims to develop an intelligent classification 

model for Algerian Durum wheat varieties, species and 

accompanying impurities using computer vision and machine 

learning techniques. This model can be used to create an 

automated system for wheat seed approval. Our research 

makes two key contributions: First, we present an efficient 

image segmentation method using classical techniques, 

favoured for simplicity and low computing needs while still 

producing excellent results. Secondly, we improve the Support 

Vector Machine (SVM) machine learning model through 

meticulous adjustments like optimal hyperparameter selection 

and optimal normalization of image descriptors. Overall, this 

research endeavors to deliver an effective, reliable, and cost-

efficient automated classification.  

The upcoming section will concentrate on pertinent 

research work to discover the suitable methods and approaches 

for our case. This will be trailed by the Materials and Methods 

segment, which will furnish a thorough record of our strategy 

and the validation of our findings. Ultimately, we will initiate 

a discussion of our results and assess the approach we 

administered. 

 

 

2. RELATED WORK 

 

In this section, an in-depth literature review was conducted, 

exploring relevant work and publications in the field of AI 

applications in agriculture, automated seed quality 

certification, and crop evaluation (harvest assessment). We 

conducted a comparative analysis of related research studies 

based on the type of model used, the accuracy achieved, the 

size of the dataset, the type of imaging device used for data 

acquisition, and the types of grains to be identified. This 

comparison is summarized in Table1. 

The majority of the articles listed in Table 1 focus primarily 

on categorizing the most common types of global food grains, 

including rice, wheat, maize, and cocoa. These categorizations 

cover various aspects, such as the different varieties of these 

grains or the detection of impurities. This classification can be 

done either separately for each type of grain or in a combined 

manner. 

Image acquisition for these models is carried out using 

devices such as professional cameras, mobile devices or 

scanners, ensuring that the images are presented in RGB 

format. Nevertheless, it should be noted that a limited number 

of studies have used specialized and expensive devices 

designed to capture spectral or hyperspectral images [19, 20], 

mainly due to the cost involved. It is pertinent to highlight that 

traditional machine learning models require manual extraction 

of descriptors, usually carried out using classical computer 

vision techniques, to capture various grain attributes such as 

colour, morphology, texture and others, for training purposes. 

Note that other studies, like [21], use initial layers of a deep 

learning model for feature extraction, followed by 

classification using Machine learning model. In contrast, deep 

learning models automate this process. While excelling in 

autonomous feature extraction from raw data, the notable 

downside of this capability lies in the requirement for 

extensive training datasets, often numbering in millions, to 

derive effective features and prevent overfitting. Furthermore, 

the inherent "black-box" nature of deep neural networks poses 

challenges in interpreting decision-making processes, 

especially in applications where interpretability holds 

paramount importance. 

Research efforts have been made to integrate models from 

both categories, with a primary focus on comparing their 

performance outcomes, as exemplified by the works of [22-

24]. Lopes et al. [22] conducted a study in which they trained 

a Support Vector Machine (SVM) to classify five different 

cocoa varieties, achieving an accuracy rate of 84.98%. 

Subsequently, they assessed the accuracy of the SVM in 

comparison to ResNet18 and ResNet50 models. Remarkably, 

the ResNet18 model outperformed the SVM, achieving a 

significantly higher accuracy of 98.82% following complete 

retraining on the new dataset. In a separate study documented 

by Kiratiratanapruk et al. [23], the InceptionResNetV2 model 

showcased its prowess in terms of accuracy when compared to 

classical Machine Learning (ML) models. Meanwhile, Koklu,  

and Ozkan [24] delivered into a comprehensive examination 

of the accuracy achieved by three distinct models: Artificial 

Neural Networks (ANN), Deep Neural Networks (DNN), and 

Convolutional Neural Networks (CNN). Notably, the CNN 

model demonstrated the highest accuracy among the three. 

Despite the excellent accuracy obtained, it should be 

mentioned that this type of models requires massive datasets 

and extensive computing resources for training. They tend to 

overfit smaller data sets, unlike traditional ML approaches 

which can work well with limited data. The hardware 

requirements of deep learning limit accessibility for many 

users without access to specialized GPUs or clusters. 

Nevertheless, Khatri et al. [7] attempted to merge many 

classical models, leveraging the strengths of each through the 

application of the hard voting technique. Their ensemble 

machine learning model outperformed each of the individual 

models tested separately, demonstrating an increase in 

accuracy. but this type of models has drawbacks centred on 

computational requirements and extended training times, 

especially as the ensemble size increases. In addition, if the 

base models have similarities or share common flaws, the 

whole may fail to deliver significant improvements. 

Regarding the realm of research employing deep learning 

models, it's noteworthy to distinguish three distinct 

subcategories: custom Convolutional Neural Network (CNN) 

models, pre-trained CNN models using transfer learning (such 

as VGG16, ResNet, AlexNet), and advanced CNN models 

exemplified by YOLO v5 and v7. The first two subcategories 

require the segmentation of composite images containing 

multiple grains into individual images. This segmentation task 

is performed using conventional techniques like thresholding 

and Watersheding, with thresholding being the prevailing 

choice due to its simplicity and efficiency, as documented by 

Velesaca et al. [6]. However, it's important to acknowledge 

that the efficacy of this method is more pronounced when 

objects within the image do not overlap. In practice, 

thresholding can be supplemented by pre-processing and/or 

post-processing steps aimed at improving image quality and, 

consequently, the classification accuracy of the model.  

Remarkably, custom CNN models, such as SeedNet [14] 

and CNN64 [25], have demonstrated marginally superior 

performance in comparison to pre-trained models. This 

phenomenon can be attributed to the reduced number of model 

parameters and the inherent simplicity of recognizing objects 

(grains) within the images. The complexity of tuning 

hyperparameters in deep learning models, whether custom or 

pre-trained, lies in the nuanced process of selecting optimal 
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configurations for these hyperparameters, including learning 

rates and batch sizes, which are essential to achieve optimal 

model performance. This demanding task involves extensive 

experimentation and substantial computational resources.  

Advanced CNN models incorporate sophisticated computer 

vision techniques, including semantic or instance 

segmentation, as exemplified by R-CNN and its various 

iterations [26], along with object detection, as exemplified by 

the YOLO model and its iterations [19, 27]. These latter 

models are characterized by real-time responsiveness, 

although it should be noted that their accuracy tends to be 

lower when compared to R-CNN models. 

The research outlined in Table 1 includes the use of various 

classical machine learning techniques, that have produced 

impressive levels of accuracy. In particular, the Support 

Vector Machine (SVM) model has demonstrated robustness, 

as evidenced by studies conducted by Kiratiratanapruk et al. 

[23], Koklu et al. [24], Agarwal and Bachan [9], and Xu et al. 

[28]. The SVM model achieved varied precision results in the 

classification of different materials. Specifically, it showed a 

relatively modest precision of 83% for rice classification [23] 

and 84% for cocoa classification [22]. Conversely, it showed 

higher performance in the classification of dry beans [24], 

wheat [9], and maize [28], with respective precisions of 

93.19%, 93%, and 96.46%. 

The Artificial Neural Network (ANN) model has also 

exhibited its proficiency in the works [8, 10-12, 29] achieving 

accuracies ranging from 95% to 98.2%. Furthermore, de 

Medeiros et al. [30] achieved a high accuracy of 97% by using 

the Linear Discriminant Analysis (LDA) model, albeit with a 

relatively small dataset. 

It is noteworthy that in the context of Algeria, a single study 

conducted by Laabassi et al. [18] has ventured into the realm 

of deep learning for the classification of two varieties of durum 

wheat and two varieties of bread wheat. This study achieved 

an accuracy rate of 95.68% using the DenseNet model. 

Consequently, our research represents one of the pioneering 

efforts in Algeria to apply artificial intelligence and computer 

vision techniques to the classification of durum wheat grain 

varieties and impurities. 

The limitations associated with deep learning, such as the 

demand for extensive labelled data, significant computational 

resources, and challenges in hyperparameter tuning, can pose 

considerable obstacles. In scenarios with a specific and limited 

dataset size, SVM, with its capacity to perform well with 

smaller datasets and reduced computational requirements, 

may present a more practical solution. The simplicity and 

interpretability of SVM models can also be advantageous, 

addressing concerns related to the intricate "black-box" nature 

of deep neural networks. Furthermore, SVM's resilience 

against overfitting and its ability to handle complex decision 

boundaries make it a valuable alternative, particularly when 

faced with the constraints of a constrained dataset and limited 

computational capacity. 

 

Table 1. Related works uses classical machine learning 

 
Paper Models Extraction Features DataSet Device  Seed Kind Accuracy 

[7]  

KNN, NB, 

CART, 

Gaussian, 

Hard Voting 

Morphology  

(Area, Perimeter ...etc) 

210 Images 

3 wheat varieties Kama, 

Rosa, and Canadian 

XRay 

(Kodak 

Plates) 

Wheat 
95% 

Hard Voting  

[23] 
LR, LDA, 

KNN, SVM 

Shape, Colour, 

Texture 

14 rice varieties 

2900 each class 

Flatbed 

Scanner 

(600Dpi) 

Rice 

83 % 

SVM  

 

[8] 
PCA, SVM, 

ANN  

Texture 

125 Feature (LBP, GLCM, 

GLRM) 

350 Image 

7 varieties 

 

Webcam  

Logitech  
Wheat 

95% 

ANN (with 20 

features) 

[30] 
LDA, RF, 

SVM 
 

700 Images 

7 varieties 
 soybean seed 

97% 

LDA 

[22] 

SVM, RF 

Resnet18, 

ResNet50 

Colour, Texture 

92 features  

3468 images  

5 varieties 

CCD 

Camera 

 12.6Mp 

Cacao 
84.98% SVM  

96.82%ResNe 

[24] 
MLP, SVM 

KNN, DT 

16 features  

(Shape, 

dimensional) 

13611 images 

7 varieties 

RGB 

Camera 

2.2Mp 

dry beans 
93.19% 

SVM  

[9] 
SVM, KNN 

MLP, NB 

23 features  

(colour, Texture) 

60 wheat grains 

2 classes (fresh and 

rotten) 

Mobile  

Camera 
Wheat 

93% 

SVM 

[28] 

MLP, DT, 

LDA, NB, 

SVM, KNN 

AdaBoast 

16 features  

(4 shapes ,12 dimensions) 

Otsu segment 

8080 images 

5 varieties 

RGB 

camera 
Maize 

96.46% 

SVM 

[10] ANN 
236 features (morphology, 

colour, wavelet...) 

3000 images  

3 classes 
Camera 

Vitreous, starchy 

wheat, impurities 

93.46% 

ANN 

[11] 

ICP+ANN + 

extraction 

features 

 
720 images 

9 classes 
Scanner 

-wheat vs 

 nonWheat 

-wheatClasses 

-non-wheat 

- 96.25%, 

 

- 87.50%, 

- 77.22%, 

[12] ANN 12 features 200 wheat grains Camera Soft & durum wheat MAE = 9.8x10 -6 
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3. MATERIEL AND METHOD 

 

Our research methodology consists of a sequence of 

modules, beginning with data acquisition, followed by dataset 

refinement, and culminating in the presentation of model 

development. Finally, we conclude with a thorough 

examination of the results and a comprehensive discussion to 

assess the performance of our model, comparing its findings 

with related research. 

 

3.1 Data collection 

 

We obtained samples of wheat seed and impurities from two 

institutions: the Seed Batch Control Centre (CCLS) and the 

National Crop Control Centre (CNCC). The CNCC samples 

included four different varieties of durum wheat, namely 

Vitron, Bousellam, GTA, and Oued El-Bared. Meanwhile, the 

CCLS samples included three other cereal species, including 

bread wheat, barley, triticale, and oats. The sample collection 

also included two types of impurities, mitadine and lean grains. 

This approach resulted in a total of nine different classes. 

The process of capturing images of these grains followed a 

specific procedure. Grains from each class were photographed 

using a scanner (brother dcp-t310) and organized into folders 

corresponding to their respective classes. A black background 

was used during the scanning process to minimise the effect of 

shadows. The different types of grain were positioned on an 

A4 paper before scanning. The scanner's image resolution was 

configured at 600 dots per inch (dpi), with lighting conditions 

and contrast both set to 50%. Additionally, the scanning mode 

was selected as colour with 24 bits per pixel.  

 

3.2 Dataset preparation 

 

The performance of a machine learning (ML) model largely 

depends on the quality of the dataset used for its training. 

Several fundamental conditions, such as the adequate dataset 

size, class balance, and data quality, play a crucial role in 

determining this quality. Figure 1 illustrates the different steps 

we took to prepare a high-quality dataset, accompanied by a 

detailed explanation of each step that follows. 

 

3.2.1 Image segmentation 

Image segmentation plays a central role in the identification 

and classification of various objects within an image, with a 

particular focus on its utility in the classification of wheat 

grains. This task can be performed either by classical 

techniques such as thresholding, edge detection, region-based 

methods and watershed analysis [31, 32], or by approaches 

based on artificial intelligence (AI) [33]. The latter category 

includes unsupervised clustering methods such as k-means 

and mean shift, and deep learning techniques such as 

convolutional neural networks (CNN), region-based CNNs 

(R- CNN), the fastest, fastest R-CNNs. R-CNN, R-CNN mask 

and object detection. 

According to the findings from the literature review, 

classical methods hold a prominent position in grain 

classification applications. Techniques such as Otsu's 

thresholding and the Canny edge detector are widely favoured 

due to their simplicity and minimal computation time. It's 

important to highlight that their effectiveness depends largely 

on meticulous consideration of the environmental conditions 

to attain optimal results. These achievements are commonly 

realized in industrial settings where an industrial camera is 

used within a controlled processing setup, to ensure a stable 

image background. 

In such well-controlled environments, the use of classical 

image segmentation methods proves to be not only sufficient, 

but also optimal to achieve the desired objectives. However, 

it's important to recognize that challenges may arise in 

scenarios where grains are in close contact, particularly during 

the scanning of wheat grains that contain different species or 

impurities. In such complex situations, classical approaches 

are often limited and may not provide the desired results. 

 

 
 

Figure 1. Dataset preparation steps 
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Therefore, the image segmentation process in our system 

involves four sequential steps, namely image pre-processing, 

Otsu's thresholding, Canny edge detection, and image post-

processing. These deliberate steps are strategically designed to 

improve the quality of the segmentation results while 

effectively addressing potential challenges posed by situations 

involving multiple grain contacts. 

Once the image segmentation has been successfully 

completed, the next step is to precisely crop the segmented 

image into discrete individual grain images. This precise 

partitioning/segmentation/separation allows each grain to be 

isolated and analysed individually. This meticulous process 

enables us to curate a dataset that is well suited to efficient 

classification algorithms and the extraction of key 

characteristics related to cultivated grains. 

Step 1: Image Pre-processing 

Prior to the actual segmentation process, we implemented 

three distinct methods. The "Grayscale" conversion technique 

was applied to transform the colour image into grayscale. 

Following this, we employed the Adaptive Median Filter [34, 

35] to effectively eliminate salt and pepper noise from the 

image. Additionally, the Gaussian Filter [36] was utilized to 

efficiently attenuate high-frequency noise and impart 

smoothness to the grayscale image. 

Step 2: Image Segmentation Combination with Two 

Methods 

In this step, there is a combination of two image 

segmentation methods: Otsu’s thresholding [37] and Canny 

edge detection [37, 38]. To improve the accuracy and quality 

of the overall image segmentation, we use a bitwise OR 

operator to combine the results of both methods, see (Figure 

1). 

Step 3: Image post-processing 

After combining the two segmented images, the resulting 

image undergoes a sequence of post-processing procedures. In 

our approach (as shown in Figure 2), we use two different 

morphological operations: erosion and dilation. 

Erosion, a morphological operation, causes the foreground 

regions of an image's boundaries to contract or erode. 

Conversely, dilation, the opposite of erosion, expands the 

boundaries of an image's objects by scanning the image and 

adding pixels to the edges of the object. 

 

 
 

Figure 2. Morphological operations on an image contain 

multiple touching grains 

 

3.2.2 Contour detection and image cropping 

The next step after segmentation is contour detection. 

Contours are continuous curves that follow the edges of 

objects in an image. Once the contours are detected, the image 

is cropped to isolate individual grains. The cropping process 

uses OpenCV's boundingRect function to obtain the 

coordinates of the bounding rectangle for each contour. 

Criteria such as the minimum contour area are used to filter 

out undesirable contours. 

Then, in order to standardize the input for classification 

while preserving the distinct characteristics of different grains, 

the cropped grain images are centred within fixed-size black 

images. A custom function is implemented using Python and 

OpenCV to generate fixed-size black images, calculate 

optimal positions for placing the grains at the center, and 

accurately position the grains within the fixed-size images. 

(Figure 1). 

 

3.2.3 Dataset equalization and partitioning  

As a result of the image segmentation process and 

subsequent image cropping, we obtained individual images 

each with a single grain, from the scanned images. However, 

this process resulted in an unbalanced dataset where the 

number of images in each class varied significantly. For 

example, there were 4500 images of barley, 2051 images of 

oats, but only 750 images of Mitadine. It was noted that this 

case of unbalanced data leads to the problem of a poorly 

trained model and therefore the 'Accuracy' evaluation metric 

can be misleading because it does not reflect the training state 

of the model.  

To avoid this problem, we need to ensure a balanced 

representation of classes within our dataset. To do this, we 

followed a systematic approach. Instead of using traditional 

methods such as data augmentation or resampling, we divided 

the dataset into three separate groups: one for species, one for 

impurities, and one for varieties. Each of these groups was 

meticulously organized to contain an equal number of samples 

for each class. This deliberate distribution allows us to 

maintain uniformity in the number of images across all classes, 

making it easier to train and evaluate fair and efficient models.  

Subsequently, we collectively allocated 80% of each group 

to the training and validation subsets. The remaining 20% 

were reserved for testing and evaluation, where the 

performance of the models would be comprehensively 

evaluated. For clarity, let’s break down the breakdown of each 

group. 

Group 01: Contains a total of 10,000 images of 5 different 

species. We assigned 8,000 images for training and validation 

(80%/20%), while the remaining 2,000 images are designated 

for testing as shown in the Table 2. 

 

Table 2. Dataset partitioning of species 

 
 Durum 

Wheat 

Bread 

Wheat 

Barly Oats Triticale 

Train/validation 1600 1600 1600 1600 1600 

Test 400 400 400 400 400 

 

Group 02: Contains a total of 4,200 images of 4 different 

Durum wheat varieties. We assigned 3,360 images for training 

and validation (80%/20%), while the remaining 840 images 

are designated for testing as shown in the Table 3. 

 

Table 3. Dataset partitioning of durum wheat varieties 

 
 Bousselam Oued el 

Bared 

Vitron GTA 

Train/validation 840 840 840 840 

Test 210 210 210 210 

 

Group 03: Contains a total of 2,860 images of 4 different 
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impurities. We assigned 2,288 images for training and 

validation (80%/20%), while the remaining 572 images are 

designated for testing as shown in the Table 4. Note that we 

have included durum wheat in this category to enable the 

model to distinguish among the three impurity types and 

durum wheat grains. 

 

Table 4. Dataset partitioning of durum wheat impurities 

 
 Durum 

Wheat 

Bread 

Wheat 

Lean 

Wheat 

Mitadine 

Train/validation 572 572 572 572 

Test 143 143 143 143 

 

In summary, we meticulously balanced our dataset by 

creating three distinct groups for species, impurities, and 

varieties. Each group maintained an equal distribution of 

samples across all classes to ensure fairness in model training 

and evaluation. Subsequently, we divided each group into 80% 

training and validation data, reserving 20% for comprehensive 

testing and performance assessment. This strategic approach 

lays the foundation for robust model training and accurate 

quality assessment of wheat grains. 

 

3.3 Model construction 

 

The construction of our model involves several stages, each 

of which requires the application of various methods in order 

to achieve an optimal classification model with a high level of 

accuracy for durum wheat grains and their different varieties 

and impurities. 

We first discuss the methods used to extract descriptors 

from the images in our dataset, followed by a review of the 

normalisation techniques applied to these descriptors. 

We then explain the adaptation of the Support Vector 

Machine (SVM) model for multiclass classification. We 

present the specific methods used to find the optimal 

hyperparameters of the model. During the training phase, we 

also explore different combinations of the extracted 

descriptors to determine the most effective combination 

among them. 

 

3.3.1 Image descriptors 

In the context of using machine learning and computer 

vision, descriptors involve capturing and quantifying 

significant information from the image of interest, which is in 

our case is the image of raw grains and impurities. These 

image descriptors play a key role in the ongoing image 

classification tasks that we are undertaking in our research. We 

have classified the image descriptors into three distinct 

categories: morphological descriptors, color descriptors, and 

texture descriptors [39]. 

For the morphological descriptors, we extracted eight 

essential features, including area, perimeter, circularity, aspect 

ratio, as well as shape factor1(sf1), shape factor2 (sf2), shape 

factor3(sf3), and shape factor4 (SF4). These descriptors 

provide insight into the size, shape, and geo-characteristics of 

the grains. 

In terms of colour features, we carried out comprehensive 

assessments across different colour spaces and channels, such 

as RGB, HSV, XYZ, LAB, and YCbCr. In our research, we 

computed statistical metrics such as mean, standard deviation, 

skewness, kurtosis, and entropy for each of these different 

colour channels. This approach results in a total of 90 colour-

related features. 

In terms of textures, we calculate 102 features using both 

the Gray-Level Run Length Matrix (GLRM) and Gray-Level 

Co-occurrence Matrix (GLCM) algorithms [40, 41]. For the 

GLRM, we consider multiple distance and angle 

configurations, including distances of 1, 2, 3, and 4 units, and 

angles of 0, π/4, π/2, and 3π/4 radians, effectively capturing 

texture information across various spatial relationships. 

Additionally, for the GLCM, we focus on distances of 1 unit 

and angles of 0, π/4, π/2, and 3π/4 radians, ensuring a 

comprehensive analysis of texture patterns in our wheat seed 

image dataset. 

The computed image descriptors, comprising a total of 200 

features including 102 texture features, 8 morphological 

features, and 90 colour features, enable comprehensive 

characterization of the raw grain images. This combined 

feature set contributes to robust and discriminative image 

classification. 

 

3.3.2 Features normalisation 

In our relentless pursuit of precision in classifying different 

wheat grains, we’ve ventured into the realm of feature 

normalization. This crucial step, often underestimated, plays a 

key role in ensuring that our machine learning model can make 

the most of the diverse range of image descriptors extracted 

from our wheat grains images. 

First, we explored the Min/Max normalization technique 

also known as Min-Max Scaling. Its main advantage lies in its 

ability to place all features on a uniform scale, neatly confined 

between the values of 0 and 1. This is particularly beneficial 

when dealing with descriptors that encompass different units 

and magnitudes. The Max/Min Normalization technique 

ensures that no feature dominates the learning process due to 

its inherent scale. Despite these advantages, Min/Max 

normalization also has its limitations: while it's successful at 

rescaling features within a certain range, it can be sensitive to 

outliers. Outliers can have a disproportionate impact on the 

scaling process, potentially leading to a loss of information or 

distortions/bias in the data [42]. 

In our search for robustness in the face of outliers, we turned 

our attention to Robust Normalization. Robust Normalization 

takes refuge in the shelter of the median and interquartile range 

(IQR). In the presence of outliers, which can be a turbulent 

force in real-world datasets, Robust Normalization stands as a 

steadfast guardian. It shields our model from the disturbances 

caused by extreme values. While robust Normalization is 

effective in reducing the influence of outliers, it can lead to 

non-zero means and varying standard deviations across 

features, which may impact model convergence and 

interpretation. 

In contrast, Standardization Normalization, also called Z-

Score, ensures a mean of 0 and a standard deviation of 1 for 

all features, promoting consistent scaling and aiding model 

convergence. This uniformity in feature scaling allows for fair 

comparisons and mitigates the dominance of any single feature. 

Consequently, in our dataset where consistency, robustness, 

and interpretability are paramount, Z-Score Normalization 

emerges as the optimal choice, overcoming the limitations of 

Robust Normalization and improving the precision and 

stability of our classification model. 
 

3.3.3 Support Vector Machine (SVM) model 

Machine learning is a discipline within the realm of 

artificial intelligence that focuses on developing algorithms 

and statistical models where computer systems learn and 

improve their task performance by analysing and adapting to 
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data patterns without being explicitly programmed for those 

tasks [43]. This technology has been applied in computer 

vision, which aims to give machines the ability to interpret and 

understand visual information extracted from images or videos, 

emulating the human capacity for visual perception and 

interception [44]. 

In the overarching context, we look at the application of 

machine learning and computer vision to the complex task of 

wheat seed species classification. This task involves the 

systematic categorization and differentiation of various wheat 

seed species based on their distinctive visual characteristics. 

Among the many machine learning algorithms available, we 

selected the Support Vector Machine (SVM) [39] as the 

cornerstone of our classification machine learning model. 

SVM is known for its proficiency in handling high-

dimensional data, which makes it particularly well-suited for 

the multi-feature descriptors derived from our seeds and 

impurities images. However, it's important to note that SVM 

is inherently designed for binary classification tasks, where it 

seeks to find an optimal hyperplane in feature space to separate 

two distinct classes. 

To harness the full potential of SVM in our multi-class 

classification challenge, we've strategically employed the 

One-vs-All (OvA) approach [45]. This technique transforms 

our multi-class problem into a series of binary classification 

subproblems, where each class is treated as a separate binary 

classification task against all other classes. 

In the following section, we delve into the process of 

training our SVM model, using the standardized normalization 

features and employing the one-vs-all approach to address 

multi-class classification. 

 

3.3.4 Fine tuning SVM model and training 

In almost every machine learning project, we train different 

models on the dataset and select the one with the best 

performance. We found that an important factor in the 

performance of these models is their hyperparameters. Once 

we set appropriate values for these hyperparameters, the 

performance of the model can improve significantly. Note that 

there is no way to know the best values for the 

hyperparameters in advance, so ideally, we should try all 

possible values to find the optimal ones. Doing this manually 

could take a lot of time and resources, so we use the grid search 

method to automate hyperparameter tuning. In this article, we 

have used the grid search technique, which is based on the k-

fold cross-validation approach. 

K-Fold Cross validation: is a fundamental technique widely 

used to evaluate the performance of machine learning and deep 

learning models by partitioning the dataset into ‘k’ subsets 

(folds) of equal size. The model is trained and evaluated ‘k’ 

times, with each fold serving as a validation set once, while 

the remaining folds are used for training. This process ensures 

that each data point is part of the validation set exactly once, 

allowing for a comprehensive evaluation of the model’s 

performance [46]. 

The choice of K should strike a balance between the 

representativeness of each fold and computational efficiency. 

In our research, we carefully considered this balance and 

decided to use K = 5 as the number of folds for our 

experiments. This choice ensured a meaningful evaluation of 

model performance while making efficient use of our 

computational resources. 

Grid Search: is the process of performing hyperparameter 

tuning in order to determine the optimal values for a given 

model [47, 48]. We pass predefined values for 

hyperparameters to the grid Search function. We do this by 

defining a dictionary in which we mention a particular 

hyperparameter along with the values it can take. The Grid 

Search method tries all combinations of the values passed in 

the dictionary and evaluates the model for each combination 

using the Cross-Validation method. Hence after using this 

function, we get the accuracy/loss for each combination of 

hyperparameters and we can choose the one with the best 

performance. C and kernels are some of the hyperparameters 

of an SVM model that we are interested in this article. 

kernel: It represents the type of kernel to use (RBF is the 

default). Choosing the right kernel is crucial, and each kernel 

has its own advantages. For example, in the case where the 

dataset is linearly separable, it is preferable to use the linear 

kernel. In the case where the dataset has several classes, the 

best choice is the RBF (Radial Basis Function) because it 

supports projection into high-dimensional spaces. Note that 

this choice is more questionable in terms of computing power. 

 

 
 

Figure 3. Scheme of 5-Fold Cross validation with SVM for optimal hyperparameters 
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C: This is the precision regularization parameter. If the C is 

high, we will choose a hyperplane with a smaller margin, so 

that the classification error rate will be lower. The use of this 

hyperparameter helps to avoid overfitting. 

In the model training phase, our primary goal is to optimize 

the hyperparameters of the Support Vector Machine (SVM) 

model for optimal performance. This essential step involves 

K-Fold cross-validation with K set to 5, which allows us to 

rigorously assess the model's performance while preventing 

overfitting. 

Within the K-fold cross-validation framework, we conduct 

an in-depth grid search, systematically testing a range of 'C' 

values (0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300) and 

experimenting with different kernel functions, including linear 

and radial basis function (RBF). Note that the rest of the 

hyperparameters are set to their default values. This 

meticulous process aims to uncover the optimal 

hyperparameter settings that best suit our unique classification 

challenge (Figure 3). 

The result of our grid search with cross-validation revealed 

the ideal hyperparameters for each dataset. For the species 

dataset, 'C' was set to 30, with a linear kernel. In contrast, for 

the variety’s dataset, 'C' was set to 100, using the linear kernel. 

Finally, for the impurity’s dataset, 'C' was set to 3, using the 

linear kernel. These carefully chosen hyperparameters serve as 

the cornerstone of our SVM models, ensuring that they are 

fine-tuned for their respective classification tasks. 

 

 

4. MODEL EVALUATION  

 

The confusion matrix is a table layout that visualizes the 

performance of a model, the actual target values and model 

output values are compared in this matrix, which has the same 

number of rows and columns as classes. where True Positive 

(TP) is the instances that are correctly classified as positive by 

a classification model, True Negative (TN) The instances that 

are correctly identified as negative by a classification model, 

FalsePositive (FP): The instances that are incorrectly classified 

as positive by a classification model, False Negative (FN): The 

instances that are incorrectly classified as negative by a 

classification model. We use the information in this matrix to 

calculate various performance metrics, including precision (1), 

recall (2), F1 Score (3), and accuracy (4), to evaluate the 

effectiveness of the classification model used in our study. 

Precision (1): for a specific class is the ratio of true positive 

predictions for that class to the total predicted positives for that 

class. It provides insights into the model's ability to avoid false 

positives specifically for the considered class. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (1) 

 

Recall (2): for a specific class is the ratio of true positive 

predictions for that class to the total actual positives for that 

class. It measures the model's ability to capture all relevant 

instances of the considered class. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 

 

F1-Score (3): is the harmonic mean of precision and recall, 

offering a balanced measure that considers both false positives 

and false negatives. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2∗𝑝𝑟𝑒𝑐𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (3) 

Accuracy (4): is the percentage of correct predictions out of 

the total number of predictions made by a model, it gives an 

overall measure of how accurate the model is in its 

classifications. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (4) 

 

4.1 Results and discussion 

 

During the training of the SVM model, we applied the one-

Vs-all technique with scaled features normalized by the Z-

score method. Five combinations of features (namely colour, 

texture, morphological, colour + texture, and combined all 

Features) were prepared to determine which combination gave 

the highest accuracy. The test results are shown in Table 5. 

 

Table 5. SVM Accuracy with different features combination 

 
 Accuracy 

Features Species  Impurities  Varieties 

Colour 96.9 92.3 85.83 

texture 94.45 79.37 77.26 

Morphological 90.4 71.15 56.54 

Colour + texture 98.45 94.23 94.52 

Combined all 99 93.88 95.55 

 

The analysis revealed that colour features alone were highly 

effective for species classification with 96.9% accuracy (4) 

and impurity detection (92.3%) by capturing unique colour 

patterns, but less optimal for variety classification (85.83%). 

Texture features significantly contributed to species 

classification (94.45%) by identifying textural variations, yet 

struggled to differentiate subtle impurity (79.37%) and variety 

(77.26%) differences.  

While morphological features excelled at species 

classification (90.4%) through structural characterization, they 

lacked specificity for precise variety and impurity distinctions. 

Ultimately, combining complementary colour and texture 

features enabled high accuracy across all categories - species 

(98.45%), impurities (94.23%), varieties (94.52%) by 

integrating distinguishing textural and morphological traits.  

This nuanced accuracy breakdown underscores the pivotal 

role of feature selection in optimizing SVM model 

performance, emphasizing the effectiveness of combined 

features in achieving superior classification outcomes across 

species, impurities, and wheat varieties. 

For a more detailed evaluation of the model, we analyse the 

results using the confusion matrix for each dataset, namely 

impurities, varieties, and species. In Figure 4, we observe that 

our SVM model, after a fine-tuning process, has achieved a 

remarkable and competitive classification performance of 

barely species compared to the deep learning model Bayram 

and Yildiz [49]. The performance was evaluated using the F1 

score see (3), which ranged from 98.62% to 99.75%. It is 

important to note that there is a very small variation between 

precision and recall for the different species classes, as well as 

for the classes corresponding to impurities. 

Regarding the impurity classes in Figure 5, we found that 

the bread wheat and lean wheat classes were classified very 

satisfactorily, with high precision values of 96.57% and 

96.47%, respectively. Conversely, the "mitadine" and durum 

wheat classes obtained slightly lower values, about 6% to 4% 

less than the first two classes. This classification discrepancy 

can be attributed to the physical similarities between durum 

wheat and mitadine types. Mitadine are altered durum wheat 
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kernels that the model sometimes struggles to distinguish from 

regular durum wheat. Specifically, 8 mitadine images were 

misclassified as durum wheat and 9 durum images as mitadine, 

resulting in recalls of 92.30% and 90.20% respectively. This 

indicates the need to re-examine the extracted features or 

expand the dataset size. Refining the features or training 

examples could potentially improve the model's ability to 

make nuanced distinctions between these physically similar 

wheat classes. 

 

 
 

Figure 4. Confusion matrix of the best model for species 

 

 
 

Figure 5. Confusion matrix of the best model for impurities 

287



 

 
 

Figure 6. Confusion matrix of the best model for varieties  

 

Regarding variety classification in Figure 6, our SVM 

model identified the "Vitron" variety with a slightly lower 

accuracy. On the other hand, the model achieved a higher 

recall of 96.19% for the "Oued el Bared" variety. This superior 

performance can be explained by the distinct colour and 

morphological characteristics of this variety compared to 

others. 

To ensure the relevance and credibility of our model, we 

make a comparison with similar work results (presented in 

Table 6). In this comparison, we try to identify recent research 

studies that closely align with our own work, focusing on grain 

types (specifically, Durum wheat and its varieties, along with 

impurities). 

 
Table 6. Comparison the accuracy of SVM with similar work 

 
Paper Year Wheat Kind  Accuracy  

[7] 2022 3 varieties 95.0% 

[8] 2022 7 varieties 95.0% 

Our SVM  4 varieties 95.55% 

[9] 2023 2 impurities 93% 

[10] 2019 3 Impurities 93.46% 

Our SVM  3 impurities 94.23% 

[18] 2021 Vitron variety  80.15% 

Our SVM  Vitron variety 93.33% 

 
Both studies by Khatri et al. [7, 8] in Table 6 used classical 

machine learning models to classify wheat varieties. Khatri et 

al. [7] aggregated the results of three models (KNN, Naive 

Bayes, and Decision Tree) using majority voting to achieve an 

accuracy of 95%. At the same time, Khojastehnazh and 

Roostaei [8] compared two models, ANN and SVM, with 

ANN achieving the highest accuracy of 95%. It is worth noting 

that our fine-tuned SVM model delivered impressive results, 

surpassing both of these closely related studies with an even 

slightly higher accuracy of 95.55%.  

Regarding research similar to ours in terms of classification 

of impurities associated with wheat and using SVM as a model, 

we can mention the works of Agarwal and Bachan [9] and 

Kaya and Saritas [10], both of which achieved an accuracy of 

93%. However, our improved SVM model achieved a superior 

accuracy of 94.29%. This highlights the effectiveness of our 

improved SVM model and the credibility of its results. 

The last comparison we made involved comparing our 

model with a deep learning model presented in the study by 

Laabassi et al. [18]. In this study, the DenseNet model 

achieved a classification recall of 80.15% for the Vitron 

variety, while our own model achieved a recall of 93.33% for 

the same variety. This comparison once again underlines the 

effectiveness and credibility of our approach, especially for the 

classification of Durum wheat varieties. 

Our approach excels in fine-tuning the SVM model, 

outperforming more complex counterparts like ensembles and 

deep networks. This optimized SVM offers advantages, 

requiring less data and computational resources while 

maintaining interpretability. Yet, limitations include reliance 

on handcrafted feature extraction, demanding domain 

expertise and potentially introducing biases. Additionally, 

there's a risk of reduced generalization as the model is 

optimized on a specific dataset with particular conditions.
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5. CONCLUSIONS 

 

This study presented a durum wheat classification model for 

Algerian varieties using computer vision and an optimized 

support vector machine model. The aim was to improve the 

efficiency and precision of quality control processes for this 

vital cereal crop for agriculture. 

The proposed approach aimed to effectively differentiate 

durum wheat species, identify common impurities and 

accurately categorize the main Algerian durum wheat varieties. 

Through optimized image processing and extraction of colour, 

texture and morphological features, optimal hyperparameter 

search, the developed SVM model achieved strong 

performance exceeding 95% accuracy for variety 

classification, 94.23% for impurities and 99% for species. 

Future works should focus on evaluating the approach 

through to develop a method for selecting the most optimal 

and efficient image descriptors. Moreover, our aspiration is to 

develop a unified model capable of recognizing and 

categorizing all three classes species, varieties, and impurities 

simultaneously. This model aims to streamline the integration 

into an automated system for the certification process of 

durum wheat. 
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