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Fuzzy labeling in graph theory is important because it enhances the modelling of 

uncertainties, gives relationships a granular representation, makes network models 

more robust, enables clustering and community detection, contributes to decision-

making, enables machine learning and data mining, and has applications in different 

fields where complex structures need to be expressed with degrees of membership or 

uncertainty. In this paper, we proved that the twing and comb graphs admit fuzzy 

labeling by providing an algorithm. Also, we show that the twing and comb graphs 

reveal vertex and edge anti-magic labeling. Fuzzy end vertex, fuzzy bridge, degree, 

strong degree, and strong edge are mostly related to connectivity, so they may be 

applied to networking. Because of that, we have derived some properties related to the 

fuzzy end vertex, fuzzy bridge, degree, strong degree, and strong edge have been 

discussed. 
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1. INTRODUCTION

In graph theory, labeling is a fundamental concept that 

studies connections and relationships between objects 

represented by vertices, or nodes, interconnected by edges, or 

links. In graph labeling, vertices, edges, or both are assigned 

numerical or symbolic labels to convey specific information 

or encode graph properties. Depending on the graph's context 

and application, these labels can represent distances, colors, 

weights, or any other relevant characteristics.  

Fuzzy graph labeling can be used in many areas, such as 

decision-making, pattern recognition, image processing, and 

network analysis when inaccuracies and ambiguities need to 

be taken into account. Graph-based models are often 

characterized by uncertainty, which can be captured and 

quantified using fuzzy graph labeling. 

Gallian [1] discussed various graph labeling in the dynamic 

survey of graph labeling. The fuzzy graph (FG) is more 

noticeable when there is ambiguity on vertices and edges, and 

the FG is more prominent. Rosenfield [2] had a salient 

advancement in the mathematical system for haziness in 

vertices and edges. Fuzzy Labeling graphs (FLG) have 

applications in coding theories, circuit designs, X-rays, 

astronomy, communication networks, etc. The notion of fuzzy 

labeling (FL), magic fuzzy labeling graph discussed by Gani 

and Subahashini [3], Nagoor Gani and Akram [4]. Ameenal 

Bibi and Devi [5], Bibi and Devi [6] studied vertex graceful 

fuzzy labeling and fuzzy anti-magic labeling of some graphs. 

Sujatha et al. [7, 8] proved some outcomes on graceful FL, 

magic FL, and Triangular anti-magic FL in an algorithmic 

approach for some unique graphs. Shanmugapriya and 

Hemalatha [9] have explored fuzzy edge magic total labeling 

for some family of graphs and discussed the application of 

finding the strength of relationship between two persons. 

Shanmugapriya and Hemalatha [10] have obtained fuzzy 

vertex magic total labeling of generalized Peterson graph and 

demonstrated application about electricity passing through 

transformers. Mahdi et al. [11] discussed about medical 

images using fuzzy convolutional neural networks. Saibavani 

and Parvathi [12] explained the power domination in different 

graphs with applications. Sujatha et al. [13] illustrated the anti-

magic labeling on some triangular fuzzy graphs. Rashmanlou 

et al. [14] discussed the new operations on bipolar FGs. 

Akram and Waseem [15] explained the notion of metric in 𝑚- 

polar FG and disscussed properties.  

A graph is a Fuzzy Edge Anti-Magic labeling graph if a 

Fuzzy Edge Anti-Magic (FEAM) labeling is defined on it. A 

graph is a Fuzzy Vertex Anti-Magic labeling if a Fuzzy Vertex 

Anti-Magic (FVAM) labeling is defined on it. In this paper, 

we established FEAM labeling and FVAM labeling for fuzzy 

comb and fuzzy twing graphs. This study may be used in the 

field of social networking, Road networking and etc. The 

above results can be expanded with fuzzy interval, triangular 

fuzzy number and trapezoidal fuzzy number. 

2. PRELIMINARIES

“An FG G(μ, ρ) is a couple of functions μ:V→[0, 1] & 

ρ:V×V→[0, 1] where ∀u,v∈ 𝑉, then ρ(u, v)≤min{μ(u), μ(v)}.” 

[3]  

“A graph G(μ, ρ) is known as FLG, if μ:V→[0, 1] & 
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ρ:V×V→[0, 1] is one-one correspondence in which the grade 

of membership of edges and vertices are different and 

ρ(u,v)<min{μ(u),μ(v)}∀u,v∈ 𝑉.” [3] 

The vertex degree of u is defined by 𝑑(𝑢) =
∑ 𝜌(𝑢, 𝑣)𝑢≠𝑣,𝑣𝜖𝑉 .  

Example 2.1 

 

 

 
 

Figure 1. Fuzzy labeling graph 

 

From Figure 1, the degree of the vertex is defined as: 

d(v1)=0.4+0.1=0.5, d(v2)=0.1+0.3+0.2=0.6, d(v3)=0.4+0.3 

+0.5=1.2, d(v4)=0.5+0.2=0.7. 

“The strength of P is defined as ⋀ 𝜇𝑛
𝑑=1 (𝑣𝑑−1, 𝑣𝑑). i.e., the 

strength of a path is defined to be the weight of the weakest 

edge of the path.” [3]  

“A strongest path joining any two nodes u, v is a path 

corresponding to maximum strength between u and v. The 

strength of the strongest path is denoted by μ∞(u, v).” [3] 

An edge (u, v) of an FG is known as strong edge if ρ∞(u, 

v)=ρ(u, v). 

“A strong neighborhood of 𝑢 ∈ 𝑉 is 𝑁𝑠(𝑢) ={v∈V: edge 

(u,v) is strong}.” [5]  

“Strong degree of a vertex is defined as the total 

membership value of all strong edges incident at that vertex. It 

is named by ds(v). Ie, 𝑑𝑠(𝑣) = ∑ 𝜌(𝑣, 𝑢)𝑢∈𝑁𝑠(𝑣) .” [5] 

“An edge is called a fuzzy bridge of 𝐺 if its removal reduces 

the strength of connectedness between some pair of vertices in 

𝐺.” [3]  

“If a vertex has almost one strong neighbour in G, it is said 

to as a fuzzy end vertex of G(μ, ρ).” [3] 

Example 2.2 

 

 
 

Figure 2. Fuzzy graph 

 

In Figure 2, the possible paths between v3 and v4 are v3v4, 

v3v1v2v4 and the strength of the corresponding paths are 0.5 

and 0.3. 
 

ρ∞(v3, v4)=0.5 

 

If we remove the edge v3v4 then the strength of the path will 

be reduced to ρ'∞(v3, v4)=0.3. 

Therefore, the edge v3v4 is a fuzzy bridge, strong edge and 

v3, v4 strong neighbours. 

An FG is called Fuzzy Edge Anti-Magic (FEAM) labeling 

if 𝜇(𝑢) + 𝜌(𝑢, 𝑣) + 𝜇(𝑣)∀𝑢, 𝑣 ∈ 𝑉  are all distinct and is 

denoted by Am0. 

A Fuzzy Vertex Anti-Magic (FVAM) labeling in “a graph 

G is a 1-1 correspondence 𝑓: 𝐸(𝐺) → {(1, 2, 3… , |𝐸(𝐺)|)} in 

which for any two different vertices 𝑣 and 𝑤, the total of the 

labels on edges incident to ‘v’ distinct from the total of labels 

on edges incident to w.” [8] 

An FG which admits FEAM labeling is known as the FEAM 

graph. An FG which admits FVAM labeling is known as the 

FVAM graph.  

 

 

3. COMB GRAPH 

 

A graph is obtained by joining every vertex of a path with 

one pendent edge is known as comb graph CPn.  

A comb graph is called a fuzzy comb graph if FL exists. 

Fuzzy comb graph is called FEAM comb graph if FEAM 

labeling exists. And also, fuzzy comb graph is called FVAM 

comb graph if FVAM labeling exists. 

In this section, the FEAM comb and the FVAM comb graph 

have been proved with the use of the proposed algorithm 

through the theorem. 

 

Algorithm 3.1 

FL of vertices and edges CPn with n≥1, where n is a path 

length and z→(0, 1] 

Step 1: Input values for n and z. 

n=int (input (“Enter the value for n:”)) 

z=float (input (“Enter the value for z:”)) 

Step 2: Calculate the maximum number of vertices 

    m=2n+2.  

Step 3: Initialize empty lists for vertex and edge labels 

vertex_labels = [] 

edge_labels = [] 

Step 4: Generate vertex labels using the given formula 

    for 𝑑 =1 to m 

{ 

 𝜇(𝑣𝑑) = (2𝑛 + 𝑑 + 1)𝑧, 1 ≤ 𝑑 ≤ 2𝑛 + 2 

} 

Step 5: Generate edge labels using the given formulas 

for 𝑑 =1 to m 

   if 𝑑 =1 

{ 

𝜌(𝑣𝑑 , 𝑣𝑑+1) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} 
        −𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} 

} 

   if 2≤ 𝑑 ≤n 

{ 

  𝜌(𝑣𝑑 , 𝑣𝑑+1) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} −
                𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} + (𝑑 − 1)𝑧 

} 

for 𝑑 =1 to m 

   if 1≤d≤n+1 

{ 

𝜌(𝑣𝑑 , 𝑣𝑛+1+𝑑) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+1+𝑑)} 
−𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+1+𝑑)} + (𝑛 + 1 − 𝑑)𝑧 

} 

Step 6: Output the vertices and edges labels  

Print (“vertex Labels:”) 

Print (“Edge Labels:”) 
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Theorem 3.1 

Let CPn:(μ, ρ) be the fuzzy labeled comb graph for all n≥1 

then CPn admits FEAM labeling.  

Proof: 

Let z→(0, 1] such that: 

 

𝑧 =

{
  
 

  
 

1

102
; 0 < 𝑛 ≤ 24

1

10𝑘+3
; 24 < 𝑛 ≤ 24 + ∑ 225 × 10𝑡  , 𝑘 = 0𝑖

𝑡=0
0≤𝑖≤𝑘

1

10𝑘+4
; 24 + ∑ 225 × 10𝑡𝑖

𝑡=0
0≤𝑖≤𝑘

< 𝑛 ≤ 24

+∑ 225 × 10𝑡𝑖
𝑡=0

0≤𝑖≤𝑘+1
, 𝑘 = 0,1,2⋯

  

 

Using algorithm 3.1, we have the membership value of 

vertices and edges defined as follows: 

 

𝜇: 𝑉 → [0,1] ∋ 𝜇(𝑣𝑑) = (2𝑛 + 𝑑 + 1)𝑧 ∀ 𝑣𝑑 ∈ 𝑉,  
1 ≤ 𝑑 ≤ 2𝑛 + 2 

 

ρ:V×V→[0, 1] such that 

 

𝜌(𝑣𝑑 , 𝑣𝑑+1) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} 
−𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)}, 𝑑 = 1 

𝜌(𝑣𝑑 , 𝑣𝑑+1) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} 

−𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} + (𝑑 − 1)𝑧, 2 ≤ 𝑑 ≤ 𝑛 

𝜌(𝑣𝑑 , 𝑣𝑛+𝑑+1) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+𝑑+1)} 
−𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+1+𝑑)} + (𝑛 + 1 − 𝑑)𝑧, 1 ≤ 𝑑 ≤ 𝑛 + 1 

 

To prove the FEAM labeling of the comb graph We show 

that all the anti-magic constants of the comb graph are 

different in the following three cases:  

Case 1: When d=1 and ∀n 

Now, 𝐴𝑚0(𝐶𝑃𝑛) = 𝜇(𝑣𝑑) + 𝜌(𝑣𝑑 , 𝑣𝑑+1) + 𝜇(𝑣𝑑+1) =
(2𝑛 + 𝑑 + 1)𝑧 + 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} −
𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} + (𝑑 + 2𝑛 + 2)𝑧 = (4𝑛 + 2𝑑 + 4)𝑧 

Case 2: When 2≤d≤n & ∀n 

Now, 𝐴𝑚0(𝐶𝑃𝑛) = 𝜇(𝑣𝑑) + 𝜌(𝑣𝑑 , 𝑣𝑑+1) + 𝜇(𝑣𝑑+1) =
(2𝑛 + 𝑑 + 1)𝑧 + (𝑑 − 1)𝑧 + 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} −
min{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} + (𝑑 + 2𝑛 + 2)𝑧 = (4𝑛 + 3𝑑 + 3)𝑧 

Case 3: When 2≤d≤n & ∀n≥2 

Now, 𝐴𝑚0(𝐶𝑃𝑛) = 𝜇(𝑣𝑑) + 𝜌(𝑣𝑑 , 𝑣𝑛+1+𝑑) +
𝜇(𝑣𝑛+1+𝑑), = (2𝑛 + 𝑑 + 1)𝑧 +𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+𝑑+1)} −
𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+𝑑+1)} + (𝑛 + 1 − 𝑑)𝑧 = (7𝑛 + 𝑑 + 5)𝑧  

Hence, in Case 1, Case 2, and Case 3, we have proved that 

all the anti-magic constants of the comb graph are different.  

Thus, fuzzy labeled comb graph admits FEAM labeling. 

Example 3.1 Figure 3 illustrates the FEAM comb graph of 

path length 24.

 

 
 

Figure 3. CP24- FEAM comb graph 

 

Algorithm 3.2 

 FL of vertices and edge of CPn with n≥1, where n 

is a path length and z→(0,1] 

 

Step 1: Input values for 𝑛 and 𝑧.  

n=int (input (“Enter the value for n:”)) 

z=float (input (“Enter the value for z:”)) 

 

Step 2: Calculate the maximum number of vertices  

    m=2n+2.  

Step 3: Initialize empty lists for vertex and edge labels 

vertex_labels =[] 

edge_labels =[] 

Step 4: Generate vertex labels using the given formula 

    for d=1 to m 

{ 

      

 𝜇(𝑣𝑑) = (2𝑛 + 𝑑 + 1)𝑧, 1 ≤ 𝑑 ≤ 2𝑛 + 2 

} 

Step 5: Generate edge labels using the given formulas 

for 𝑑 =1 to 𝑚 

   if 𝑑 =1 

{ 

𝜌(𝑣𝑑 , 𝑣𝑑+1) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)}
− 𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} 

} 

   if 𝑑 =1 

{ 

      

 𝜌(𝑣𝑑 , 𝑣2𝑛+2) = 𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣2𝑛+2)} + 𝑛𝑧 

} 

for 𝑑 =1 to m 

  if 0≤ 𝑑 ≤n-2 

{ 

        

 𝜌(𝑣𝑛+3+𝑑 , 𝑣𝑛+4+𝑑) =
         𝑚𝑎𝑥{𝜇(𝑣𝑛+3+𝑑), 𝜇(𝑣𝑛+4+𝑑)} −
          𝑚𝑖𝑛{𝜇(𝑣𝑛+3+𝑑), 𝜇(𝑣𝑛+4+𝑑)} + (2𝑛 − 𝑑)𝑧 

} 

for 𝑑 =1 to m 

  if 0≤ 𝑑 ≤n-1 

{ 

𝜌(𝑣3+𝑑, 𝑣2𝑛+2−𝑑)
= 𝑚𝑖𝑛{𝜇(𝑣3+𝑑), 𝜇(𝑣2𝑛+2−𝑑)} + (2𝑛 + 2)𝑧 

} 

Step 6: Output the vertices and edges labels  

Print (“vertex Labels:”) 

Print (“Edge Labels:”) 
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Theorem 3.2 

Let CPn:(μ, ρ) be the fuzzy labeled comb graph for all n≥1 

then CPn admits FVAM labeling. 

Proof:  

Given CPn:(μ, ρ) be the fuzzy labeled comb graph.  

To prove that fuzzy labeled comb graph CPn:(μ, ρ) satisfies 

the condition of FVAM labeling.  

That is to prove that for any two vertices u and v in CPn, the 

total of the grade membership on the edges incident at the 

vertex u is distinct from the total of the grade membership on 

the edges incident at the vertex v. 

Let z→(0, 1] such that 

 

𝑧 =

{
  
 

  
 

1

102
; 0 < 𝑛 ≤ 24

1

10𝑘+3
; 24 < 𝑛 ≤ 24 + ∑ 225 × 10𝑡𝑖

𝑡=0
0≤𝑖≤𝑘

 𝑤ℎ𝑒𝑟𝑒 𝑘 = 0

1

10𝑘+4
; 24 + ∑ 225 × 10𝑡𝑖

𝑡=0
0≤𝑖≤𝑘

< 𝑛 ≤ 24

+∑ 225 × 10𝑡𝑖
𝑡=0

0≤𝑖≤𝑘+1
𝑤ℎ𝑒𝑟𝑒 𝑘 = 0,1,2⋯

  

 

Using algorithm 3.2, we have membership value of vertices 

and edges defined as follows: 

 

𝜇: 𝑉 → [0,1] ∋ 𝜇(𝑣𝑑) = (2𝑛 + 𝑑 + 1)𝑧, 
1 ≤ 𝑑 ≤ 2𝑛 + 2 

(1) 

 

𝜌(𝑣𝑑 , 𝑣𝑑+1) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)}
− 𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} 

(2) 

 

𝜌(𝑣𝑑 , 𝑣2𝑛+2) = 𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣2𝑛+2)} + 𝑛𝑧, 𝑑 = 1 (3) 

 

𝜌(𝑣𝑛+3+𝑑, 𝑣𝑛+4+𝑑)
= 𝑚𝑎𝑥{𝜇(𝑣𝑛+3+𝑑), 𝜇(𝑣𝑛+4+𝑑)}
− 𝑚𝑖𝑛{𝜇(𝑣𝑛+3+𝑑), 𝜇(𝑣𝑛+4+𝑑)}
+ (2𝑛 − 𝑑)𝑧, 0 ≤ 𝑑 ≤ 𝑛 − 2 

(4) 

 

𝜌(𝑣3+𝑑 , 𝑣2𝑛+2−𝑑) = 𝑚𝑖𝑛{𝜇(𝑣3+𝑑), 𝜇(𝑣2𝑛+2−𝑑)}
+ (2𝑛 + 2)𝑧, 0 ≤ 𝑑 ≤ 𝑛 − 1 

(5) 

 

Also, sum of the edge labels incident at: 

 

𝑣𝑑 = 𝑊𝑡(𝑣𝑑) = ∑ 𝜌(𝑢, 𝑣𝑑)

𝑢∈𝑁(𝑣𝑑)

 (6) 

 

when, 𝑁(𝑣𝑑) be the neighbourhood vertices of 𝑣𝑑for all d=1 

to 2n+2 and Wt(𝑣𝑑) be the weight of 𝑣𝑑. 

From equation number Eq. (1), Eq. (2), Eq. (3), Eq. (4), Eq. 

(5) and Eq. (6) for any two vertices vp and vq with p≠q, Wt(vp) 

and Wt(vq) have distinct values.  

Therefore, FVAM labeling is allowed for comb graph 

CPn∀n≥1. 

Example 3.2 Figure 4 illustrates the FVAM comb graph of 

path length 25.  

 

 
 

Figure 4. CP25 – FVAM comb graph 

 

 

4. TWING GRAPH 

 

The twing graph is a graph that is formed by joining a 

couple of terminal edges to every internal vertex of the path. It 

is named T(n). 

A twing graph is called fuzzy twing graph if FL exists. 

Fuzzy twing graph is called FEAM twing graph if FEAM 

labeling exists. And also, a fuzzy twing graph is called FVAM 

twing graph if FVAM labeling is exists. 

In this section, the FEAM twing graph and the FVAM twing 

graph have been proved with the use of the proposed algorithm 

through the theorem. 

 

Algorithm 4.1 

 FL of vertices and edges of T(n) with n≥1, where 

n is the number of internal vertices in the path and z→(0,1] 

 

Step 1: Input values for n and z.  

n=int (input (“Enter the value for n:”)) 

z=float (input (“Enter the value for z:”)) 

 

Step 2: Calculate the maximum number of vertices  

    m=3n+2.  

Step 3: Initialize empty lists for vertex and edge labels 

vertex_labels =[] 

edge_labels =[] 

Step 4: Generate vertex labels using the given formula 

    for 𝑑 =1 to m 

{ 

      

 𝜇(𝑣𝑑) = (3𝑛 + 𝑑 + 1)𝑧, 1 ≤ 𝑑 ≤ 3𝑛 + 2 

} 

Step 5: Generate edge labels using the given formulas 

for 𝑑 =1 to m 

   if 𝑑 =1 

{ 

      

 𝜌(𝑣𝑑 , 𝑣𝑛+2𝑑) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+2𝑑)} −
                     𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+2𝑑)} − 𝑛𝑧 

} 
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   if 2≤ 𝑑 ≤n+1 

{ 

      

 𝜌(𝑣𝑑 , 𝑣𝑛+𝑑) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+𝑑)} −
                    𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+𝑑)} + 𝑑𝑧 

} 

   if n+2≤ 𝑑 ≤2n+1 

{  

𝜌(𝑣𝑑 , 𝑣𝑑+1) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} 
−𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} + (𝑑 − 𝑛 − 1)𝑧 

} 

 

for 𝑑 =1 to m 

  if n+2≤ 𝑑 ≤2n+1 

{ 

      

 𝜌(𝑣𝑑 , 𝑣𝑛+1+𝑑) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+1+𝑑)} −
                𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+1+𝑑)} + (𝑑 − 1)𝑧 

} 

 

Step 6: Output the vertices and edges labels  

Print (“vertex Labels:”) 

Print (“Edge Labels:”) 

 

Theorem 4.1 

Let T(n):(μ, ρ) be the fuzzy labelled twing graph then T(n) 

admits FEAM labeling.  

Proof:  

Let z→(0, 1] such that: 

 

𝑧 =

{
  
 

  
 

1

102
; 0 < 𝑛 ≤ 16

1

10𝑘+2
; 16 < 𝑛 ≤ 16 + ∑ 15 × 10𝑡𝑖

𝑡=1
1≤𝑖≤𝑘

𝑤ℎ𝑒𝑟𝑒 𝑘 = 1

1

10𝑘+3
; 16 + ∑ 15 × 10𝑡𝑖

𝑡=1
1≤𝑖≤𝑘

< 𝑛 ≤ 16

+∑ 15 × 10𝑡𝑖
𝑡=1

1≤𝑖≤𝑘+1
 𝑤ℎ𝑒𝑟𝑒 𝑘 = 1,2,3⋯

  

 

The membership values of the vertices and edges are 

defined as follows using algorithm 4.1.  

 

𝜇: 𝑉 → [0,1] ∋ 𝜇(𝑣𝑑) = (3𝑛 + 𝑑 + 1)𝑧 ∀ 𝑣𝑑 ∈ 𝑉, 
1 ≤ 𝑑 ≤ 3𝑛 + 2 

 

ρ:V×V→[0, 1] such that: 

 

𝜌(𝑣𝑑 , 𝑣𝑛+2𝑑) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+2𝑑)} 
−𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+2𝑑)} − 𝑛𝑧, 𝑑 = 1 

𝜌(𝑣𝑑 , 𝑣𝑛+𝑑) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+𝑑)} 
−𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+𝑑)} + 𝑑𝑧, 

 2 ≤ 𝑑 ≤ 𝑛 + 1 

𝜌(𝑣𝑑 , 𝑣𝑑+1) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} 
−𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} + (𝑑 − 𝑛 − 1)𝑧, 

𝑛 + 2 ≤ 𝑑 ≤ 2𝑛 + 1 

𝜌(𝑣𝑑 , 𝑣𝑛+1+𝑑) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+1+𝑑)}
− 𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+1+𝑑)} + (𝑑 − 1)𝑧, 
𝑛 + 2 ≤ 𝑑 ≤ 2𝑛 + 1 

 

To prove the FEAM labeling of the twing graph We show 

that all the anti-magic constants of the twing graph are 

different in the following four cases: 

 

 

 

Case 1: When d =1 

Now, 𝐴𝑚0[(𝑇(𝑛)] = 𝜇(𝑣𝑑) + 𝜌(𝑣𝑑 , 𝑣𝑛+2𝑑) +
𝜇(𝑣𝑛+2𝑑) = (3𝑛 + 𝑑 + 1)𝑧 + 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+2𝑑)} −
𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+2𝑑)} − 𝑛𝑧 + (3𝑛 + 𝑛 + 2𝑑 + 1)𝑧 =
(7𝑛 + 3𝑑 + 3)𝑧 

Case 2: When 2≤ 𝒅 ≤n+1 

Now, 𝐴𝑚0[(𝑇(𝑛)] = 𝜇(𝑣𝑑) + 𝜌(𝑣𝑑 , 𝑣𝑛+𝑑) + 𝜇(𝑣𝑛+𝑑) =
(3𝑛 + 𝑑 + 1)𝑧 + 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+𝑑)} −
𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+𝑑)} + 𝑑𝑧 + (3𝑛 + 𝑛 + 𝑑 + 1)𝑧 = (8𝑛 +
3𝑑 + 2)𝑧 

Case 3: When n+2≤ 𝒅 ≤2n+1 

Take 𝐴𝑚0[(𝑇(𝑛)] = 𝜇(𝑣𝑑) + 𝜌(𝑣𝑑 , 𝑣𝑑+1) + 𝜇(𝑣𝑑+1) =
(3𝑛 + 𝑑 + 1)𝑧 + 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} −
𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} + (𝑑 − 𝑛 − 1)𝑧 + (3𝑛 + 𝑑 + 1 +
1)𝑧 = (5𝑛 + 3𝑑 + 3)𝑧 

Case 4: When n+2≤ 𝒅 ≤2n+1 

Take 𝐴𝑚0[(𝑇(𝑛)] = 𝜇(𝑣𝑑) + 𝜌(𝑣𝑑 , 𝑣𝑛+1+𝑑) +
𝜇(𝑣𝑛+1+𝑑)  = (3𝑛 + 𝑑 + 1)𝑧 + 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+1+𝑑)} −
𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+1+𝑑)} + (𝑑 − 1)𝑧 + (3𝑛 + 𝑛 + 1 + 𝑑 +
1)𝑧 = (8𝑛 + 3𝑑 + 3)𝑧 

Hence, in Case 1, Case 2, Case 3, and Case 4, we have 

proved that all the anti-magic constants of the twing graphs are 

different.  

Thus, fuzzy labeled twing graph T(n) admits FEAM 

labeling. 

Theorem 4.2 

Let T(n):(μ, ρ) be the fuzzy labeled twing graph then T(n) 

admits FVAM labeling. 

Proof: 

Given T(n):(μ, ρ) be the fuzzy labeled twing graph.  

To prove that fuzzy labeled twing graph T(n):(μ, ρ) satisfies 

the condition of FVAM labeling.  

That is to prove that for any two vertices u and v in T(n), the 

total of the grade membership on the edges incident at the 

vertex u is distinct from the total of the grade membership on 

the edges incident at the vertex v. 

The membership values of the vertices and edges are 

defined as follows using algorithm 4.1.  

Let z→(0, 1] such that: 

 

𝑧 =

{
  
 

  
 

1

102
; 0 < 𝑛 ≤ 16

1

10𝑘+2
; 16 < 𝑛 ≤ 16 + ∑ 15 × 10𝑡𝑖

𝑡=1
1≤𝑖≤𝑘

 𝑤ℎ𝑒𝑟𝑒 𝑘 = 1

1

10𝑘+3
; 16 + ∑ 15 × 10𝑡𝑖

𝑡=1
1≤𝑖≤𝑘

< 𝑛 ≤ 16

+∑ 15 × 10𝑡𝑖
𝑡=1

1≤𝑖≤𝑘+1
 𝑤ℎ𝑒𝑟𝑒 𝑘 = 1,2,3,⋯

  

 

𝜇: 𝑉 → [0,1] ∋ 𝜇(𝑣𝑑) = (3𝑛 + 𝑑 + 1)𝑧 ∀ 𝑣𝑑 ∈ 𝑉, 
 1 ≤ 𝑑 ≤ 3𝑛 + 2 

(7) 

 

ρ:V×V→[0, 1] such that: 

 

𝜌(𝑣𝑑 , 𝑣𝑛+2𝑑) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+2𝑑)} 
−𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+2𝑑)} − 𝑛𝑧, 𝑑 = 1 

(8) 

 

𝜌(𝑣𝑑 , 𝑣𝑛+𝑑) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+𝑑)} 
−𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+𝑑)} + 𝑑𝑧,  

2 ≤ 𝑑 ≤ 𝑛 + 1 

(9) 

 

𝜌(𝑣𝑑 , 𝑣𝑑+1) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} 
−𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑑+1)} + (𝑑 − 𝑛 − 1)𝑧, 

𝑛 + 2 ≤ 𝑑 ≤ 2𝑛 + 1 

(10) 
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𝜌(𝑣𝑑 , 𝑣𝑛+1+𝑑) = 𝑚𝑎𝑥{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+1+𝑑)} 
−𝑚𝑖𝑛{𝜇(𝑣𝑑), 𝜇(𝑣𝑛+1+𝑑)} + (𝑑 − 1)𝑧, 

 𝑛 + 2 ≤ 𝑑 ≤ 2𝑛 + 1  
(11) 

 

Also, sum of the edge labels incident at: 

 

𝑣𝑑 = 𝑊𝑡(𝑣𝑑) = ∑ 𝜌(𝑢, 𝑣𝑑)

𝑢𝜖𝑁(𝑣𝑑)

 (12) 

 

when, 𝑁(𝑣𝑑) be the neighbourhood vertices of 𝑣𝑑 for all 𝑑 =
1 to m and Wt(𝑣𝑑) be the weight of 𝑣𝑑. 

From equation number Eq. (7), Eq. (8), Eq. (9), Eq. (10), Eq. 

(11) and Eq. (12) for any two vertices vp and vq with p≠q, Wt(vp) 

and Wt(vq) have distinct values.  

Hence twing graph T(n) for all n≥1 admits FVAM labeling.  

Example 4.1 Figure 5 illustrates the FEAM and FVAM 

twing graph of T(17). 

 

 
 

Figure 5. T(17) - FEAM and FVAM twing graph 

 

 

5. PROPERTIES 

 

·Every FEAM comb graph must have precisely one couple 

of vertices whose degrees and strong degrees are same.  

·In FEAM and FVAM comb graph all the edges are fuzzy 

bridges and strong edges.  

·For any FEAM and FVAM comb graph, ds(v)=d(v)∀ 𝑣 ∈
𝑉.  

·For any FVAM comb graph, d(u)≠d(v) & ds(u)≠ds(v) for 

any pair of vertices 𝑢, 𝑣 ∈ 𝑉.  

·Every FEAM and FVAM comb graph has 
2𝑛+2

2
 fuzzy end 

nodes for all n.  

·In FEAM and FVAM twing graph all the edges are fuzzy 

bridges and strong edges.  

·For any FEAM and FVAM twing graph n≥1, 

ds(v)=d(v)∀𝑣 ∈ 𝑉.  

·For any FEAM and FVAM twing graph n≥1, d(u)≠d(v) for 

any pair of vertices 𝑢, 𝑣 ∈ 𝑉.  

·For any FEAM and FVAM twing graph n≥1, ds(u)≠ds(v) 

for any pair of vertices 𝑢, 𝑣 ∈ 𝑉.  

·Every FEAM and FVAM twing graph has 2n+2 fuzzy end 

nodes for all n.  

 

 

6. CONCLUSIONS 

 

Fuzzy graph labeling has more applications in different 

areas, particularly social networking, control of traffic signals, 

road networking, and finding the strength of relationships 

between the persons. In this paper, we have obtained fuzzy 

labeling for twing and comb graphs by providing an algorithm. 

We have proved the FEAM and FVAM labeling using the 

proposed algorithm for twing and comb graphs and discussed 

some properties corresponding to degree of vertex, strong 

degree, strong edge, fuzzy bridge, and fuzzy end nodes in the 

FEAM and FVAM twing and comb graphs. It may be applied 

to find the strength of the relationship between the persons. 

The FEAM and FVAM labeling of the diamond graph and the 

lilly graph is still open. 
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