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Medical image segmentation is a crucial task in the field of medical imaging, and deep 

learning models have exhibited exceptional performance in recent years for 

segmentation purposes. In this paper, a refined network architecture of U-Net has been 

proposed, wherein residual units are included in U-Net to enhance the effectiveness of 

brain tumor segmentation. It constructs a deep learning model for the specific magnetic 

resonance imaging (MRI) segmentation task using the BraTS2020 dataset. The 

proposed enhanced model is designed by adding inner skip layers (residual connections) 

with fewer convolution layers to Allow the network to acquire knowledge of the 

residual mapping refers to the relationship between inputs layers and outputs layers 

instead of the direct mapping, consequently increasing the intersection over union 

(IoU). The results showed that after 100 epochs of training, the IoU of the proposed 

enhanced model is 0.910, while the model's accuracy is 0.968. In comparison, the 

original U-Net model achieved an Intersection over Union (IoU) score of 0.746 and an 

accuracy of 0.988 after 100 epochs. A comparison study was conducted with state-of-

the-art work to demonstrate the effectiveness of the proposed enhancement in 

improving the performance of deep learning models for MRI segmentation. The 

promising results clearly indicate the potential of this enhancement. 
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1. INTRODUCTION

Medical image MRI (magnetic resonance imaging) is a 

potent diagnostic technology employed by health-care 

professionals to visualize the inside structures of the body [1]. 

The process involves the usage of radio waves, potent 

magnetic field, and computer technology to generate detailed 

images of bodily parts, tissues, and bones. MRI can produce 

high-quality, three-dimensional images of the body, making it 

an essential tool for diagnosing and treating various medical 

conditions, such as brain and spinal cord damage, cancer, and 

cardiovascular disease. MRI technology is non-invasive and 

employs harmless radiation, makes it a safe than others 

imaging techniques like X-rays and CT scans [2]. MRI 

scanners come in different sizes and designs, ranging from 

large machines used in hospitals to smaller, portable devices 

used in clinics or ambulances. The type of MRI used will 

depend on the specific needs of the patient and the medical 

condition being diagnosed. Overall, medical image MRI is a 

valuable tool in modern healthcare that helps healthcare 

professionals accurately diagnose and treat medical 

conditions, leading to better patient outcomes [3].  

MRI scans can diagnose and characterize brain tumors [4]. 

Here are some of the most common ones: T1-weighted MRI: 

This type of MRI provides excellent detail of the brain's 

anatomy and can be used to identify tumors based on their 

location and size. Tumors appear as dark or bright spots on the 

image. T2-weighted MRI: This type of MRI is used to 

visualize the water content in tissues and can help identify 

areas of swelling and inflammation associated with tumors. 

Tumors appear as areas of increased brightness on the image. 

FLAIR MRI abbreviation for fluid-attenuated inversion 

recovery magnetic resonance imaging: This type of MRI is 

similar to a T2-weighted MRI but is designed to suppress the 

signal from cerebrospinal fluid (CSF) so that abnormalities in 

the brain are more visible. Tumors appear as bright areas on 

the image [5]. Diffusion-weighted MRI: This type of MRI is 

used to visualize the movement of water molecules in tissues 

and can help differentiate between different types of tumors. 

Tumors appear as areas of restricted diffusion on the image. 

Perfusion MRI: This type of MRI measures the flow of blood 

in the brain and can help identify areas of increased blood flow 

associated with tumors. Brain segment in magnetic resonance 

imaging MR is a crucial component of image analysis system, 

because it allows for the precise measurement of the volume 

of various brain structures and gives additional information to 

aid in the detection and quantification of lesions. Brain 

segmentation has various clinical applications, including 

assessing brain atrophy, identifying multiple sclerosis (MS) 

lesions, studying progress of brain development in various 

ages and image guided surgery [6-9]. In last years, deep 

learning has become One of the best areas for image 

segmentation, mainly using convolutional neural networks 

(CNNs). Overall, the U-Net and its variations have become a 
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popular choice for image segmentation in many fields, 

including biomedical imaging and robotics, and research on 

the U-Net and its variations continues to be active [10]. Image 

segmentation using deep learning is an effective tool for 

extracting features from digital images. (CNNs), in recent 

years have become the go-to approach for image segmentation 

tasks. The U-Net architecture is widely recognized as one of 

the well-known CNN architectures for image segmentation, it 

relies on the concept of encoder-decoder. Before the advent of 

U-Net, segmentation tasks typically relied on the "sliding 

window" approach, where each pixel's class label was 

predicted by considering it as the center of a sliding window 

(patch). However, this method had several shortcomings that 

hindered its efficiency. Firstly, the time consumed by the 

sliding window to scan the entire image was considerable, 

making it computationally expensive. Additionally, the 

overlapping between patches caused redundancy in 

processing, leading to inefficiencies. Another challenge was 

finding the optimal patch size, as it required striking a balance 

between spatial localization accuracy and the effective 

utilization of contextual information. These limitations 

prompted the need for more efficient and accurate 

segmentation methods like the U-Net architecture [11].  

The U-Net applies sequences of convolutional layers in the 

encoder to capture characteristics (features) of an input image 

and then uses a series of deconvolutional layers in the decoder 

to reconstruct the segmented image. Since its inception in 

2015, the U-Net has been used in numerous applications, 

ranging from medical imaging to object detection [4]. It 

measures the similarity of the predicted mask and the ground 

truth mask by calculating the intersection area between the two 

masks divided by their union area.  IoU (Intersection Over 

Union) score used to evaluation metric in computer vision and 

image segmentation tasks [12]. It evaluates the degree of 

similarity of two data sets, such as truth segment prediction. 

The IoU score is calculated by calculating the intersection area 

between the predicted and ground regions truth segmentation 

maps by the area of their union. The result is a value is 0 or 1, 

the score of 1 indicating complete overlap between the data 

sets. The IoU score is often used to evaluate the accuracy of 

object detection and segmentation models in computer vision 

applications, such as medical image analysis or autonomous 

driving. It is a reliable metric that can provide insights into the 

quality of the model's predictions. It can compare different 

models or fine-tune model parameters for better performance. 

In summary, the IoU score is a simple and effective measure 

of the similarity of two sets of data, and it is widely used in 

computer vision tasks to evaluate the metrices of segmentation 

models. 

In light of the above, and due to the importance of 

automated brain tumor segmentation due to the complexity 

and time-consuming nature of manual diagnosis using MRI 

images, this work presents a new proposed deep learning 

network structure that apply residual U-Net by adding a skip 

layer to connect the layers of convolutions to maximums 

feature extraction in aims of increase the IoU due to the 

significant role of the more accurate resultant segmented 

image in obtaining the most ROI for medical imaging [13]. 
 

 

2. RELATED WORKS 
 

Medical image segmentation is considered an important 

topic that contributes as a fundamental step in many 

applications in the medical field and other related fields. The 

process of extracting a part of the image and working on it is 

a practical step in focusing on the critical part needed by a 

specific application instead of working on the entire image. 

One of these applications is the diagnosis of tumors and brain-

related diseases. Therefore, this topic has become a recent 

trend for many researchers, and work on this topic is still under 

development, as there are constantly evolving segmentation 

algorithms. These studies aim to obtain efficient models with 

the highest standards and the lowest cost possible. With the 

continuous advancement of medical imaging technology, the 

need for accurate and efficient segmentation techniques is 

growing, and researchers are working on improving the 

performance and accuracy of these techniques. 

Furthermore, the development of these techniques can 

significantly improve patient care and diagnosis accuracy, 

highlighting the importance of this field and the need for 

further research and development. Numerous studies have 

been reviewed in medical image segmentation using U-Net, 

and the strengths and weaknesses of the proposed methods by 

researchers, particularly those working with residual 

technology, have been discussed. The IoU factor for 

identifying brain tumor regions in medical images has also 

been discussed. 

Aghalari et al. [14] improved U-Net -based architectures for 

automatic localization of brain tumors from MRI images were 

produced to solve the Glioma, a challenging brain tumor to 

diagnose due to its shape is not symmetrical and its borders 

appear blurry. The modified U-Net architecture incorporates 

both local and global features concurrently while reducing the 

parameters numbers compared to the original U-Net. Hence, 

they were evaluated on the BRATS'2018 database and 

achieved good results with lower calculation costs. The best-

proposed model achieved Dice coefficient score "DCS", 

sensitivity, and  positive predictive value PPV criteria values 

of 89.76%, 89.19%, and 90.65% for segmentation results. 

Xiao et al. [15], a threefold architecture of deep learning 

was proposed for segmenting tumor boundaries in medical 

images. The architecture includes a deep convolutional neural 

network for classification, convolutional neural network based 

on a region for localizing tumor regions of interest, and the 

Chan-Vese segmentation algorithm for contouring tumor 

boundaries. The architecture of proposed method achieved an 

average Dice coefficient score of 0.92, along with other 

performance metrics such as Rand Index, Variation of 

Information are two metrics used to determine how closely 

related or different two sets of data are to each other, Global 

Consistency Error, Boundary Displacement Error, Peak Signal 

to Noise Ratio, and Mean Absolute Error, indicating high 

reliability. The proposed architecture was evaluated on both 

glioma and meningioma segmentation, where the accuracy 

achieved was 0.9457. 

An edge-based segmentation model was proposed in Atiyah 

and Ali [16] to brain segmentation automatically using MRI 

images. The new strategy in this study utilizes the BraTS2020 

dataset and compares edge-based and region-based 

segmentation approaches with a U-Net model with 

architecture of ResNet50 encoder. The segmentation of edge-

based model outperforms the region-based segmentation 

model with high scores for dice loss, f1, accuracy, IoU, recall, 

precision, and specificity. The study highlights the importance 

of automated segmentation in improving brain tumor 

treatment options and patient survival rates. This model 

obtained accuracy and IoU about 0. 9935 and 0. 7542, 

respectively.  
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In Aghalari et al. [14], a proposed method discusses the use 

of deep learning techniques in medical image segmentation on 

brain MR images to predict the existence of brain tumors. 

Manual segmentation is a -consume time task that relies on 

physician experience, so the authors propose a semantic 

segmentation method using a CNNs to automatically segment 

brain tumors in 3D Brain Tumor Segmentation (BraTS) image 

datasets. The dataset includes four labels :(T1, T1C, T2, and 

Flair) and 3D imaging of the whole brain to compare ground 

truth and predicted labels. The method successfully identifies 

the tumor region and dimensions in various planes (sagittal, 

coronal, and axial), and the evaluation findings are promising 

regarding tumor prediction. The ratio of mean prediction is 

91.718, with a mean of (IoU) of 86.946 and a Mean BF score 

of 92.938. The DCs of the test images indicated significant 

match between ground truth label and predicted label, 

indicating that semantic segmentation metrics and 3D imaging 

can be used to diagnose brain tumors accurately. 

Walsh et al. [17] lightweight implementation of U-Net for 

brain tumor segmentation using MRI. Brain tumor 

segmentation refers to the identification of tumors in brain 

MRI imaging. Numerous methodologies have been suggested 

in the academic literature, the proposed architecture is real-

time and does not require much data or additional data 

augmentation. The lightweight U-Net achieves promising 

results on the BITE dataset with a mean IoU of 89% while 

exceeding conventional benchmark techniques in 

performance. Moreover, the work shows the effective use of 

three perspective planes for simpler segmentation of brain 

tumours instead of three-dimensional volumetric images. 

The proposed MLKCA-Unet [15] utilizes multiscale large-

kernel convolutions and an attention mechanism for effective 

feature extraction. The method achieves high accuracy, 

similarity, and speed with published spinesagt_2_wdataset_3 

spinal MRI dataset. The results indicate that MLKCA- U-Net 

outperforms existing methods and can be extended to other 

medical image segmentation applications., with IoU, DSC, 

TPR, PPV, and ET on the test set is 0.8302, 0.9017, 0.9000, 

0.9051, and 70 seconds per epoch, respectively. These results 

demonstrate the superior segmentation performance and 

robustness of MLKCA-Unet, making it a promising method 

for medical image segmentation tasks. 

In conclusion, while various studies have explored the use 

of U-Net for medical image segmentation, there is still a need 

for further improvement in achieving high segmentation 

accuracy with reduced computational complexity. Existing 

methods often prioritize accuracy at the expense of increased 

computational costs and extended training and testing times. 

Our proposed method introduces an enhanced network 

architecture incorporating residual connections into U-Net for 

brain tumor segmentation to address this research gap. By 

leveraging residual blocks, the proposed model aims to 

improve segmentation effectiveness while maintaining 

efficiency in the number of trainable parameters. Through our 

experiments on the BRATS2020 dataset, we have achieved 

promising results, demonstrating the potential of the proposed 

enhancement for medical image segmentation. This research 

contributes to the ongoing efforts to develop efficient and 

accurate segmentation models that can benefit medical 

imaging and enhance patient diagnosis and treatment. 
 

 

3. DATASET DESCRIPTION 

 

The dataset BraTS 2020 contains multimodal MRI scans in 

NIfTI file format (.nii.gz) takes from multiple institutions 

(n=19) using various clinical protocols and scanners. The 

scans include native, T1, T1-weighted, T2-weighted, post-

contrast, Fluid Attenuated Inversion Recovery or can be 

abbreviation as (T1Gd), (T1), and T2, (T2-FLAIR) volumes. 

The rate of segmented the dataset is done manually by the rate 

of ¼, and experienced neuro-radiologists approved their 

annotations. The annotations include the peritumoral edema 

(ED), the GD_enhancing tumor (ET), and the necrotic and 

non-enhancing tumor core (NCR/NET) are defined in the 

BraTS 2012-2013 TMI report and the most recent BraTS 

summarize document. 

The given data are pre-processed then co-registered to the 

common structural blueprint, interpolation to the exact 

resolution (1 mm3), and skull-stripping. All the slices of 

volumes have been converted to HDF5 format for saving 

memory. The dataset's metadata contains information about 

the volume number, slice number, and the target of that slice. 

The BraTS 2020 dataset is a comprehensive and well-

curated collection of multi-institutional MRI scans for 

segmenting brain tumors. The dataset includes various 

imaging modalities and annotation labels, making it an ideal 

resource for developing and evaluating state-of-the-art 

methods for segmenting brain tumors. 

The dataset consists of 369 folders, each representing a 

patient scanned and stored with various available imaging 

modalities. To use the dataset in this research و   it has been 

divided into an 80% training set and a 20% testing set as a rule 

of thumb [18]. 
 

 

4. METHODOLOGY 
 

The Inner Residual U-Net is a deep neural network for 

image segmentation. It consists of an encoder and a decoder 

path that applies convolutions, batch normalization, dropout, 

add layer, and max pooling operations to learn and extract 

features from input images. This architecture is more efficient 

than the standard U-Net, making it easier to train and allowing 

for accurate and efficient identification of objects in images.  

 

4.1 U-Net  

 

The U-Net is a type of CNNs that designed for semantic 

segmentation tasks, which involves labelling all image’s pixel 

with a label. The original U-Net architecture was proposed in 

2015 [19] the U-Net architecture comprises two primary 

components: the encoder and the decoder. The encoder part is 

a series of convolutional and pooling layers that distinctive 

characteristics from the input image. The decoder part is a 

series of deconvolutional and up-sampling layers to 

reconstruct the output image. 

The U-Net also contain skip links between all the Encode 

and Decode Layers, which are used to return the information 

lost during the down-sampling process in the encoder. This 

helps improve the segmentation results' accuracy, especially 

for small or thin structures in the image. The U-Net is widely 

used in biomedical image segmentation tasks, such as 

segmenting cells, nuclei, and tumors in medical images. Its 

ability to accurately segment small or thin structures and its 

relatively small number of trainable parameters make it a 

popular choice for many segmentation tasks. The U-Net 

architecture is commonly used for medical image 

segmentation, such as segmenting brain tumors, liver tumors, 

and cardiac structures. It has also been adapted for other 
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applications, such as image-to-image translation and 

denoising. Figure 1 illustrates the prominent architecture of U-

Net [19]. 

 

4.2 Vanishing gradient 

 

The vanishing gradient problem is where the gradients in 

deep neural networks become extremely small during 

backpropagation, making it difficult for the network to learn 

effectively. When training a deep neural network, gradients 

are computed and propagated backwards from the output layer 

to the input layer to update the network's weights. However, 

as the gradients pass through multiple layers, they can 

diminish exponentially, resulting in small values. The impact 

of the vanishing gradient problem is that layers closer to the 

input tend to receive weak gradients, and their weights are 

updated minimally or not at all. As a result, these early layers 

fail to learn valuable representations from the input data, 

leading to limited model capacity and reduced performance. 

Residual blocks were introduced to locate the vanishing 

gradient and enable the training of deeper networks. In a 

residual block, a shortcut connection, known as a skip 

connection, is added to bypass one or more layers. By 

propagating the gradient directly from the later layers to the 

earlier layers, the skip connection ensures that the gradients do 

not vanish entirely. This allows the network to learn residual 

information by focusing on the difference between a block's 

input and output rather than solely relying on the output [20]. 

 

4.3 Residual block 

 

To address the degradation issue in neural networks, skip-

connections are utilized, allowing specific layers in the 

architecture to be bypassed, as shown in Figure 2, enabling the 

previous layer's output to be directly fed into the current 

position. When the network weights approach zero, the output 

also approaches zero, which can cause the problem of 

vanishing values in the network. However, adding a skip 

connection, which applies an identity function, can increase 

the training speed. Additionally, using a 1×1×1 convolution 

can help control the dimension of the output. In deep learning, 

a residual layer refers to a neural network layer used in residual 

networks. The residual layer is designed to solve the issue of 

vanishing gradients, which can occur in deep neural networks 

when using certain activation functions like sigmoid or 

hyperbolic tangent [20, 21]. The equation for a residual layer 

that written as follows: 
 

𝑦 = 𝑓(𝑥 + 𝑟) 

 

where, x refers to the input to the layer, passed through a series 

of operations, such as convolution or pooling. The r is a skip-

connections that bypasses these operations and adds the 

original input directly to the y output of the layer. The + 

operator in the equation represents the element-wise addition 

of the input and the residual connection. 

Consider a residual block consisting of stacked layers that 

add values, while some layers simply output zero. However, 

through the use of residual blocks, the network is able to retain 

the weights and continually improve accuracy. In fact, it is 

easier to drive the residual, F(x), towards zero than to fit an 

identity mapping using a series of non-linear layers. Skip 

connections are a valuable tool in overcoming the degradation 

problem that arises in deeper neural networks [20]. 

 
 

Figure 1. Stander U-Net [19] 
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Figure 2. Residual block 

 

 

5. NETWORK ARCHITECTURE PROPOSAL USING 

RESIDUAL U-NET 

 

The proposed research introduces an internal skip 

connection layer into the Inner Residual U-Net architecture, 

leveraging the well-known properties of skip connections in 

addressing challenges related to vanishing gradients and 

improving training efficiency in deep neural networks. This 

architectural enhancement is aligned with the research goal of 

enhancing the model's performance, reducing its complexity, 

and optimizing computational operations. 

To implement the proposed approach, skip connection 

layers are incorporated within each block of both the encoding 

and decoding paths. Figure 3 illustrates the central architecture 

of the Residual U-Net, highlighting the strategic placement of 

these skip connections. By introducing this integration, the 

network becomes adept at capturing and propagating essential 

information across different scales, thereby significantly 

improving its ability to accurately identify affected brain 

regions. 

 

 
 

Figure 3. Residual U-Net main architecture 

The training of the proposed network is conducted using a 

curated brain images and masks. Satisfactory results have been 

achieved through the application of the Residual Block with 

U-Net, a technique that will be comprehensively discussed in 

subsequent sections of this paper. Importantly, it should be 

noted that during the training phase, the use of BraTS 2020 

multimodal scans may lead to varying sizes in the input data. 

The incorporation of skip connections and the utilization of 

multimodal scans in our Inner Residual U-Net architecture aim 

to advance the automatic identification of affected brain 

regions. This research contribution is expected to significantly 

enhance both the accuracy and efficiency of brain region 

detection, with potential implications for applications such as 

partial image encryption. 

 

5.1 Pre-processing 

 

The BRATS2020 dataset comprises medical images of 

brain tumors in four types, namely T1, T2, FLAIR, and T1CE, 

as shown in Figure 4. Before processing these images, specific 

pre-processing steps had to be undertaken. The images were in 

NII format; each file contained all four types, with 155 slices 

for each type. However, a problem was encountered with one 

name of one file, and it was necessary to rename it to enable 

sequential data reading. Apart from the images, masks were 

also present that contained four values representing different 

types of brain cells, with values of 0, 1, 2, and 3 (where four 

were replaced by 3 for sequential ordering and reduced values 

were used). T1CE was deemed superior to T1, so it was chosen 

as a replacement. Subsequently, the T1CE, T2, and FLAIR 

images were merged into a single npy file.  To optimize 

network training, redundant pixels with zero values were 

removed from the beginning and end of the merged file, 

specifically pixels before 56 and after 184. This step was 

necessary due to a black pixel frame surrounding the images. 

 

 
 

Figure 4. Brain tumour MRI modalities. (a) FLAIR, (b): T1-

weighted, (c): T1ce respectively, (d): T2-weighted and (e): 

Ground truth 

 

Additionally, since the images were captured in 3D, any 

space at the beginning and end of the capture that did not 

contain helpful brain data was removed. As a result, the final 

merged file had a reduced size, specifically 128×128×128. 

This pre-processing procedure, including removing redundant 

zero-value pixels and empty space, ensures that the subsequent 

analysis and training of the Inner Residual U-Net model are 

performed on an optimized dataset with a consistent and 

appropriate image size. 

 

5.2 The residual U-Net 

 

The network comprises of two primary components: an 

encoding and a decoding layers, as shown in Figure 5. The first 

and last parts contain blocks that rely on the number of filters 

used to train the neural network. The final part is a loop 

connecting the two other parts. In the encoding process, each 

block comprises a stack of layers that take input from the 

preceding block and give output to the following block. There 

MRI Images 

Masks 

Residual U-Net 

Segment Images 
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is also a linkage between each encoder block and decoder 

block that corresponds to it, as shown in Figure 5. 

 

 
 

Figure 5. Outline of proposed inner residual U-Net 

 

Each set comprises several successive layers, including 

convolution, batch normalization, dropout, add layer, and max 

pooling. To explain further, the encoding process involves 

multiple blocks, where each block applies a set of operations 

to the input and passes the output to the next block. The filters 

are learned through training the neural network, and their 

number determines the complexity of the layer. After the input 

passes through all layers, the final output is fed into the bridge, 

which transfers the encoded data to the decoding part of the 

network. The decoding process is the reverse of the encoding 

process, with the input being the encoded data received from 

the bridge. Each layer applies inverse filters to the input and 

passes the output to the next layer until the final decoded 

output is obtained. Several successive operations are 

performed in each set of layers, including convolution, batch 

normalization, dropout, add layer, and max pooling. The 

convolution operation applies a linear function to the output of 

each layer to introduce linearity into the network. Batch 

normalization is used to normalize the output of each layer, 

making it easier for the subsequent layer to process. Dropout 

is a technique used to mitigate the vanishing gradient problem, 

where the gradient values become very small during back 

propagation, hindering the training process. Layer addition is 

used to combine the outputs of two or more layers, and 

maximum pooling is used to down sample the output of a layer 

to reduce its size. 

 

 
 

Figure 6. Encoder block 

 

 
 

Figure 7. Decoder block 

 

5.2.1 Encoding 

The network is divided into several blocks in the encoding 

stage, which can be increased or decreased depending on the 

image size and filters used. These divisions directly affect the 

results of the neural network and the number of parameters 

used. Our approach involves adding a skip connection to each 

block, as illustrated in Figure 6. We take a copy of the input 

and pass it through a 1×1×1 convolutional layer, which is then 

merged with the output to preserve the block's results from 

vanishing gradients. We have also removed one of the 

convolutions from the layers in each block to reduce 

computation and training time. The entire network operates on 

21 convolutional layers, less than what was used in the original 

paper [19] that used the standard U-Net without any additions. 
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This makes learning the network more efficient, but as we 

know, learning requires time or high-spec GPU devices. 

Figure 6 shows that the encoding block contains several layers. 

First, the input is split into two copies. The first copy enters 

the 3×3×3 convolutional layers sequentially.  Batch 

normalization is then applied, allowing us to use much higher 

learning rates, which increases the speed of network training. 

Afterwards, hierarchical down sampling is performed, and the 

output of both copies is concatenated.  The second copy of the 

input undergoes a 1×1×1 convolution to assign each pixel 

from the input to its corresponding output pixel in all channels. 

The outputs of the first and second copies are then 

concatenated after all the operations performed on them. To 

achieve the U-shape of the network, the output size is reduced 

using MaxPooling3D 2×2×2 after the end of each. 

5.2.2 Decoding 

Based on the Figure 7, it illustrates the decoding process 

that differs from the encoding part. The input consists of two 

parts: one from the previous block and the other from the 

corresponding block in the encoding section. The first part 

enters the convolutional transpose, doubling the input size to 

match the second input from the encoding section. These two 

inputs are then added. The following steps are performed 

sequentially on the result of the previous addition. The output 

of the previous operation is duplicated and goes through 

similar processes as the encoding section, including 

convolutional, batch normalization, and dropout. Finally, this 

is merged with the second copy that has already entered the 

1×1×1 convolutional layers . Table 1 shows the Network 

Structure of residuals and the number of required parameters.

 

Table 1. Network structure of residual 

 
 Unit Level Conv Layer Filter Size No. of Parameters 

Input   0 

Encoding 

Level 1 
Res block 

MaxPooling3D 

3×3×3 / 16 

2×2×2 

6928 

0 

Level 2 
Res block 

MaxPooling3D 

3×3×3 / 32 

2×2×2 

27,680 

0 

Level 3 
Res block 

MaxPooling3D 

3×3×3 / 64 

2×2×2 

110,656 

0 

Level 4 
Res block 

MaxPooling3D 

3×3×3 /128 

2×2×2 

442,496 

0 

Bridge Res block 3×3×3 / 256 1,769,728 

Decoding 

Level 5 
concatenate 

Res block 

2×2×2 

3×3×3 /128 

0 

884,864 

Level 6 
concatenate 

Res block 

2×2×2 

3×3×3 / 64 

0 

221,248 

Level 7 
concatenate 

Res block 

2×2×2 

3×3×3 / 32 

0 

55,328 

Level 8 
concatenate 

Res block 

2×2×2 

3×3×3 / 16 

0 

13,840 

Output  Conv 1×1×1 68 

 

 

6. EXPERIMENTAL RESULTS 

 

6.1 Experiment setup 

 

Implemented using both Google Colab Professional. and the 

following pre-existing programming libraries were utilized: 

Keras, Glob, Scikit-Image, and others. The proposed system 

was applied to the Brats 2020 database. After image pre-

processing and cropping the critical part of the image, a 

database of 128×128×128 (number of slices, length, and 

width) was created. The images were divided into 20% for 

validation and 80% for training. The model was trained using 

the NADAM optimizer and the learning rate is 0.0001, dice 

loss and focal loss functions. The dropout rate gradually 

increased in proportion to the network level. Image inference 

using the model takes between 40-80 milliseconds.  

 

6.2 Evaluation metrics 

 

A Python script will be written to implement the pre-

processing steps. The script will take the input MRI images, 

apply the pre-processing steps, and save the pre-processed 

images in a new folder. The pre-processed images will also be 

visually inspected to ensure the pre-processing steps are 

correctly applied. NumPy will use the following libraries for 

numerical computing and Nibabel: for working with NII files. 

The importance of pre-processing medical images before 

using them for diagnosis and analysis has been demonstrated. 

A dataset of MRI brain images has been used, and various pre-

processing steps have been applied to enhance the quality of 

the images. The Python script is a simple but effective way to 

pre-process medical images and can be adapted to different 

medical images and pre-processing steps. 

Evaluation metrics are crucial in assessing the performance 

of brain tumor segmentation algorithms or systems. These 

metrics provide quantitative measures to evaluate how well the 

system can delineate and segment tumor regions in medical 

images, like MRI scans. Here are a few commonly used 

evaluation metrics in brain tumor segmentation. 

Primarily use the IoU (Intersection over Union) metric in 

our research as it measures the degree of similarity between 

the predicted images by the model and the ground truth images. 

The resulting metric is between 0 and 1, where a value closer 

to 1 indicates good performance, and a value less than 0.5 

indicates poor performance. As shown in Eq. (1). 

IoU=(Intersection of predicted and ground truth)/(Union of 

predicted and ground truth).also there is deferent in accuracy 

illustrated in Eq. (2). The (DSC) Dice coefficient score is a 

validation metric that measures the spatial overlap between 

two sets of data. Precision is calculated as the positive 

predictive value of accurately categorized positive samples out 

of the numbers of all samples labelled as positive. It assesses 
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a model's accuracy in identifying positive samples. Sensitivity 

is a metric used to evaluate A model's ability to predict true 

positives and true negatives for each category is measured by 

sensitivity and specificity respectively [22, 23]. 

 

Accuracy=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1) 

 

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝐿𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 or 𝐼𝑂𝑈 =

𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (2) 

 

𝐷𝑆𝐶 =
2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
  (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (4) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (5) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (6) 

 

where, the term TP "True Positives" refers to the count of 

pixels accurately identified as belonging to the object being 

detected. Conversely, FP "False Positives" refers to the count 

of pixels incorrectly classified as part of the object. FN "False 

Negatives" represents the number of pixels that should have 

been identified as part of the object but were not. TN "True 

Negatives" are the pixels correctly identified as not belonging 

to the detected object. 

These metrics are widely used in brain tumor segmentation 

studies and effectively evaluate the performance of various 

algorithms and techniques. However, it's important to choose 

of evaluation metrics may vary depending on the specific 

requirements and characteristics of the proposed system [23, 

24]. 

 

6.3 Result and discussion 

 

The proposed system was evaluated on the Brats 2020 

database, the result of these system as shown in Figure 8, and 

the Evaluation was conducted using different evaluation 

metrics, including sensitivity, specificity, accuracy, and Dice 

coefficient score. 

As is evident from the results in Table 2, the proposed 

method yielded the best results with the least number of 

parameters. These results were expected due to the advantages 

of Skip connections, previously mentioned in reducing 

overfitting and addressing vanishing problems. The number of 

parameters in the proposed method was less than 3 million, on 

average, a reduction of approximately 50%. This parameter 

reduction led to decreased computational complexity, saving 

time and space during the training and testing phases. 

 

Table 2. U-Net vs proposed res. metrics 

 
 Trainable Params Mean IoU Accuracy 

U-Net 5,645,828 0.834 0.988 

Proposed U-Net 2,767,620 0.910 0.992 

 

 

 
 

Figure 8. Examples of brain tumor segmentation 

 

514



 

Table 3. Comparison of related works and the proposed method 

 

Method 

Zhang et al. [12] 
Atiyah and 

Ali [16] 

He et al. 

[20] 

Zhang et al. 

[25] 

Müller 

[22] 

Bakas et al. 

[23] 

Proposed 

Residual UNet UNet++ 
EA-

UNet 

Accuracy - - - 0.93 - 0.91 0.957 0.968 

Mean IoU 0.872 0.9379 0.92 0.73 0.838 0.89 0.869 0.91 

Mean DSC - - - - 0.911 - - 0.999 

Precision - - - - - - - 0.967 

Specificity 0.985 0.99 - - - - - 0.989 

Sensitivity 0.883 0.945 - - - - - 0.967 

 

Figure 9 shows the original images, their masks, and 

predication images. The system achieved a sensitivity of 0.967, 

specificity of 0.989, Mean IoU of 0.910, accuracy of 0.968, 

and Dice coefficient score of 0.999 on the test set. These 

results indicate that the proposed system performs accurately 

in segmenting brain tumors in MRI images. Furthermore, the 

impact of different factors on the system's performance is 

analyzed. It notices that increasing the number of layers in the 

network improved the performance while increasing the 

learning rate beyond a certain threshold led to overfitting. 

Additionally, combining the focal loss function with the dice 

loss function improved the system's handling of class 

imbalance.  

 

 

 
 

Figure 9. Accuracy & IoU of original and proposed system 

 

6.4 Comparative study 

 

In addition, the evaluation of the proposed system 

performance with the methods on the Brats 2020 database as 

indicated in the  Table 3. Our system outperformed most of the 

existing methods in terms of accuracy and Dice coefficient 

score. This demonstrates the effectiveness of the proposed 

system in brain tumor segmentation. 

 

 

7. CONCLUSIONS 

 

The proposed system implements a U-Net architecture with 

four encoding layers, a bridge layer, and a loss function (Focal 

loss and Dice loss). It was noticed that the proposed trained 

model for 100 epochs obtained a Mean IoU of 0.910 and an 

accuracy of 0.968. 

The Enhancing residual blocks make the network realize the 

residual mapping between input and output as a substitute for 

a direct mapping between them, so that model can rapidly 

learn residual mapping corresponding to block residual 

technology. 

In conclusion, implementing a deep learning model for 

segmentation of medical image on the BRATS2020 dataset 

seems to have achieved a good performance, as indicated by 

high IoU and accuracy values. However, it is essential to 

understand that there is not a universal solution for this issue, 

and the good approach that depend on the distinct attributes of 

the dataset and the situation at hand that aim to solve. It is 

essential to try different techniques and approaches and 

carefully evaluate their impact on the model's performance. 

The proposed system achieved promising results in 

segmenting brain tumors in MRI images and outperformed 

most existing methods on the Brats databases, as mentioned in 

section 6.4. The results suggest that the proposed system used 

for brain tumor segmentation in clinical practice.  

The objective in the future is to assess the performance of 

the proposed enhanced Residual U-Net architecture on other 

medical imaging datasets beyond the BraTS2020 dataset to 

evaluate its generalizability, and this would involve exploring 

how the architecture performs on diverse datasets that cover a 

range of medical conditions and imaging modalities. For 

instance, datasets related to lung imaging, retinal scans, or 

cardiac imaging could offer unique perspectives on the 

effectiveness of the proposed architecture in different medical 

domains; by analyzing the architecture's performance on 

various datasets, and can get a comprehensive understanding 

of its strengths and limitations in different contexts. 

Exploring the impact of hyperparameter tuning on the 

performance of the proposed enhanced Residual U-Net 

architecture, such as varying the number of encoding and 

decoding layers, the learning rate, or filters numbers in the 

convolutional layers. 

The impact of different loss functions on the performance 

of the proposed enhanced Residual U-Net architecture was 

assessed. While Focal loss + Dice loss has illustrated good 

results in medical image segmentation, it is essential to 

compare its performance with other commonly employed loss 

functions such as binary cross-entropy or weighted cross-

entropy. This comparison analysis will offer insights into the 

cons and bons of different loss functions and their suitability 

for specific segmentation tasks and medical imaging datasets. 

We can refine the architecture's training process by 

considering alternative loss functions and potentially 

accomplishing more accurate and reliable segmentation results. 
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