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Movement is one of the essential characteristics of living beings. Despite the diversity 

of animal species and the apparent differences, standard features exist between their 

movement systems that follow a particular pattern. The movements can mainly be 

divided into discrete and rhythmic categories controlled by the central nervous system. 

Scientists usually consider these two types of motion separately in the control system 

and use different methods and resources to produce and model them. Proposing a 

unified and comprehensive model for generating and controlling rhythmic and discrete 

movement with the same control system is more valuable, albeit challenging. This is 

essential because such a model would address a fundamental problem in the field of 

motor control, offering a holistic solution to understanding how living beings generate 

and control movement. A unified model could revolutionize various fields, including 

robotics, rehabilitation, and neuroscience, by providing a versatile framework 

applicable to various applications. In this study, we employed the Hodgkin-Huxley 

(HH) equations in our computational model; their suitability lies in their ability to 

capture the intricate dynamics of neural oscillations and the behavior of neural 

networks, making them an ideal choice for our investigation. Our comprehensive 

analysis of the model, factors influencing motion, and oscillation revealed crucial 

insights. We found that supraspinal input and motor neuron feedback, as the key motor 

control parameters, play pivotal roles in generating and controlling rhythmic and 

discrete movements. These findings contribute to our understanding of how the nervous 

system orchestrates both types of motion within a single framework. Developing a 

neuromechanical model capable of creating rhythmic and discrete movements holds 

promising implications. This research can potentially advance fields such as robotics, 

biomechanics, and rehabilitation by providing a unified framework for motor control. 

Moreover, understanding the switching mechanism between rhythmic and discrete 

states could lead to innovative strategies for designing more versatile and adaptive 

robotic systems and improving rehabilitation protocols for individuals with motor 

impairments. 
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1. INTRODUCTION

In neuroscience, the distinction between discrete and 

rhythmic movements is often studied in the context of motor 

control and motor learning [1]. Discrete movements are 

typically made up of a series of distinct, separate actions, such 

as reaching for a pen or writing on paper. In contrast, rhythmic 

movement is characterized by a repeated pattern or cycle of 

movement, such as the rhythm of running [2]. The interplay 

between rhythmic and discrete movements allows for the 

smooth, coordinated execution of complex actions, such as 

playing a musical instrument [3]. In the field of motor control, 

a discrete movement is a movement that is typically 

characterized by a distinct beginning and end, and it is often 

made up of a series of individual steps or sub-movements. On 

the other hand, rhythmic movement is characterized by 

repetitive motion patterns, often with a regular rhythm or beat. 

The type of movement in every creature that can move is 

based on environmental conditions and body structures [4]. 

Various species' movement systems have standard features 

that follow a specific pattern [5]. The nervous system receives 

and processes multi-state motor neuron information and 

produces commands to control movement [6]. These 

commands are transmitted from the motor neurons in the 

spinal cord to the muscles and moving limbs, and through the 

motor neuron feedback, they return to the spinal cord for 

processing and completing actions [7]. Also, at the spinal cord 

level, some control operations are performed on the motor 

system, such as reflexes and adjustment of motor neuron 

weight to regulate the period, phase, and amplitude of the 

movement patterns [3]. 

Studying the neural basis of discrete and rhythmic 

movements can be helpful for various purposes, such as 

developing new technologies or therapies for people with 
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movement disorders or improving human-machine interaction 

in robotics and other fields. They can be applied to stroke 

rehabilitation [8]; Therapists can design more effective 

rehabilitation programs and devices attached to patients and 

target specific neural pathways to help them regain motor 

function. 

Both discrete and rhythmic movements are essential in the 

field of motor control, and they are used in various contexts. 

Our research aims to comprehensively understand how neural 

circuits, specifically central pattern generators (CPGs), control 

rhythmic and discrete movements and apply this knowledge to 

various practical applications. For instance, our findings hold 

great potential in developing therapies for individuals with 

movement disorders. By deciphering the neural mechanisms 

underlying discrete and rhythmic movements, we can design 

targeted interventions and rehabilitation strategies to improve 

these individuals' motor function and quality of life. In the 

realm of robotics, our research can revolutionize the design 

and control of robotic systems. The ability to generate both 

rhythmic and discrete movements using a unified neural model 

based on CPG can lead to more agile and adaptable robots 

capable of performing a wide range of tasks, from precise, 

discrete actions in manufacturing to dynamic, rhythmic 

motions in exploration and rescue missions. A CPG is a neural 

circuit that generates rhythmic patterns of movement and 

rhythmic activities, such as breathing, walking, and swimming, 

which do not require sensory input with timing information [9, 

10, 11]. CPG is an oscillating network of different neurons 

found in animals’ spinal cords and brainstem [12]; it 

coordinates the activity of multiple muscles to produce the 

desired movement pattern. CPG's input is an elementary signal, 

but its output is complex, orderly, and coordinated. This point 

has received considerable attention in neuroscience for 

modeling motion [13]. The CPG-based model was also used 

as the controller of a humanoid robot to generate various 

walking patterns [14, 15]. Rhythmic movements generated by 

CPGs are often repetitive and stereotyped and can occur even 

without input from the brain. CPGs are found in many animals, 

including invertebrates and vertebrates, and are thought to 

have evolved to produce coordinated movement patterns for 

survival and reproduction. Indeed, CPG is a nonlinear 

oscillator as its primary function. It can only produce rhythmic 

motion and oscillations and send the output to the limb through 

flexor and extensor paths [16]. In other words, CPG’s outputs 

are usually rhythmic and repetitive activities. In this study, we 

have extracted both rhythmic and discrete output from the 

CPG model inspired by the model proposed by Markin et al. 

[17]. In the proposed model, CPG is located at the spinal cord 

level; it is symmetrical, meaning that the muscles' structure, 

the flexor, and the extensor are similar but in the opposite 

phase. This symmetry leads to the same changes in the 

stationary vertical phases [18].  

By understanding the neural basis of discrete and rhythmic 

movements using CPG, we can advance our knowledge of 

how the brain controls and adapts to various motor tasks. We 

used dynamic systems analysis to discuss how this model 

works, what factors play an essential role in the generation of 

movement, how it can produce rhythmic and discrete 

movements, the role of motor neuron feedback, and whether 

motor neuron feedback is involved in the production of 

oscillation or not. Furthermore, if the primary supraspinal 

input at the surface of the brainstem is lost, can movement 

occur by amplifying other model components? We added the 

roles of the basal ganglia and cerebellum in producing 

movement and their impact on the supraspinal input to control 

movement. Finally, we implemented the effect of different 

control parameters in a proposed model to extract discrete and 

rhythmic movements. 

 

 

2. RELATED WORKS 

 

Several models and theories have been highly influential in 

neuroscience regarding modeling movements. Some of the 

most notable ones include the CPG-based model [19], motor 

control theory [20], Hodgkin-Huxley model [21], and optimal 

control theory [22]. CPGs are neural circuits that generate 

rhythmic patterns of movement, such as walking and 

swimming, without the need for sensory input with timing 

information [19]. They have been pivotal in understanding and 

modeling rhythmic movements. CPGs are influential because 

they offer a neural basis for generating repetitive motions and 

have been applied in fields like robotics for developing 

locomotion controllers. On the other hand, motor control 

theories [20] focus on how the nervous system controls 

movements, including both discrete and rhythmic actions. The 

equilibrium point hypothesis, for instance, proposes that motor 

control is achieved by shifting the equilibrium point of 

muscles [23]. These theories have provided fundamental 

insights into the neural mechanisms underlying voluntary 

movements. While initially developed to understand the 

behavior of neurons, the Hodgkin-Huxley model's principles 

have been applied to study muscle activation and contraction, 

which is critical in movement generation [24]. Its 

mathematical rigor and ability to capture complex biological 

phenomena influence movement modeling. Optimal control 

theory borrowed from engineering and mathematics has been 

applied to study motor control [22]. It focuses on optimizing 

movement trajectories and has contributed to understanding 

how the nervous system might plan and execute movements 

efficiently.  

Furthermore, previous studies have proposed different 

views about motor neurons and rhythmic and discrete 

movements. One model claims that discrete movement is the 

fundamental and rhythmic movement is the concatenation of 

discrete movements [25, 26]. Another model states that 

rhythmic movement is the principal movement, and discrete 

movement is a truncated rhythmic movement [27, 28]. A third 

viewpoint mentions that rhythmic and discrete movements 

represent two different movement categories produced by the 

separate sections [29-31]. The third viewpoint is more 

acceptable based on research on the nervous system and motor 

behavior [32, 33]. In addition to these various theories and 

models, the motor control system requires precise modeling 

for further study. Also, there are different ways and structures 

for modeling the motor neuron system to produce different 

movements. Figure 1 demonstrates a model that combines 

electrical and mechanical systems to model rhythmic and 

discrete movements. This model uses a Matsuoka oscillator for 

the electrical part and a pendulum for the mechanical section 

[34]. 

At the beginning of the last century, scientists offered two 

interpretations for producing rhythmic movements. Charles 

Sherrington suggested one of these interpretations based on 

reflex loops [35, 36]. Sherrington believed that rhythmic 

movements result from the stimulation of reflex loops by 

motor neuron feedback, so motor neuron feedback ignites and 

switches between the different phases that make up a 
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movement cycle. Another expression was proposed by 

Thomas Graham Brown, which was based on the centrality of 

rhythms [36]. Although this theory was challenged at its 

emergence, today, scientists believe that the CPG as biological 

neural circuits can produce rhythmic output in the absence of 

rhythmic input [37]. For example, stimulating a paralyzed fish 

(with spinal cord injuries) electrically or chemically will result 

in movement patterns called artificial movements, which are 

very similar to healthy movements [32]. Mock movements 

have also been observed in salamanders and adult frogs [38]. 

CPG has been seen in several animals, and research has 

shown that CPGs are broad networks consisting of several 

paired oscillating centers that produce rhythm [39, 40]. 

Although there is no need for motor neuron feedback to 

produce rhythmic output, this feedback plays an essential role 

in shaping the rhythmic pattern [41, 42]. The role of motor 

neuron feedback is critical for the CPG and body movements 

to be in harmony with each other. 

 
 

Figure 1. A model for generating rhythmic and discrete 

movement by the Matsuoka oscillator [34] 

 

In many vertebrates, electrical stimulation induces an area 

of the brain called the mesencephalic locomotor region (MLR) 

responsible for movement behavior [36]. At lower stimulation 

levels, a lower frequency of movements can be produced; 

correspondingly, higher stimulation levels result in a higher 

frequency of activities [43]. These observations show that 

CPG can generate complex movements by receiving simple 

inputs and switching between multiple phases.  

CPG models are used in various robots and biomedical 

modeling [44]. Zhang et al. [45] proposed a new approach for 

designing a new actuator based on the CPG. The activity of the 

soft actuator is similar to octopuses’ muscles with no solid 

skeletal support. The authors simulated the gentle actuator 

activities under different conditions and controlled movements 

by adjusting the parameters of the CPG. 

Moreover, CPG was used in designing six-legged Octopus 

robots [43]. It was also used in various swimming and 

crawling robots, such as snake robots [46, 47]. Furthermore, 

the CPG has been modeled in different levels of abstraction, 

from partial biophysical models to high-level abstract models. 

Partial biophysical models are based on the Hodgkin-Huxley 

model [48]. This neural model calculates how ions move 

within neural channels, how they affect the neurons' voltages 

and currents, and how nerve oscillations occur inside small 

neural circuits. While a large body of research has focused on 

the activity of single neurons, another group has focused on 

the dynamic properties of larger neural circuits. Also, 

rhythmic models use simple modeling of neurons, including 

the leaky receptor integral [49]. These models focus on how 

oscillating activity causes the properties of the neural network 

and how inter-neural connections synchronize different neural 

circuits.  

Notably, there is an ongoing debate about whether motor 

control is hierarchical, with higher brain areas controlling 

lower-level movements, or if it involves distributed control 

across multiple levels simultaneously [50]. Understanding the 

nature of this control hierarchy remains a topic of discussion. 

Another debate revolves around the relative importance of 

feedback (sensory information during movement) versus 

feedforward (preplanned motor commands) control in 

movement generation and adjustment. This has implications 

for how we understand motor learning and adaptation. Also, 

the neural mechanisms underlying complex, coordinated 

movements, such as playing a musical instrument or skilled 

sports performance, are not fully understood [51]. There are 

debates about how these movements rely on specialized brain 

regions or result from extensive research and learning [52].  

This research aims to contribute to these discussions by 

proposing a unified neuromechanical control model for 

generating and controlling both rhythmic and discrete 

movements. We provide insights into motor control's 

hierarchical or distributed nature by empirically demonstrating 

how a single model can account for diverse movement types. 

Additionally, our exploration of the role of supraspinal input, 

motor neuron feedback, and the impact of motor control 

parameters on movement generation can shed light on the 

debate regarding feedback versus feedforward control. Our 

study's findings can help delineate the neural mechanisms of 

switching between discrete and rhythmic states. 

 

 

3. DESCRIPTION OF THE MODEL 

 

This model is designed with biological plausibility in mind. 

It includes various components, such as rhythm-generator 

neurons, motor neurons, interneurons, and muscle 

contractions, closely resembling the neural and mechanical 

elements found in living organisms. This biological relevance 

allows for insights into how real neural and muscular systems 

might generate and control movement. The model 

encompasses multiple neural and mechanical component 

layers, comprehensively representing the motor control 

system. By including rhythm generators, pattern-formation 

neurons, motor neurons, and feedback mechanisms, it 

accounts for various aspects of motor control. It can 

potentially provide a more holistic understanding of 

movement generation. The model's complexity and the 

inclusion of interneurons and inhibitory components make it 

suitable for investigating complex behaviors and transitions 

between discrete and rhythmic movements. Such flexibility 

can be crucial in addressing the research questions posed in the 

study. 

The model's components, represented as neurons and 

muscles, can be described using mathematical equations, 

potentially allowing for analytical insights into the system's 

dynamics. Mathematical models often provide a precise 

framework for exploring how different parameters influence 

movement. 

The primary model in this study is a simple neuro-

mechanical model consisting of several layers, including 

rhythm-generator neurons (RG-F and RG-E), pattern-

formation neurons (PF-F and PF-E), motor neurons (Mn-F and 
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Mn-E), interneurons (In-F and In-E), inhibitory interneurons 

(Inab-E and Int), feedback neurons (Ia-F, IaE, II-F, and Ib-E) 

and two flexor and extensor contraction muscles that attach to 

the limb (F and E) (Figure 2).  

 

 
 

Figure 2. Neuromechanical model and the relationship 

between its components [53] 

 

Each neuron in this model represents a population of nerve 

cells that show the voltage difference between its membranes, 

represented by V, and the output of each neural population in 

the CPG layers denoted by f(v), which follows the nonlinear 

transformation below, where 𝑣1
2

=−30 mV, k=3 mV for motor 

neuron, k=8 mV for other neurons, and Vth=−50 mV [53]. 

 

𝑓(𝑣) =

{
 

 
1

(1 + exp (−(
𝑉−𝑣1

2

𝑘
)))            𝑉 ≥ 𝑉𝑡ℎ

⁄

0                               𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

  

 

The neuron activation depends on whether or not their 

membrane voltage is greater than the threshold voltage (Vth). 

Two first-order differential equations below express dynamic 

relationships for rhythm-generator, pattern-formation, and 

motor neurons. 

 

𝐶𝑣̇𝑖 = −𝐼Nap(𝜈𝑖ℎ𝑖) − 𝐼𝑘(𝜈𝑖) − 𝐼leak(𝜈𝑖) − 𝐼synE(𝜈𝑖) − 𝐼synI(𝜈𝑖) 

ℎ̇𝑖 =
ℎ∞(𝑣𝑖)−ℎ𝑖

𝜏ℎ(𝑣𝑖)
  

 

The internal neurons (In-F, In-E, Int, and Inab-E) equation 

is described by: 

 

𝐶𝑣̇𝑖 = −𝐼𝑙𝑒𝑎𝑘(𝑣𝑖) − 𝐼𝑠𝑦𝑛𝐸(𝑣𝑖) − 𝐼𝑠𝑦𝑛𝐼(𝑣𝑖)̇  

 

where, vi is the voltage difference between the membranes of 

the neuron i, C is the membrane capacitance, INap is constant 

sodium current, Ik is potassium current, Ileak is leakage current, 

IsynE is the excitation input of the synapses entering neuron i, 

IsynI is the inhibitory input of the synapses entering neuron i, 

which follow equations below: 

 

𝐼𝑠𝑦𝑛𝐸 = 𝑔̅𝑠𝑦𝑛𝐸(𝑣𝑖 − 𝐸𝑠𝑦𝑛𝐸)(∑ 𝑎𝑗, 𝑖𝑛
𝑗 𝑓(𝑣𝑗) + 𝑐𝑖𝑑 +

∑ 𝑤𝑖,𝑘𝑓(𝑏𝑘)
𝑚
𝑘 )  

𝐼𝑁𝑎𝑝(𝑣𝑖 , ℎ𝑖) = 𝑔̅𝑛𝑎𝑝𝑚𝑛𝑎𝑝ℎ𝑖(𝑣𝑖 − 𝐸𝑁𝑎) 𝑚𝑛𝑎𝑝 = 𝑚𝑛𝑎𝑝𝑝(𝑣𝑖) 

𝐼𝑘(𝑣𝑖) = 𝑔̅𝑘𝑚𝑘
4(𝑣𝑖 − 𝐸𝑘),𝑚𝑘 = 𝑚𝑘(𝑣𝑖) 

𝐼𝑙𝑒𝑎𝑘(𝑣𝑖) = 𝑔̅𝑙𝑒𝑎𝑘(𝑣𝑖 − 𝐸𝑙𝑒𝑎𝑘) 

𝐼𝑠𝑦𝑛𝐼 = 𝑔̅𝑠𝑦𝑛𝐼(𝑣𝑖 − 𝐸𝑠𝑦𝑛𝐼)∑ 𝑏𝑗,𝑖𝑓(𝑣𝑗)
𝑛
𝑗   

 

where, d is the supraspinal drive input to CPG neurons, ci is a 

factor scaling the drive d to neuron i, aj,i is the weight of the 

excitatory input from neuron j to neuron i, bj,i is the weight of 

the inhibitory input from neuron j to i, f(bk) denotes the kth 

feedback signal and wi,k is the weight of that feedback (kth) to 

neuron i. More details and other parameters are provided by 

Spardy et al. [53, 54]. 

 

 

4. INVESTIGATING THE EFFECT OF DIFFERENT 

FACTORS ON MOVEMENT 

 

The supraspinal input and motor neuron feedback from the 

muscles are two critical inputs for CPGs [55]. Supraspinal 

input is information from higher brain regions like the motor 

cortex or basal ganglia that can affect a central pattern 

generator (CPG) in the nervous system, enabling the initiation, 

control, or modulation of rhythmic movements [56].  

Motor neuron feedback refers to sensory information from 

muscles and tendons that informs the nervous system about 

body position and movement, helping maintain balance and 

coordinate motion [57]. This feedback is vital for maintaining 

balance and coordinating movement. It can also help to initiate 

movement, as the brain can use sensory information to 

determine the starting position of a movement and plan the 

appropriate motor commands to execute the desired movement. 

Both supraspinal drive and sensory feedback are essential for 

proper functioning CPGs and coordinating rhythmic activity 

patterns [58]. 

In addition, motor neuron feedback stimulates rhythm-

producing and pattern-generating neurons, which result in 

increased oscillations. When rhythm-producing neurons are 

active in the path of the extensor muscles, rhythm-producing 

neurons in the direction of the flexor muscles are silent 

because, as mentioned before, this model is symmetrical. This 

fact also works for other neural layers. Figure 3 shows an 

example of rhythm-producing and motor neurons' activity. As 

shown in this diagram, when the neurons in the flexor muscle 

pathway (red line) are active, the neurons in the path of the 

extensor muscle are inactive (blue dashed line). This phase 

difference causes the extensor muscle to stop working while 

the flexor muscle starts working, and eventually, the limb 

begins to bend and contract. There are several models to create 

these symmetrical activities. For instance, a half-center 

oscillator CPG is commonly used to model the activation of 

opposing muscles. This is a specific type of CPG consisting of 

two interneurons that inhibit each other in a loop, creating a 

cyclical pattern of neural activity. It's often used to model 

opposing muscle activations. Each interneuron can alternately 

inhibit or excite the other, producing a cyclical pattern of 

neural activity that results in rhythmic motor output. The half-

center oscillator CPGs can produce rhythmic muscle 
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activation patterns without needing external stimuli or sensory 

feedback. They are also relatively simple to implement and 

can be used to investigate the basic principles of motor control. 

 

 
 

Figure 3. The path of the flexor (FL) and extensor (EXT) 

muscles, which also work in the opposite phase [53] 

 

 
 

Figure 4. Supernatural input with a value of 1.4 (less than the 

stimulation threshold of 1.5) 

 

 
 

Figure 5. Output (hand movement angle) for when we do not 

have proper supraspinal input in normal conditions 

 

The CPG sends information to the limb muscles through the 

flexor and extensor pathways. The motor neuron feedback 

transmits information about the limb to the CPG, which 

indicates the angle of motion. It provides information to the 

nervous system to orient the body, regulate body movement, 

and communicate with the external environment. The 

supraspinal drive is a constant input from a higher level of the 

nervous system and primarily controls oscillation. The 

frequency fluctuations of CPG's output directly depend on this 

constant input strength. 

In the following sections, we present the different 

parameters of this model that play an essential role in 

controlling and generating various movements applied to the 

neuromechanical system. Moreover, we examine the impact of 

multiple factors involved in the movement to indicate which 

factors could influence the fluctuation, period, and phase. 

Our study shows that the system could oscillate with proper 

supraspinal input and adequate motor neuron feedback from 

the muscles. To be more exact, if the system fails to receive 

sufficient information from the supraspinal drive, it will not 

generate oscillation or action with the same conditions as 

before (Figures 4 and 5). Therefore, it is evident that the 

supraspinal input is essential in producing rhythmic 

information. 

The remarkable point about the CPG is that simple signals 

are usually sufficient to stimulate and induct motion in the 

output [59]. Based on our research, the minimum amount of 

supraspinal input that can oscillate the system is 1.5, and 

higher values can lead to a higher frequency of movements. 

Likewise, low levels of stimulation reduce the frequency of 

movements (Figures 6 and 7). 

 

 
 

Figure 6. The rhythmic movement's output angle when the 

supraspinal input amount is higher (4.7) 

 

 
 

Figure 7. The output angle in the rhythmic movement when 

the amount of supraspinal input is small (2) 

 
Without supraspinal input, the neurons cannot be activated; 

consequently, the limb has no motion. But could the motor 

neuron feedback be strong enough to move the motor limb? 

We removed the supraspinal input to answer this question and 

set the system with an initial amount of motor neuron feedback 

in the normal state. We observed that without input and a 

minimum amount of motor neuron feedback, the 

neuromechanical model could not produce oscillation, and the 
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limb could not have movements. So, after increasing the motor 

neuron feedback coefficient, we observed that the intermediate 

neurons could be activated; this makes it possible to produce 

fluctuations in the output, and some fluctuations can be 

returned to the system. As mentioned earlier, when the input 

is zero, with the same initial conditions, the rhythm-generating 

neurons cannot be released from the dormant phase, and no 

activity can occur. It's important to note that the effects of 

feedback on a CPG can depend on the feedback's specific type 

and timing and the CPG's characteristics. 

 

4.1 Examining the nullcline diagram of the model 

 

A nullcline diagram is a mathematical tool used to study the 

behavior of systems. In this context, it helps visualize how 

different inputs affect the activity of neurons. It is a map 

showing how neurons respond to various signals. The nullcline 

diagram in the phase space is an efficient mathematical 

concept used to analyze the dynamics of a system [60]. A 

system's phase space represents its state regarding its variables, 

such as position and velocity for a mechanical system or 

membrane potential and ionic concentrations for a biological 

system. The activity of neurons could be determined by their 

nullcline position in the phase space (V, h). In a biological 

system like a neuron, the nullcline position can be used to 

understand the equilibrium points and stability of the system. 

For example, when the nullcline position of the membrane 

potential intersects with that of a gating variable, it gives 

information about the system’s steady state. Additionally, the 

position of the nullcline can provide information about the 

system’s behavior, such as its stability and how it responds to 

perturbations.  

 

 
 

Figure 8. An example of a system's nullclines graph for an input split. V-nullcline and h-nullcline are specified in pink and gray 

colors, respectively [53] 

 
The intersection of the nullcline diagram, which is related 

to the system's input, shows different neuron states [61]. The 

neurons are inactive when the information is such that the h-

nullcline and v-nullcline intersect in the left branch of the v-

nullcline, Figure 8 (C). When h-nullclines and v-nullcline 

cross in the central unit of the v-nullcline, the neuron begins to 

produce bursts, Figure 8 (B); the subsystem enters a limit cycle 

and has burst as long as it is in this state. By changing the input, 

when the h-nullclines in the right branch of the v-nullcline 

intersect, the neuron begins to oscillate tonically, Figure 8 (A). 

Therefore, neurons can observe different activities by 

changing the input values; v-nullclines move to more positive 

voltages as we increase the feedback. Thus, activation in 

rhythm-generating neurons leads the intermediate neurons to 

exert a more robust input on the motor neurons, causing limb 

oscillations. When the information to the motor neurons is 

minimal, the oscillations disappear, and movement stops. 

Rhythm-generating, pattern-generating, and motor neurons 

oscillate from their three input sources, including supraspinal 

input, interior neurons, and motor neuron feedback from the 

motor organ. If we remove one of these sources, the system 

will oscillate as long as the remaining two sources become 

more robust than in their normal state. So, rhythm-generating 

neurons could be activated with just two inputs, allowing 

intermediate neurons to exert more substantial input on motor 

neurons to produce oscillations in the limb. One of these two 

sources, the supraspinal information or motor neuron feedback, 

is always necessary to produce oscillations. However, these 

oscillations are not as strong as typical oscillations. 

It is important to note that the nullcline diagram is just one 

aspect of the complex dynamics of a neuron, and other factors 

such as neurotransmitters, synaptic inputs, and intrinsic 

currents also play a role in determining the activity of a neuron. 

 

 
 

Figure 9. Step input with a slight slope, 0.0001 in 

milliseconds 

 

4.2 Examining different values  for supraspinal drive input 

 

The supraspinal drive input is one of the most critical inputs 

to produce motion. According to this input, the neurons in 

CPG could be activated and run the motor control system, 

leading the system to oscillate. We observed constant 

fluctuations when we entered constant and stepped input to 

CPG as a supraspinal drive input. Also, when we applied the 

supraspinal input from the initial value of zero with a minimal 

step length (0.0001 ms), the system started oscillating as soon 

as the input's value (d) crossed 1.5. As time passes, these 
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inputs and the output fluctuations also increase. Therefore, to 

change the output oscillation, we should change the amount of 

supraspinal drive input (Figures 9 and 10). 

 

 
 

Figure 10. When the supra spinal drive input increases, the 

frequency of movement fluctuations also increases 

 

4.3 Checking the role of motor neuron feedback in the 

absence of supraspinal drive input 

 

When there is no supraspinal input, the system can only 

generate fluctuations in the output by increasing the motor 

neuron feedback strength. Still, as mentioned before, these 

oscillations are not as firm as they were in the normal state 

with supra spinal drive input (Figure 11). 

 

 
 

Figure 11. Removing the supraspinal input and increasing 

the feedback power to generate oscillations 

 
By examining the role of motor neuron feedback and its 

coefficient, we conclude that the most critical factor in motion 

is the motor neuron feedback coefficient. It can change the 

amplitude and frequency of movement and is an essential 

factor in controlling actions. The following section discusses 

the system dynamics scenarios through the bifurcation 

diagram. 

 

4.4 Investigation of the effect of supraspinal input and the 

gain of motor neurons in the occurrence of bifurcation 

 

Bifurcation is a sudden, significant change in a system's 

behavior. In this study, it refers to changes in neural activity 

patterns as inputs (supraspinal drive and motor neuron 

feedback) vary. Supraspinal input can influence the behavior 

of the nervous system and lead to changes in its activity. The 

increase in supraspinal input may lead to a bifurcation, which 

depends on a system’s limit cycle, input, and specific 

parameters, which causes a dramatic change in the behavior of 

a system. A limit cycle is a recurring pattern of behavior in a 

dynamic system. In this case, it represents the rhythmic 

movement of a limb controlled by the nervous system. This 

behavior is often seen in biological systems, such as the 

cardiac cycle, the neural activity that controls breathing, or 

rhythmic movements.  

In the present study, the supraspinal input can lead the 

system to follow a bifurcation; when the input increases, the 

system enters the limit cycle at d=1.5. More severe 

fluctuations can be achieved by increasing the value of this 

input to 3. Then, by reducing this input with the same slight 

but negative slope (-0.003), the system at the point where d 

=1.0 goes out of the limit cycle and reaches a steady state with 

different values than when it started to increase. Therefore, the 

system has a limit cycle in which hysteresis has occurred. Fig. 

13 shows the bifurcation diagram of the system when the 

supra-spinal drive input (d) follows Figure 12. 

 

 
 

Figure 12. The supraspinal drive input is steadily increasing 

and decreasing to check the splitting in the system to evaluate 

the bifurcation diagram 

 
Another essential factor in the system's bifurcation is 

increasing the motor neuron feedback coefficient, which leads 

to a significant decrease in the oscillation of the moving angle. 

Consequently, the bifurcation location will change, and the 

limit cycle will become smaller. As a result, when the 

amplitude of the oscillations decreases, the neurons enter and 

exit the limit cycle faster (Figures 13 and 14).  

 

 
 

Figure 13. The system bifurcation diagram (MnE: 0.02) 

 

When the supraspinal input in Figure 13 follows the 

diagram of Figure 12, the motor neuron feedback coefficient 

is 0.02, and other conditions are constant. The red and blue 
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dots are the supraspinal input in the ascending and descending 

states 

 

 
 

Figure 14. The system bifurcation diagram (MnE: 1) 

 

When the supraspinal input in Figure 14 follows the 

diagram of Figure 12, the motor neuron feedback coefficient 

is 1, and other conditions are constant. The red and blue dots 

are the supraspinal input in the ascending and descending 

states. 

By increasing the value of the motor neuron feedback 

coefficient, neurons exit the limit cycle more quickly. So, in 

this study, by examining the bifurcation diagram, we could 

understand that the supraspinal input and the motor neuron 

feedback coefficient can be the control parameters to observe 

the desired dynamic behavior in the system. 

We should note that bifurcation diagrams are a tool for 

understanding the qualitative behavior of a system and may 

not capture all the details of the biological system, which is 

highly complex and multi-factorial. 

 

 

5. PRESENTING A CONTROLLING MODEL FOR 

RHYTHMIC AND DISCRETE MOVEMENT 
 

Linear controller methods are based on the basic assumption 

of small-scale performance. This kind of controller cannot 

compensate for nonlinear effects in the system. On the other 

hand, nonlinear controllers cannot be easily implemented in 

the natural system due to the complexity of their structure. The 

choice of a proportional linear controller aligns with the 

study's goal of simplicity, given that all system parameters are 

known. This simplification allows for a clear understanding of 

the control system's behavior. Therefore, we can control the 

system by changing the proportional linear controller structure.  

Since the physiological design of the nervous system can 

usually be influenced by strengthening or weakening its inputs, 

in this controller, there is a direct relationship between its 

inputs and outputs. In this system, the amplitude and the 

frequency of oscillations are limited. Therefore, we 

determined the maximum and minimum values of the 

movement's range and used the control system parameters, 

supraspinal input, and motor neuron feedback coefficient to 

design a controller. So, according to the effect of these two 

parameters, we achieved an appropriate control model derived 

from a proportional linear controller. However, there is always 

a persistent error between the desired value and the actual 

output in the zero-order system in a proportional controller. 

This error can be significantly reduced by increasing the 

controller gain, but it causes a delay, and the system returns to 

a steady state afterward. Therefore, we applied the exponential 

function to solve this problem. By using an exponential 

function and a training algorithm, the controller addresses the 

persistent error issue of linear controllers, which is crucial for 

achieving accurate and responsive control of limb movement. 

The controller's ability to limit the amplitude and frequency of 

oscillations reflects the natural constraints of limb movements, 

making it biologically plausible. As a result, this controller 

leads the system to respond quickly, reduces its overload, and 

increases the result accuracy to 99%. The system achieves the 

desired output in this simple model with very little error (less 

than 0.001). The resulting rhythmic motion is demonstrated in 

Figure 15.  

Discrete movements can also be modeled with this 

controller to simulate a limb’s motion from a certain angle to 

another desired angle. In this case, the frequency of activity is 

zero, and the control model repeats its algorithm to reach the 

desired output. Figure 16 shows an example of a discrete 

movement. 

The chosen controller strikes a balance between simplicity 

and effectiveness. It leverages knowledge of the system's 

parameters and physiological principles to achieve accurate 

and responsive control of limb movements, making it suitable 

for the research's objectives. 

 

 
 

Figure 15. The amplitude and frequency of the control model 

system decrease from 8 and 1.686 to 4 and 1.365, respectively 

 

 
 

Figure 16. An example of discrete motion: the limb goes 

from 132 degrees to 115 degrees 
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6. CONCLUSIONS 

 

Natural patterns always inspire researchers to design 

different systems. The movement of living organisms is a 

behavioral pattern considered in various studies. The central 

nervous system controls and produces motion activities 

through inhibitory and excitatory connections attached to 

muscles. This study examined the motor control system 

parameters through dynamics analysis and the bifurcation 

diagram. To this end, we evaluated the role of various 

components in the production and control of movement 

through bifurcation diagrams and system nullclines. Thus, we 

found that only two parameters, supraspinal input, and motor 

neuron feedback gain, are directly involved in this purpose. 

Finally, we could extract rhythmic and discrete movement by 

applying our simple controller to CPG, a nonlinear oscillator 

that can only generate a rhythmic motion with its initial 

structure. We should note focusing on minimal parameters 

(supraspinal input and motor neuron feedback gain) simplifies 

control design while maintaining effectiveness. Also, enabling 

rhythmic and discrete movements with a single control system 

advances the potential for developing more versatile and 

adaptable robotic systems. This simple controller could be 

used in robotic rehabilitation devices. These devices could 

assist patients in regaining motor control, improving their 

mobility and overall quality of life. Furthermore, this study 

paves the way for developing versatile robotic systems. Robots 

equipped with the controller described here could perform 

various tasks requiring rhythmic and discrete movements. This 

includes activities in industries such as manufacturing, 

healthcare, and agriculture. 
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