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 In the realm of Educational Data Mining (EDM), the predictive analysis of student 

performance has emerged as a pivotal area of interest, particularly within computer science 

education. This investigation employs machine learning and data mining techniques to 

project academic outcomes of computer science undergraduates, anchoring its framework 

on the Association for Computing Machinery's (ACM) 2013 Body of Knowledge (Bok), as 

delineated in the curriculum guidelines for undergraduate computing programs. 

Encompassing 18 Knowledge Areas (KAs), each with multiple Knowledge Units (KUs), 

the ACM2013 guideline serves as a comprehensive scaffold for curriculum development, 

ensuring an inclusive coverage of essential skills and subjects. Through an analysis of data 

from 2,756 students across nine years at Qassim University's College of Computer Science, 

this study aims to pinpoint performance levels across various KAs and semesters. Linear 

regression models were constructed to predict student performance, with their accuracy 

evaluated through Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean 

Square Error (RMSE). The predictive accuracy varied across courses, with "Systems 

Programming" and "Graduation_1" demonstrating high alignment with actual scores, while 

courses like "Artificial Intelligence" and "Compiler Design" revealed significant 

discrepancies. A correlation analysis between predicted and actual scores further assessed 

the models' precision. Findings underscore the utility of EDM in academic settings, 

especially for tailoring predictive models that enhance student performance prediction in 

computer science. The identification of KAs with high predictive accuracy corroborates the 

curriculum's alignment with student achievements, whereas lower accuracy areas highlight 

potential gaps in curriculum or pedagogy, offering vital insights for educators and 

curriculum designers to refine educational strategies and resources for improved student 

outcomes. 
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1. INTRODUCTION 

 

EDM is a field that uses faculty experience and student 

performance data to gain insights. As education evolves, EDM 

has become more critical, especially in developing predictive 

systems. However, these systems face challenges due to the 

complexity of the educational process, which includes factors 

like educational background, learning resources, environment, 

teacher experience, and student abilities [1]. 

In recent years, higher education enrollment has expanded 

rapidly. However, this has resulted, as mentioned in the study 

by Mi [2], in a decline in academic quality, which can be 

attributed to the continuous provision and rapid evolution of 

curricula. This decline is mainly due to a lack of respect for 

the different areas of knowledge needed at each curriculum 

level and their periodical assessments. Comprehensive 

curricula, such as the CS2013 Computer Science Model 

Curriculum, have been introduced to tackle this challenge. 

This model and the ACM's BoK outline 18 KAs essential for 

computer science education. These KAs are further divided 

into KUs, which offer educational institutions the flexibility to 

customize courses while ensuring coverage of critical topics 

and skills such as teamwork, communication, and problem-

solving. This framework is particularly beneficial for 

undergraduate programs, providing a foundation for 

evaluating students' analytical and practical skills [3]. 

Previous research on predicting student performance has 

used various approaches, reflecting the multifaceted nature of 

educational outcomes. A systematic review of 743 articles 

published between 2010 and 2017 provided by Hellas et al. [4] 

showed that computer science was the most studied subject, 

with classification techniques being the most commonly used 

(39.9%) and linear modeling being the most popular method 

(17.7%). A comprehensive study by Namoun and Alshanqiti 

[5] of 62 articles published between 2010 and 2020 

highlighted the diverse use of statistical analysis, supervised 

and unsupervised machine learning, with statistical analysis 

being the most applied technique (45.16%). The accuracy of 

these methods varied, with techniques like hybrid random 

forest and feedforward 3-L neural networks achieving high 

accuracy rates of up to 99.98%. Ahmed et al. [6] used in 

algorithms like decision trees, SVM, and neural networks to 
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predict the suitability of computer science as a degree, 

demonstrating the Random Forest algorithm's superior 

predictive capability in categorizing student outcomes. 

Similarly, Nosseir and Fathy [7] apply neural network 

techniques for pre-university performance prediction, while 

Jain and Solanki [8] compare various classifiers, including 

Extreme Gradient Boosting. These studies show the diverse 

landscape of techniques in EDM, each contributing uniquely to 

understanding and enhancing student performance prediction. 

This proposal presents a new model for forecasting student 

performance by measuring student performance on the ACM 

BoK for computer science program. Our model aims to 

establish a connection between the comprehensive KAs 

outlined by the ACM and quantifiable student outcomes to 

identify and address any possible weaknesses. We intend to 

utilize linear regression, which is a supervised machine 

learning technique with appropriate customizations, to 

anticipate students' current and future performance. The final 

aim is to create a practical tool for EDM that enhances the 

educational journey for students in their institutions. This will 

help any institution assess the program's educational 

objectives in an effective way. 

 

 

2. RELATED WORK  
 

This study presents a detailed overview of different 

approaches used to anticipate student performance, 

encompassing the advancements from 2010 to the present. 

In the research by Hellas et al. [4] and by conducting a 

systematic review of 743 articles published between 2010 and 

2017, it has been found that classification, clustering, and 

statistical techniques, particularly linear modeling, are 

extensively used. This trend forms a strong base for our 

research. 

Expanding on this idea, we have looked into newer studies 

up to 2023. These studies demonstrate a trend toward using 

machine learning and statistical analysis for EDM. While 

supervised machine learning is not as commonly used, it has 

much potential yet to be explored. This changing landscape 

has influenced our methodology, and we are now exploring 

more advanced machine-learning techniques [5]. 

Our analysis is crucial in identifying both the strengths and 

challenges of existing methods. Several studies have 

employed different algorithms, such as decision trees, SVMs, 

and neural networks, to develop robust prediction frameworks. 

However, these models need more flexibility to address 

diverse educational pathways [6]. Our research has integrated 

more dynamic models to adapt to varying student learning 

experiences. 

Furthermore, predicting students' performance at an early 

stage and applying classification algorithms [7, 8] emphasize 

the significance of timely interventions. However, these 

studies also warn against overfitting and stress the importance 

of generalizable models. To tackle this challenge, our research 

uses a comprehensive approach that considers a broader range 

of factors related to students. 

In addition, our study incorporates insights from 

applications of expert systems and multiple regression models 

in educational settings [9, 10]. We extend these methodologies 

by integrating them with advanced data mining techniques, 

offering a more comprehensive view of student performance 

prediction. 

In a study conducted by Gull et al. [11], six algorithms were 

employed, including logistic regression and support vector 

machines, to forecast the final grades of undergraduate 

students based on various term activities. The results of the 

study demonstrate the effectiveness of linear models. In a 

subsequent study, Nuankaew and Thongkam [12] explored a 

more comprehensive range of algorithms and highlighted the 

robustness of Random Forest in predicting academic 

performance across different disciplines. These findings are 

consistent with our approach, which incorporates a more 

diverse range of predictive factors. 

They utilize various innovative techniques, such as RTV-

SVM [13], ANOVA analysis [14], and DNN models [15], to 

improve their predictive framework. These studies 

demonstrate the effectiveness of specific methodologies in 

predicting student performance based on term activities, 

course correlations, and online engagement, respectively. By 

using multiple linear regression in blended learning 

environments, Xu et al. [16] showed how important it is to take 

into account different types of learning activities in predictive 

models. 

Other studies used various predictive models in EDM and 

drew insights from multiple methodologies. Yan [17] utilized 

XGBoost, a decision tree-based algorithm, to demonstrate the 

effectiveness of gradient-boosting frameworks. Their 

adherence to the CRISP-DM methodology shows a structured 

approach to predictive modeling, from understanding the 

educational field to evaluating models against established 

metrics such as RMSE and MAE. The success of the XGBoost 

model in their research, marked by its low MAE and high R2, 

is beneficial for our study, suggesting the potential of 

advanced ensemble techniques in educational settings. 

MD and Krishnamoorthy [18] conducted a study on student 

performance at Amrit University in India. They used context-

bound cognitive skill scores to analyze the data and improve 

predictive modeling in education. Their approach involved 

using various algorithms, such as logistic regression and SVM, 

which helped them gain insights into the complexity of 

educational data and the importance of using diverse analytical 

methods. By focusing on cognitive skills, they were able to 

develop a nuanced understanding of student performance, 

which is crucial for creating comprehensive predictive models. 

Subahi [19] proposed the ACM criteria-based approach, 

combining technical and non-technical factors to predict future 

career paths. The study applied neural networks to EDM, but 

it also revealed practical challenges such as data scarcity and 

manual effort requirements. This provides valuable insights 

for our research on balancing technical sophistication with 

practical feasibility. 

The landscape of EDM is rich with diverse methodologies 

aimed at predicting student performance. A notable addition 

to this body of work is "Performance Prediction of Students in 

Higher Education Using a Multi-Model Ensemble Approach". 

This study delves into the efficiency of ensemble classification 

techniques, including bagging, boosting, stacking, and voting, 

offering a nuanced perspective on the predictability of student 

outcomes. Drawing on quantitative data from a Pakistani 

university's learning management system, the research 

employs a blend of algorithms such as Naive Bayes, J48 

decision trees, Adaboost, logistics, and multilayer perceptron 

to forecast academic success. The findings reveal the strengths 

of the boosted tree method in managing vast datasets with 

significant standard deviations and the advantages of stacking 

for smaller data samples. Crucially, the study explores the 

correlation between teacher employment status and student 

170



 

performance, providing valuable guidance for educational 

leadership. These results show that ensemble learning models 

can be useful in analyzing education. In some cases, these 

combined methods can be more accurate than predictions 

made by a single model. This insight enriches our 

understanding and offers a solid reference point for our 

investigation into the predictive modeling of student 

performance [20]. 

Also, a study by Carlos and others analyzed the 

effectiveness of ensemble classification methods, such as 

bagging, boosting, stacking, and voting, in predicting student 

performance. The study used data from a university's learning 

management system in Pakistan. Various models, including 

Naive Bayes, J48 decision trees, Adaboost, logistics, and 

multilayer perceptron, were incorporated into the research. 

The study found that the boosted tree method was particularly 

effective in managing large datasets with significant standard 

deviations, while stacking showed promise for smaller 

datasets. Additionally, the study explored the impact of 

teacher employment status on student outcomes and provided 

valuable insights for educational stakeholders [21]. 

Our research combines traditional statistical models with 

advanced machine-learning techniques to extend the scope of 

EDM. We aim to synthesize these methods, incorporating a 

broader set of student-related factors and using conventional 

and cutting-edge predictive models. Our approach addresses 

the limitations identified in earlier studies while adapting to 

the evolving landscape of educational research. 

To summarize, this section provides an overview of 

significant research in the field, integrating critical analysis of 

various studies and highlighting our research contributions. 

Our study aims to position itself at the forefront of EDM by 

offering a comprehensive and adaptable framework for 

predicting student performance. 

 

 

3. METHODOLOGY  
 

Understanding and predicting student performance is vital 

to refining educational approaches. Aligning the computer 

science curriculum with globally recognized guidelines, such 

as the ACM 2013, is paramount to achieving this 

understanding. Here, we present our methodology, which 

encompasses data collection, KA mapping, weightage 

calculation, and prediction models. 

 

3.1 Data collection and extraction  

 

Course syllabi, representing a diverse set of academic 

institutions, serve as the primary data source for this study. 

Each syllabus offers a comprehensive overview of the topics 

and sub-topics covered within its course, making it a valuable 

reservoir of academic content. Each syllabus underwent a 

meticulous analysis to extract the primary topics and sub-

topics it contained. This extraction process formed the 

foundation upon which the subsequent matching and mapping 

processes were built.  
 

3.2 KA mapping 

 

3.2.1 ACM 2013 KA 

The ACM 2013 KA framework is a pivotal reference in 

computer science education. Its detailed categorization offers 

a structured means of understanding and organizing academic 

content. A systematic matching process was instituted to align 

the extracted topics from the syllabi with the standard KAs 

defined by ACM 2013. This step ensured that the course 

content and the ACM standards were congruent, cementing 

subsequent predictions' validity.  

 

3.2.2 Weightage calculation  

Understanding the weight or significance of each KA within 

a course is paramount to evaluating student performance. This 

weightage offers insights into the distribution and emphasis of 

content across various KAs. Weightage is calculated using the 

Eq. (1): 

 

𝑊𝑐,𝑘 =
𝐻𝑜𝑢𝑟𝑠 𝑜𝑓 𝐾𝐴 𝑘 𝑖𝑛 𝑐𝑜𝑢𝑟𝑠𝑒 𝑐

𝑇𝑜𝑡𝑎𝑙 ℎ𝑜𝑢𝑟𝑠 𝑜𝑓 𝑐𝑜𝑢𝑟𝑠𝑒 𝑐
 (1) 

 

To elucidate, if a KA within a course spanned 5 hours and 

the total duration of the course was 50 hours, then the 

weightage of that KA would be 10%. This quantification 

serves as an accurate representation of the importance each 

KA holds within a course's structure. 

To find the percentage acquired by each student in a specific 

course KA, we need to find the sum of this KA credit hour 

covered during the entire computer science program using Eq. 

(2) to calculate the percentage. 

 

𝑠𝑝𝑠,𝑐,𝑘 =
𝑀𝑠,𝑐,𝑘 × 𝑊𝑐,𝑘 

100
 × 𝑠𝑢𝑚𝑘 (2) 

 

where: 

• 𝑀𝑠,𝑐,𝑘  is the mark obtained by the student in 

semester s, course c, for KA k. 

• 𝑊𝑐,𝑘 is the weight of the mark for KA k in course 

c, derived from the proportion of hours for that KA. 

 

3.3 Accumulation of knowledge 

 

The accumulation of knowledge concept, represented by Eq. 

(3), is pivotal, as it encapsulates the student's cumulative 

knowledge spanning multiple semesters. As students’ progress 

through their academic journey, they traverse multiple KAs as 

defined by ACM 2013. 

 

𝑇𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 =  ∑ ∑ ∑ 𝑠𝑝𝑠,𝑐,𝑘

𝐾𝑐

𝑘=1

𝐶𝑠

𝑐=1

𝑆−1

𝑠=1

 (3) 

 

where: 

• S is the current semester. 

• Cs is the number of courses in semester s. 

• Kc is the number of KAs covered in course c. 

• 𝑠𝑝𝑠,𝑐,𝑘 is the percent of KA k acquired by the student 

s in specific Course c. 

 

3.4 Regression predictions 

 

3.4.1 Term-based sequential prediction  

The term-based sequential prediction model provides a 

comprehensive analysis of a student's academic progress 

throughout their academic term. It captures the aggregate 

knowledge and performance from one term and uses this data 

to predict probable outcomes in the subsequent term. The 

knowledge is predicted according to Eq. (4): 
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𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝛽0 + 𝛽1 × 𝑇𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝛽2 × 𝑊𝑐,𝑘 + 𝜖 (4) 

 

where: 

• 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is the predicted knowledge for the current 

semester. 

• 𝛽0  is the y-intercept (base knowledge that the model 

assumes). 

• 𝛽1  and 𝛽2  are coefficients for 𝑇𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  and 𝑊𝑐,𝑘 

respectively, which the model learns during the training. 

• 𝜖 is the error term. 

Assuming a student achieved a knowledge score of 70 in the 

last term, and the weightage for a specific KA in an upcoming 

course is 0.15. If our regression model determines that 𝛽0 =
10 , 𝛽 = 0.5 and 𝛽2 = 20 then: 

 

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 10 + 0.5(70) + 20(0.15) 

𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 10 + 35 + 3 = 48 

 

The model predicts a knowledge score of 48 for the 

upcoming term based on the previous term's performance and 

the KA's weightage in the course. 

 

3.4.2 Course-based sequential prediction 

The course-based sequential prediction model adopts a 

more granular approach, focusing specifically on individual 

courses. Instead of looking at an entire term's performance, it 

assesses a student's prior knowledge and achievements in 

previous courses to forecast their performance in upcoming 

courses. The knowledge will be predicted according to Eq. (5): 

 

𝐾𝑐 = 𝛼0 + 𝛼1 × 𝑇𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + 𝛼2 × 𝑊𝑐,𝑘 + 𝜂 (5) 

 

where:  

• 𝐾𝑐 is the predicted knowledge for a specific course 

c. 

• 𝛼0 is the y-intercept for the course-specific model. 

• 𝛼1 and 𝛼2  are coefficients for 𝑇𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  and 𝑊𝑐,𝑘 

respectively for the course-specific model. 

• 𝜂 is the error term for the course-specific model. 

 

Let's assume a student previously achieved a knowledge 

score of 80 in a relevant course, and the weightage for a 

specific KA in the next course is 0.10. If the regression model 

establishes 𝛼0 = 5, 𝛼1 = 0.4 𝑎𝑛𝑑 𝛼2 = 30, then: 

 

𝐾𝑐 = 5 + 0.4(80) + 30(0.10)𝐾𝑐 = 5 + 32 + 3 = 40 

 

Thus, the model predicts a knowledge score of 40 for the 

specific upcoming course based on prior course performance 

and KA weightage. 
 

 

4. DATA ANALYSES  

 

In this section, we embark on a comprehensive analysis of 

the data collected. The primary objective here is to scrutinize 

the dataset thoroughly before proceeding with any predictive 

modeling. This analysis is pivotal as it lays the groundwork for 

understanding the underlying patterns, trends, and potential 

anomalies in the data, which are essential for accurate and 

meaningful predictions.  

 

Table 1. KAs covered per course 

 
Course KA 

Logic Design AL:10 AR: 30 PL:2 

Computer 

Organization 
AR: 30 NC: 2 OS: 10 

Computer Network AR: 8 NC: 20 
IM & 

OS:14 

Programming (1) AL: 8 PL: 20 
SE & 

AR:14 

Programming (2) PL: 40 AL: 1 IM: 1 

Data Structures AL: 6 DS: 35 SE: 1 

Assembly Language AR: 20 PL: 20 SE: 2 

Operating Systems OS: 24 PD: 10 CN: 8 

Programming 

Languages Concepts 
PL: 28 SE: 8 CN: 6 

Computer graphics AL: 6 GV: 36 … 

Algorithm Analysis 

and Design 
AL: 40 DS: 2 … 

Compiler Design PL: 30 AR: 11 SE: 1 

Software Engineering  SE: 30 PL: 10 SF: 2 

Web Technology PL: 30 NC: 10 IM: 2 

Database  IM: 35 PL: 6 OS: 1 

Introduction to 

Computer Security  
IAS: 39 SP: 2 NC: 1 

Optimization 

Techniques 
AL: 24 PL: 14 NC: 4 

Artificial Intelligence IS: 30 AL: 6 PL: 6 

Systems 

Programming  
AR: 14 PL: 12 

AL & 

OS: 14 

Concept of Algorithm AL: 20 DS: 14 CN: 8 

Graduation (1)  PL: 10 SE: 20 IM: 12 

Graduation (2) PL: 20 SE: 10 IM:12 
Notes: The number beside each KA used as the weight of this KA in the 

course and represents the number of credit hours covered for the KA in this 

course. 

 
 

Figure 1. Average performance in AL across semesters 
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Figure 2. Average performance in OS across semesters 

 

 
 

Figure 3. Average performance in IM across semesters 

 

 
 

Figure 4. Average performance in DS across semesters 
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Figure 5. Average performance in NC across semesters 

 

 
 

Figure 6. Average performance in DS across courses 

 

 
 

Figure 7. Average performance in PL across courses 
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Figure 8. Average performance in NC across courses 

 

 

Figure 9. Average performance in SE across courses 

 

 
 

Figure 10. Performance of STD ID 2617 over semesters 
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Figure 11. Performance of STD ID 212 over semesters 

 

 
 

Figure 12. Performance of STD ID 26 over courses 

 

 
 

Figure 13. Performance of STD ID 931 over courses 
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Initially, data was collected for 2,756 students in a computer 

science program from 2006 to 2017. Each year has two 

semesters named from 271 to 351. It includes a group of study 

subjects with different credit hours, which covered a group of 

KA ranging from 2 to 4, depending on the topics and outcomes 

mentioned in the description of each course. Table 1 shows the 

KAs covered by each course in the Computer Science program. 

 

 
 

Figure 14. Averge of student’s performnce across semesters in different KA 

 

 
 

Figure 15. Averge of student’s performnce across courses in different KA 

 

 
 

Figure 16. Averge of student’s performnce in artificial intelligence across semesters 

177



 

 
 

Figure 17. Averge of student’s performnce in data structures across semesters 

 

 
 

Figure 18. Averge of student’s performnce in compiler design across semesters 

 

 
 

Figure 19. Averge of student’s performnce in graduation1 across semesters 
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Figure 20. Averge of student’s performnce in graduation2 across semesters 

 

 
 

Figure 21. Performance of graduated student ID 1188 across semesters 

 

 
 

Figure 22. Performance of graduated student ID 366 across semesters 
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Figure 23. KA heatmap 

 

Next, data is dived into different exploratory data analyses 

(EDA). EDA is a crucial step because it helps reveal the 

underlying structure of the data, highlight missing and outliers, 

and visualize relationships between variables. This stage uses 

graphical and quantitative methods to provide insight into the 

data set, which helps formulate appropriate hypotheses and 

predictive models later in the study. 

We, then, analyzed students' average performance in the 

ACM curriculum's KAs over several semesters. Notable trends 

include peaks in the semester of "291" for AL, "273" for OS, 

"283" for IM, "293" for DS, and "313" for NC, indicating 

classes in which students performed exceptionally well. These 

peaks may indicate classroom-specific influences such as 

effective teaching methods, assessment formats, or curriculum 

design that positively impact student learning. Conversely, a 

general decline in some basic knowledge in subsequent 

semesters indicates increased difficulty or decreased student 

engagement and warrants closer examination, as shown in 

Figures 1-5. 

In Figures 6-9, the average performance of students across 

the different academic courses was found, with diverse 

mastery in KA like Algorithm and Complexity (AL), 

Architecture and Organization (AR), Computational Science 

(CN), Data Structures (DS), Information Management (IM), 

Network and Communication (NC), Operating Systems (OS), 

Programming Languages (PL), and Software Engineering 

(SE). Students excel in "Software Engineering" within SE, 

"Data Structures" within DS, "Web Technology" within PL, 

and "Computer Network" within NC. However, challenges are 

evident in "Algorithm Analysis and Design" for DS and "Data 

Structure" within SE. "Compiler Design" and "Programming 

Language Concept" rank highly in PL, whereas "Assembly 

Language" shows lower performance in SE. Interestingly, 

"graduation" courses present varied results, suggesting 

disparities in curriculum execution. This comprehensive 

performance data underscores the need for targeted 

educational strategies to enhance learning outcomes in lower-

scoring areas. 

Figures 10-11 show the performance of random students 

across semesters in different KAs. The performance shows 

significant variability from one semester to the next. This 

suggests that the student's grasp of each KA could be more 

consistent. They may excel in some while struggling in others. 

A noticeable peak in one of the KAs in a particular semester 

indicates a high score, possibly due to the student's increased 

interest or aptitude for that KA or that it was less challenging 

or better taught than others. Conversely, there are subjects in 

which the performance is consistently low, possibly pointing 

to difficulty with the KA matter or less engagement with the 

course. 

Figures 12-13 outline the performance of random students 

across various courses. There are spikes in performance in 

specific courses, which indicates a strong aptitude or 

preference for those KAs or an excellent performance in a 

particular term. On the contrary, some courses show lower 

performance, which might be due to factors such as the 

course's complexity, the student's interest or engagement in the 

topic, or external factors affecting the student's performance.  

The previous random analyses expanded to include the 

average performance of all students in various academic KAs 

over multiple semesters. KAs such as AL, AR, CN, etc., show 

a wide range of average scores over time. The lines, each 

representing a distinct KA, show significant variation in 

performance, highlighting dynamic academic progress in each 
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domain. Some areas of knowledge show occasional spikes, 

indicating semesters in which students excelled, perhaps due 

to various factors such as teaching methodologies or students' 

adaptation to course material. On the other hand, sharp 

declines in some classes indicate difficulties that may require 

academic support or curriculum modifications. The 

fluctuating nature of the graph emphasizes that there is no 

consistent trend in any major, reflecting the complex interplay 

between different elements that influence academic success. 

The data suggest a need for a careful understanding of the 

factors that contribute to these trends to enhance instructional 

strategies and student learning outcomes, as shown in Figure 

14. 

On the other hand, when measuring average student 

performance across different courses in different KAs in 

computer science, "Algorithms Analyses and Design" shows a 

high peak in AL, suggesting that students generally perform 

well, which might be attributed to a robust curriculum or 

interest in algorithmic thinking. Operating Systems and 

Computer Graphics These areas also have high peaks, 

indicating above-average performance, suggesting that 

practical, hands-on subjects are well-taught or resonate more 

with students. Compiler design and data structures show more 

variability, with some high and some low points, suggesting 

that while some cohorts understand these subjects well, others 

may struggle, possibly due to the abstract nature of these areas. 

Graduation Projects The final projects ('Graduation1' and 

'Graduation2') show varying performance, but generally 

towards the higher end, indicating a culmination of knowledge 

and the application of skills acquired throughout the study, as 

shown in Figure 15. 

Figures 16-20 depict students' average performance across 

various courses within the curriculum of the computer science 

program. Each chart represents a different course, with 

performance on the most important KAs. There is significant 

variation in performance between semesters, as evidenced by 

the peaks and valleys. Some courses, such as "Artificial 

Intelligence" and "Data Structures", have high peaks, 

indicating that students generally perform well in these areas. 

On the other hand, courses such as "Compiler Design" and 

"Graduation 1" show a much lower average performance, 

which may indicate that these subjects are more challenging 

for students. In addition, the "Graduation2" course offers 

consistently low performance, which may indicate a peak 

course that requires special effort.  

For student std1188, there are significant fluctuations in 

performance across different semesters’ consistently high 

performance, peaking significantly in semester 322 for PL. AL 

and IAS also show peaks in performance but are not as 

pronounced as PL. There is a general trend where performance 

spikes and then drops, which could indicate a cycle of high 

achievement followed by a semester of lower scores. For 

student std366, the student's performance also fluctuates, but 

with less extreme variation than std1188. The highest peaks 

are observed in DS during semester 301 and AL during 

semester 312. Unlike std1188, no clear cyclical pattern 

suggests a less predictable performance across semesters, as 

shown in Figures 21-22. 

In the correlation matrix in Figure 23, each cell in the table 

shows the relationship between two variables. The value lies 

in the range from -1 to 1. If two variables have a high 

correlation (close to 1 or -1), they have a strong relationship. 

If the correlation is close to 0, there is no relationship. To 

analyze this chart, you should look for cells with high absolute 

values (close to 1 or -1) indicating strong positive or negative 

correlations. For example, a significant positive relationship 

between CN and DS and GV and PD appears to be indicated 

by higher values (close to 1). On the other hand, negative 

values close to -1 indicate a strong negative correlation, but 

there are no such examples in this matrix.  

 

 

5. RESULT AND DISCUSSION 

5.1 Prediction of the student performance across courses 

In this section, we will take a detailed look at the results of 

the predictive modeling that was conducted to evaluate the 

performance of computer science students in different courses 

and semesters. The main objective of this modeling was to use 

past academic data from previous courses as inputs and predict 

the performance of students in current and future courses. This 

approach was aimed at testing the hypothesis that past 

academic achievements can serve as indicators of future 

success. 

The dataset consisted of performance data from 2756 

students. This dataset was divided into two sets, a training set 

and a testing set, using an 80-20 split. The partitioning was 

carried out using a stratified sampling method to ensure that 

the training and testing sets were representative of the entire 

dataset. This method ensured that diversity across different 

courses and semesters was maintained. 

Statistical analysis identified outliers. Adjustments were 

made for data entry errors and unusual performance patterns 

to mitigate their impact on the models and ensure overall 

predictive accuracy. 

The first and foremost step is to clarify the KA covered by 

each course. These KAs function as our training and testing 

grounds, enabling us to assess the level of understanding of 

students in different courses. Next, we employ linear 

regression to forecast how well students will perform in their 

ongoing courses. We have a customized setup for each course, 

which allows our models to capture the unique mix of what 

students know and how it may reflect in each class. 

To measure the accuracy of the predictive models, we used 

error metrics such as MAE, MSE, and RMSE. In this study, 

we considered an MAE and RMSE below 5, and an MSE 

below 50, as indicative of a robust model. These thresholds 

were selected based on standard error margins in educational 

data analysis. 

We use bar charts to compare what we predicted a student 

would record with what they actually recorded. This helps us 

identify if our predictions are too high or too low, which is 

crucial to improving our accuracy. Think of a graph where 

each dot represents a student's performance, and the vertical 

line shows how much we were off in our prediction. If the dot 

is above zero, the student did better than we expected; if it's 

below, they performed worse. Each dot is placed above a 

student's number and is associated with their specific grade 

difference. 

Negative values indicate lower actual scores. The data is 

plotted as points aligned vertically above each student number, 

representing the score difference for one student. 

The "Programming Language Concepts" chart indicates that 

most students' predictions were generally accurate, as most 

data points are closely distributed around the zero line. 

However, in many cases, the predicted scores deviated 

significantly from the actual scores, as seen from the length of 
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the lines above or below the zero line. This suggests that some 

of the predictions could have been more accurate. The 

distribution of differences shows heterogeneity, with no clear 

pattern of systematic overestimation or underestimation across 

the board, as shown in Figure 24. 

 
 

Figure 24. Difference between average actual and predicted scores in programming language concepts course 

 
 

Figure 25. Difference between average actual and predicted scores in compiler design course 

 
 

Figure 26. Difference between average actual and predicted scores in data structures course 
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Figure 27. Difference between average actual and predicted scores in systems programming course 

 
 

Figure 28. Difference between average actual and predicted scores in graduation 1 course 

 

 
 

Figure 29. Difference between average actual and predicted scores in artificial intelligence course 
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Figure 30. Difference between average actual and predicted scores in graduation 2 course 

 

The "Compiler Design" chart shows a relatively balanced 

distribution of variances around the zero line, indicating that 

the prediction model was not consistently overestimating or 

underestimating student scores. However, there are notable 

positive and negative deviations, meaning that although many 

predictions are accurate, there are still several students whose 

predictions need to correspond better with their actual grades. 

The range of differences is relatively large, which may 

indicate various factors such as the unpredictability of 

students' performance in the compiler design, potential 

problems with the predictive model, or the challenging nature 

of the course content as shown in Figure 25.  

There are various reasons why the accuracy of predicting 

grades may differ for different courses. Some of these reasons 

include the level of complexity of the course content, the level 

of engagement from students, and the teaching methods used. 

For example, the "Data Structures" course showed less 

variability in grade predictions, indicating that students 

generally understood the course material similarly, as shown 

in Figure 26. 

Figure 27 shows the comparison between the actual and 

predicted average scores for the "Systems Programming" 

course. The chart displays data points clustered mainly around 

the zero line, with fewer outliers than in previous charts. The 

differences observed ranged from -1 to above 3, indicating that 

for most students, the predicted scores were very close to their 

actual scores in systems programming. A concentration of 

points around zero suggests that this course's prediction model 

is reasonably accurate. 

In "Graduation_1," most data points are clustered near the 

zero line, with few outliers. This suggests that the predictions 

were highly accurate compared to the actual scores, indicating 

a robust predictive model for this measure. Figure 28 visually 

demonstrates this minimal spread of data points near the zero 

line. 

The overfitting in the "Artificial Intelligence" course was 

evident from the scattered and random distribution of 

prediction accuracy, as shown in Figure 29. This suggests that 

the model might have been too closely tailored to specific data 

patterns in the training set, reducing its effectiveness on new 

data. 

The "Graduation_2" model exhibited a substantial negative 

variance, as seen in Figure 30. This could point to a systematic 

bias in the model, potentially due to oversights in considering 

certain academic factors or misalignments in the model's 

parameters. 

 

Table 2. Accuracy function using leaner regression model 

 
Course MAE MSE RMSE 

Logic Design 0.00 0.00 0.00 

Computer Organization 1.43 30.67 5.54 

Computer Network 0.88 14.17 3.76 

Programming (1) 0.75 10.07 3.17 

Programming (2) 0.59 9.14 3.02 

Data Structures 1.59 55.26 7.43 

Assembly Language 1.53 10.98 3.31 

Operating Systems 0.35 4.04 2.01 

Programming Languages 

Concepts 

1.16 73.52 8.57 

Computer graphics 0.22 4.87 2.21 

Algorithm Analysis and 

Design 

0.06 0.43 0.65 

Compiler Design 0.31 3.44 1.86 

Software Engineering 0.23 1.78 1.34 

Web Technology 0.44 10.36 3.22 

Database 0.06 0.70 0.84 

Introduction to Computer 

Security 

0.34 4.42 2.10 

Optimization Techniques 0.10 1.78 1.34 

Artificial Intelligence 0.03 0.36 0.60 

Systems Programming 0.00 0.00 0.00 

Concept of Algorithm 1.43 30.67 5.54 

Graduation (1) 0.88 14.17 3.76 

Graduation (2) 0.75 10.07 3.17 

 

After analyzing the predictive accuracy of various courses, 

we noticed a significant difference in their performance. Logic 

Design and Systems Programming stand out with zero error 

metrics, which suggests that there is exceptional consistency 

in student performance or a need to scrutinize the prediction 

model for overfitting. However, programming language 

concepts present the most significant challenge regarding 

accurate predictions, as indicated by the highest MAE, MSE, 
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and RMSE values. This hints at potential complexities within 

the course that may be affecting predictability. 

Meanwhile, courses such as Operating Systems, 

Introduction to Computer Security, Algorithm Analysis and 

Design, and Databases demonstrate commendable predictive 

precision with minimal errors, indicating reliable models for 

these subjects. Compiler design also shows respectable 

predictive outcomes with relatively low error rates. 

The graduation courses depict moderate predictive errors, 

which may reflect a balance between predictable trends and 

the individual variability inherent in capstone courses. Overall, 

the disparity in error metrics across courses suggests a nuanced 

landscape of predictive accuracy, where each subject may 

require tailored modeling approaches to enhance prediction 

quality, as shown in Table 2. 

Future research should focus on exploring more 

comprehensive data sets and integrating behavioral and 

engagement metrics to improve predictive accuracy. 

Moreover, experimenting with advanced machine learning 

algorithms could be beneficial for gaining more nuanced 

insights into student performance patterns. 

This study provides valuable insights into predicting student 

performance in computer science courses using historical 

academic data. Though the predictive models showed varying 

degrees of accuracy for different courses, they highlight the 

potential of data-driven approaches in understanding and 

enhancing academic outcomes. The findings emphasize the 

need for continual refinement of predictive models and 

suggest avenues for further research in this evolving field. 

Tables 3-5 display the MAE, MSE, and RMSE for different 

semesters and KAs in a linear regression model. These tables 

provide important insights into the accuracy of student 

performance predictions. The MAE values represent the 

average deviation of predicted scores from actual scores, and 

lower values indicate higher accuracy. The MSE and RMSE 

give an idea of the variance of the prediction errors. It is worth 

noting that certain KAs such as 'GV,' 'IAS,' and 'SP' exhibit 

zero errors in some semesters, indicating high accuracy in 

predictions. However, other KAs like 'AL,' 'AR,' and 'SE' show 

higher errors, possibly resulting from complex patterns not 

fully captured by the linear model or difficulties in prediction 

accuracy. 

 

Table 3. MAE accuracy function in each semester kas using leaner regression model 

 

Semester AL AR CN DS GV OS SE PL SF IAS IM IS NC PD SP 

272 12.07 17.04 3.81 11.51 0.00 6.53 6.24 13.45 0.36 0.00 7.20 5.51 0.08 2.56 0.00 

281 16.47 15.88 3.26 10.37 0.27 6.61 7.61 14.15 0.46 0.00 8.52 6.03 0.16 2.37 0.00 

282 16.90 13.07 3.02 8.32 0.33 8.08 6.35 12.48 0.38 0.00 7.67 6.93 0.35 2.61 0.00 

283 8.30 2.71 3.10 8.67 0.00 3.11 23.88 12.22 1.60 0.00 38.18 10.84 0.00 1.01 0.00 

291 27.16 2.42 1.35 5.89 0.00 3.27 22.40 12.44 1.43 0.00 42.98 5.78 0.00 0.92 0.00 

292 16.03 12.64 2.80 9.54 3.22 8.77 5.65 9.90 0.33 0.00 5.29 5.67 0.78 2.24 0.00 

293 6.26 33.85 0.72 9.65 0.00 14.57 7.92 9.92 0.49 0.00 6.01 4.42 2.76 0.30 0.00 

301 10.24 35.63 1.08 15.88 2.16 11.85 7.13 9.73 0.42 0.00 4.70 4.94 3.81 0.19 0.00 

302 17.56 11.45 1.59 5.22 2.86 6.81 5.49 8.91 0.32 0.51 4.38 4.50 4.57 1.22 0.03 

311 15.32 11.49 1.54 4.91 3.62 7.51 5.12 8.21 0.22 0.72 1.58 2.30 3.33 1.14 0.04 

312 12.87 15.31 1.91 4.56 3.88 6.81 6.56 7.88 0.30 2.52 1.62 2.69 3.71 1.40 0.13 

313 10.43 16.71 2.44 8.40 4.70 8.53 6.87 10.95 0.38 0.00 1.84 0.15 9.69 0.75 0.00 

321 11.81 13.36 2.15 12.52 6.17 7.61 5.27 12.12 0.19 0.00 2.01 2.34 9.50 1.32 0.00 

322 10.77 15.17 0.99 3.32 3.87 5.81 3.40 6.15 0.11 2.25 0.99 1.31 2.77 0.68 0.12 

331 9.85 17.13 1.52 3.32 3.25 6.18 3.07 6.45 0.11 1.67 0.68 0.94 1.99 0.48 0.09 

332 11.91 15.08 1.19 2.57 3.06 7.80 1.78 5.75 0.05 1.49 0.47 1.19 1.99 0.51 0.08 

341 9.53 16.18 1.93 4.37 3.63 8.41 2.04 6.77 0.10 1.60 0.59 0.57 2.39 1.18 0.08 

342 11.66 17.40 2.18 5.48 2.75 7.83 2.67 5.50 0.14 0.73 0.48 0.29 2.02 1.20 0.04 

351 12.29 19.49 2.69 8.82 0.96 8.21 5.94 9.06 0.26 0.81 1.46 1.45 3.67 1.27 0.04 

 

Table 4. MSE accuracy function in each semester KAS using leaner regression model 

 

Semester AL AR CN DS GV OS SE PL SF IAS IM IS NC PD SP 

272 560.40 641.69 32.4 345.66 0.00 112.70 87.55 333.78 0.46 0.00 184.36 118.49 32.39 19.29 0.00 

281 861.88 587.23 26.50 309.31 7.17 123.66 134.05 356.94 0.65 0.00 229.74 131.18 26.50 20.26 0.00 

282 923.97 396.17 29.22 271.33 8.28 206.90 118.09 333.36 0.56 0.00 231.33 177.05 29.22 33.11 0.00 

283 204.23 18.30 20.14 267.10 0.00 35.01 1054.03 261.92 5.29 0.00 2654.36 246.65 20.14 6.45 0.00 

291 1553.44 27.18 6.52 124.33 0.00 35.36 1108.58 210.81 4.92 0.00 2951.05 144.75 6.52 6.01 0.00 

292 657.01 330.04 23.78 293.03 82.53 172.75 138.39 241.49 0.64 0.00 176.09 163.33 23.78 24.30 0.00 

293 88.89 1448.38 6.68 586.35 0.00 256.89 366.27 220.70 1.70 0.00 270.71 139.36 6.68 2.89 0.00 

301 223.09 1784.04 4.68 801.75 46.21 198.88 348.60 200.35 1.53 0.00 257.83 219.28 4.68 0.57 0.00 

302 632.22 263.91 12.49 143.20 86.37 94.27 99.17 203.43 0.41 17.02 135.62 114.46 12.49 9.90 0.04 

311 494.98 242.44 14.98 140.71 92.20 98.78 106.33 192.29 0.34 20.98 16.01 79.99 14.98 9.98 0.06 

312 410.14 438.22 17.87 149.64 102.58 107.96 165.25 187.55 0.59 72.79 20.11 82.87 17.87 14.36 0.19 

313 238.24 404.27 20.74 315.90 124.14 134.57 170.98 262.53 0.62 0.00 12.07 0.90 20.74 7.68 0.00 

321 229.96 284.64 15.31 504.72 286.27 100.96 126.48 295.77 0.47 0.00 11.96 102.60 15.31 8.43 0.00 

322 200.29 428.15 7.63 86.51 177.18 64.87 71.04 130.84 0.23 60.04 6.16 23.84 7.63 4.24 0.16 

331 155.78 554.13 17.63 81.44 106.65 84.93 85.35 187.50 0.30 44.92 4.88 20.73 17.63 5.43 0.12 

332 219.32 482.96 10.86 61.02 96.54 105.05 24.78 142.18 0.07 42.19 2.72 32.32 10.86 5.43 0.11 

341 184.44 503.00 16.36 95.00 99.51 131.38 26.00 222.14 0.11 74.74 6.70 9.80 16.36 12.02 0.20 

342 204.89 642.10 23.03 168.07 67.62 129.42 60.70 129.71 0.25 52.38 3.17 4.03 23.03 13.64 0.14 

351 250.22 763.85 27.31 326.87 21.23 130.60 158.48 212.09 0.61 28.48 16.84 34.55 27.31 12.72 0.07 
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Table 5. RMSE accuracy function in each semester KAs using leaner regression model 

 

Semester AL AR CN DS GV OS SE PL SF IAS IM IS NC PD SP 

272 23.67 25.33 5.69 18.59 0.00 10.62 9.36 18.27 0.68 0.00 13.58 10.89 0.39 4.39 0.00 

281 29.36 24.23 5.15 17.59 2.68 11.12 11.58 18.89 0.81 0.00 15.16 11.45 0.57 4.50 0.00 

282 30.40 19.90 5.41 16.47 2.88 14.38 10.87 18.26 0.75 0.00 15.21 13.31 0.87 5.75 0.00 

283 14.29 4.28 4.49 16.34 0.00 5.92 32.47 16.18 2.30 0.00 51.52 15.71 0.00 2.54 0.00 

291 39.41 5.21 2.55 11.15 0.00 5.95 33.30 14.52 2.22 0.00 54.32 12.03 0.00 2.45 0.00 

292 25.63 18.17 4.88 17.12 9.08 13.14 11.76 15.54 0.80 0.00 13.27 12.78 1.81 4.93 0.00 

293 9.43 38.06 2.59 24.21 0.00 16.03 19.14 14.86 1.31 0.00 16.45 11.81 3.13 1.70 0.00 

301 14.94 42.24 2.16 28.32 6.80 14.10 18.67 14.15 1.24 0.00 16.06 14.81 6.81 0.76 0.00 

302 25.14 16.25 3.53 11.97 9.29 9.71 9.96 14.26 0.64 4.13 11.65 10.70 9.93 3.15 0.21 

311 22.25 15.57 3.87 11.86 9.60 9.94 10.31 13.87 0.58 4.58 4.00 8.94 6.69 3.16 0.23 

312 20.25 20.93 4.23 12.23 10.13 10.39 12.85 13.69 0.77 8.53 4.48 9.10 7.68 3.79 0.44 

313 15.44 20.11 4.55 17.77 11.14 11.60 13.08 16.20 0.79 0.00 3.47 0.95 17.28 2.77 0.00 

321 15.16 16.87 3.91 22.47 16.92 10.05 11.25 17.20 0.69 0.00 3.46 10.13 16.65 2.90 0.00 

322 14.15 20.69 2.76 9.30 13.31 8.05 8.43 11.44 0.48 7.75 2.48 4.88 4.90 2.06 0.40 

331 12.48 23.54 4.20 9.02 10.33 9.22 9.24 13.69 0.54 6.70 2.21 4.55 3.61 2.33 0.34 

332 14.81 21.98 3.29 7.81 9.83 10.25 4.98 11.92 0.26 6.50 1.65 5.69 3.58 2.33 0.33 

341 13.58 22.43 4.05 9.75 9.98 11.46 5.10 14.90 0.33 8.65 2.59 3.13 4.53 3.47 0.44 

342 14.31 25.34 4.80 12.96 8.22 11.38 7.79 11.39 0.50 7.24 1.78 2.01 4.00 3.69 0.37 

351 15.82 27.64 5.23 18.08 4.61 11.43 12.59 14.56 0.78 5.34 4.10 5.88 7.22 3.57 0.27 

 

5.2 Predict student performance across semester 

 

This study presents a framework for predicting students' 

academic performance in upcoming semesters. The 

framework uses individual linear regression models for each 

subject, utilizing historical academic data to forecast future 

performance. This tailored approach guarantees accurate 

predictions by considering each student's unique educational 

journey. 

 

 
 

Figure 31. Heatmap of correlation between actual and 

predictve student grades in semester 272 

 

To evaluate the accuracy of predictions, the study uses 

MAE, MSE, and RMSE metrics. The performance of each KA 

is evaluated, providing a comprehensive and detailed 

assessment of the model's effectiveness. A lower MAE value 

indicates closer alignment with actual scores, while RMSE 

offers insight into the variance of predictions. 

 

 
 

Figure 32. Heatmap of correlation between actual and 

predictve student grades in semester 293 

 

To provide a more in-depth analysis, the study uses heat 

maps to visualize correlation analyses in selected classrooms. 

These heat maps illustrate the relationship between various 

academic attributes and their impact on predictions, offering a 

dynamic view of the academic landscape. Each semester's data 
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is represented, showing the linear relationship between 

predicted and actual scores across different KAs. The color-

coded matrix in these heat maps ranges from blue (negative 

correlation) to red (positive correlation), making the direction 

and strength of these relationships clear. 

The results of predicting student performance during 

semester 272 showed that some KAs such as "GV," "IAS," and 

"SP" had no errors, indicating perfect prediction, which is very 

unusual and may require further investigation for possible data 

leakage or overprocessing. On the other hand, knowledge 

domains such as "AL," "IS," and "SE" show relatively higher 

errors, indicating more variability in the predictions or perhaps 

a more complex underlying pattern that the linear model fails 

to capture, as shown in Figure 31. 

The semester 293 matrix gives a color scale ranging from -

0.09 to 0.68. In this matrix, several categories, such as "CN" 

and "IM," show a relatively strong positive correlation, while 

a few other categories, such as "DS" and "NC," show a slight 

negative correlation. "AR" has an exceptionally high MAE 

and RMSE, indicating lower predictive accuracy for this 

category. In contrast, "GV," "IAS," "SP," and "SP" all have 

errors equal to zero, indicating that the predictions for these 

categories were either perfect or no forecasts, as shown in 

Figure 32. 

In the correlation matrix for semester 322, the coefficients 

range from -0.09 to 0.16. The IM shows the strongest positive 

correlation (0.16), while the PL shows a significantly strong 

negative correlation (-0.09), indicating an inverse relationship. 

IAS and SP show shallow error measures, indicating high 

consistency or predictability of scores for these courses, as 

shown in Figure 33. 

 

 
 

Figure 33. Heatmap of correlation between actual and 

predictve student grades in semester 322 

 

Correlation Matrix 351 Coefficients range from -0.13 to 

0.02. PL showed the highest positive correlations, and KAs 

such as OS and AL showed negative, although weak, 

correlations. However, IAS and SP had shallow error 

measures, indicating high consistency or predictability in 

grades for this semester, as shown in Figure 34. 

 

 
 

Figure 34. Heatmap of correlation between actual and 

predictve student grades in 351 

 

This detailed analysis highlights the differences in 

accuracy when predicting academic performance across 

various semesters and KAs. The results indicate that some 

KAs have a high level of predictability, while others show 

more significant variability, which reflects the complex 

nature of academic performance. These insights are 

essential for improving educational techniques and 

providing better support to computer science students. 

 

 

6. CONCLUSIONS 

 

This study has made significant progress in predicting the 

performance of computer science students using EDM and the 

BoK associated with ACM 2013. By analyzing data from 2756 

students and using linear regression models, we examined 

performance patterns across 18 KAs and a variety of courses. 

Our research indicates that the accuracy of our predictions 

varied significantly depending on the course and semester. 

Specifically, our models achieved high accuracy in courses 

such as Software Engineering, Operating Systems, and 

Artificial Intelligence, suggesting that these areas align well 

with the BoK framework and students' abilities. However, we 

found significant variances in other areas, which could 

indicate potential gaps in the curriculum or students' 

understanding. 

According to the evaluation metrics, such as MSE, MAE, 

and RMSE, some courses can be predicted with high accuracy. 
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For instance, in the case of "Systems Programming," the MAE 

value was significantly low, which indicates a close match 

between the predicted and actual performance. However, for 

courses such as "Compiler Design," the RMSE values were 

higher, which implies less reliable predictions. 

The information obtained from these insights is precious for 

educational institutions. It helps to point out the areas that 

require improvement in the curriculum and the teaching 

methods that need to be targeted. By identifying these gaps 

between predicted and actual performance, educators can 

customize their teaching approaches to enhance students' 

learning outcomes. 

Upon reflection of our methodology, we acknowledge that 

linear regression provided a strong foundation for our 

predictive models. However, its limitations in handling non-

linear relationships and potential overfitting highlight the need 

for more advanced methods in future research studies. 

Future research should consider adding more variables, like 

student engagement metrics or nuanced aspects of teaching 

quality, to the existing models to enhance the accuracy and 

depth of insights into student performance patterns. Advanced 

statistical techniques, such as machine learning algorithms, 

can improve prediction accuracy and offer a more detailed 

analysis. 

This study concludes that EDM has the potential to predict 

student performance in computer science programs within the 

framework of ACM's BoK. The study emphasizes the complex 

connection between educational backgrounds, resources, 

teaching methods, and student success. The findings of this 

study not only add to the existing academic literature but also 

provide practical guidance for educators and institutions that 

aim to improve the quality and effectiveness of computer 

science education. 

 

 

ACKNOWLEDGMENT 

 

The researchers would like to thank the Deanship of 

Scientific Research, Qassim University for continuous support. 

 

 

REFERENCES  

 

[1] Saa, A.A. (2016). Educational data mining & students ’ 

performance prediction, International Journal of 

Advanced Computer Science and Applications, 7(5): 

212–220. https://doi.org/10.14569/ijacsa.2016.070531 

[2] Mi, C. (2019). Student performance early warning based 

on data mining. International Journal of Performability 

Engineering, 15(3): 822-833. 

https://doi.org/10.23940/ijpe.19.03.p11.822833  

[3] Roach, S., Sahami, M. (2015). CS2013: Computer 

science curricula 2013. Curriculum Guidelines for 

Undergraduate Degree Programs in Computer Science, 

48(3): 114-116. https://doi.org/10.1109/MC.2015.68 

[4] Hellas, A., Ihantola, P., Petersen, A., Ajanovski, V.V., 

Gutica, M., Hynninen, T., Knutas, A., Leinonen, J., 

Messom, C. Liao, S.N. (2018). Predicting academic 

performance: A systematic literature review. In 

Proceedings Companion of the 23rd Annual ACM 

Conference On Innovation and Technology in Computer 

Science Education, pp. 175-199. 

https://doi.org/10.1145/3293881.3295783 

[5] Namoun, A., Alshanqiti, A. (2020). Predicting student 

performance using data mining and learning analytics 

techniques: A systematic literature review. Applied 

Sciences, 11(1): 237. 

https://doi.org/10.3390/app11010237 

[6] Ahmed, S.A., Billah, M.A., Khan, S.I. (2020). A machine 

learning approach to performance and dropout prediction 

in computer science: Bangladesh perspective. In 2020 

11th International Conference on Computing, 

Communication and Networking Technologies 

(ICCCNT), Kharagpur, India, pp. 1-6. 

https://doi.org/10.1109/ICCCNT49239.2020.9225603 

[7] Nosseir, A., Fathy, Y. (2020). A mobile application for 

early prediction of student performance using fuzzy logic 

and artificial neural networks. International Journal of 

Interactive Mobile Technologies (iJIM), 14(2): 4-18. 

https://doi.org/10.3991/ijim.v14i02.10940 

[8] Jain, A., Solanki, S. (2019). An efficient approach for 

multiclass student performance prediction based upon 

machine learning. In 2019 International Conference on 

Communication and Electronics Systems (ICCES), 

Coimbatore, India, pp. 1457-1462. 

https://doi.org/10.1109/ICCES45898.2019.9002038 

[9] Kuehn, M., Estad, J., Straub, J., Stokke, T., Kerlin, S. 

(2017). An expert system for the prediction of student 

performance in an initial computer science course. In 

2017 IEEE International Conference on Electro 

Information Technology (EIT), Lincoln, NE, USA, pp. 

1-6. https://doi.org/10.1109/EIT.2017.8053321 

[10] Bravo-Agapito, J., Romero, S. J., Pamplona, S. (2021). 

Early prediction of undergraduate Student's academic 

performance in completely online learning: A five-year 

study. Computers in Human Behavior, 115: 106595. 

https://doi.org/10.1016/j.chb.2020.106595 

[11] Gull, H., Saqib, M., Iqbal, S.Z., Saeed, S. (2020). 

Improving learning experience of students by early 

prediction of student performance using machine 

learning. In 2020 IEEE International Conference for 

Innovation in Technology (INOCON), Bangluru, India, 

pp. 1-4. 

https://doi.org/10.1109/INOCON50539.2020.9298266 

[12] Nuankaew, W., Thongkam, J. (2020). Improving student 

academic performance prediction models using feature 

selection. In 2020 17th International Conference on 

Electrical Engineering/Electronics, Computer, 

Telecommunications and Information Technology 

(ECTI-CON), Phuket, Thailand, pp. 392-395. 

https://doi.org/10.1109/ecti-con49241.2020.9158286 

[13] Chui, K.T., Fung, D.C.L., Lytras, M.D., Lam, T.M. 

(2020). Predicting at-risk university students in a virtual 

learning environment via a machine learning algorithm. 

Computers in Human behavior, 107: 105584. 

https://doi.org/10.1016/j.chb.2018.06.032 

[14] Kumar, A.N. (2018). Predicting student success in 

computer science-A reproducibility study. In 2018 IEEE 

Frontiers in Education Conference (FIE), San Jose, CA, 

USA, pp. 1-6. https://doi.org/10.1109/FIE.2018.8658429 

[15] Lee, C.A., Tzeng, J.W., Huang, N.F., Su, Y.S. (2021). 

Prediction of student performance in massive open 

online courses using deep learning system based on 

learning behaviors. Educational Technology & Society, 

24(3): 130-146.  

[16] Xu, Z., Yuan, H., Liu, Q. (2020). Student performance 

prediction based on blended learning. IEEE Transactions 

on Education, 64(1): 66-73. 

188

http://dx.doi.org/10.1109/ICCCNT49239.2020.9225603
https://doi.org/10.3991/ijim.v14i02.10940
https://doi.org/10.1109/ICCES45898.2019.9002038
https://doi.org/10.1109/EIT.2017.8053321
https://doi.org/10.1109/INOCON50539.2020.9298266
https://doi.org/10.1109/ecti-con49241.2020.9158286
https://doi.org/10.1109/FIE.2018.8658429


https://doi.org/10.1109/TE.2020.3008751 

[17] Yan, K. (2021). Student performance prediction using

XGBoost method from a macro perspective. In 2021 2nd

International Conference on Computing and Data

Science (CDS), Stanford, CA, USA, pp. 453-459.

https://doi.org/10.1109/CDS52072.2021.00084

[18] MD, S., Krishnamoorthy, S. (2022). Student

performance prediction, risk analysis, and feedback

based on context-bound cognitive skill scores. Education

and Information Technologies, 27(3): 3981-4005.

https://doi.org/10.1007/s10639-021-10738-2

[19] Subahi, A.F. (2018). Data collection for career path

prediction based on analysing bok of computer science

degrees. Journal of Software, 13(10): 533-546. 

https://doi.org/10.17706/jsw.13.10.533-546 

[20] Butt, N.A., Mahmood, Z., Shakeel, K., Alfarhood, S.,

Safran, M., Ashraf, I. (2023). Performance prediction of

students in higher education using multi-model ensemble

approach. IEEE Access, 11: 136091-136108.

https://doi.org/10.1109/ACCESS.2023.3336987

[21] Suarez, C.G.H., Llanos, J., Bucheli, V.A. (2023).

Predicting the final grade using a machine learning

regression model: Insights from fifty percent of total

course grades in CS1 courses. PeerJ Computer Science,

9 (2023): e1689. https://doi.org/10.7717/peerj-cs.1689

189

https://doi.org/10.1109/TE.2020.3008751
https://doi.org/10.1109/CDS52072.2021.00084
http://dx.doi.org/10.17706/jsw.13.10.533-546
https://doi.org/10.1109/ACCESS.2023.3336987



