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The integration of the Unified Modeling Language (UML) with the Internet of Things (IoT) 

facilitates the multi-faceted modeling of complex IoT systems. Despite existing 

methodologies addressing UML coherence, the literature reveals a paucity of strategies for 

ensuring consistency between use cases and their manifestations in activity and sequence 

diagrams, particularly when inheritance is employed. This study delves into the validation 

of UML behavioral views, focusing on the coherence of use cases, activity diagrams, and 

sequence diagrams within IoT specifications through a multi-layered consistency approach. 

A methodology is presented for transforming IoT system specifications into Büchi 

automata, enabling consistency verification through the SPIN Model Checker. The 

robustness of this method is demonstrated through a case study involving a Healthcare IoT 

system, highlighting the utility of the proposed validation technique. 
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1. INTRODUCTION

The complexity inherent in the creation of sophisticated 

systems can be mitigated through the development of system 

models. Modeling serves as a critical instrument throughout 

the various stages of design, offering a lens through which the 

intricate nature of systems can be understood and crafted. 

Among the multitude of modeling languages, the Unified 

Modeling Language (UML) [1] stands out as a prevalent 

choice. UML enables the detailed representation of system 

structures and behaviors and has gained recognition as a de 

facto industry standard. The synergy between UML and the 

Internet of Things (IoT) proves particularly advantageous, 

allowing the precise definition of objects (e.g., devices, 

sensors), their attributes, and interactions, thus enhancing the 

clarity and complexity of IoT system development. Moreover, 

UML's capacity to visualize and manage complex device 

interactions is indispensable in IoT contexts [2, 3]. 

The objective of employing various models is to forge a 

more accurate representation of systems, which in turn 

facilitates code generation. The primary impetus for these 

models is the clear advantage of identifying and rectifying 

design flaws prior to the implementation of actual software 

components, as inconsistencies among software models often 

emerge as a significant challenge [4, 5]. 

In the realm of UML, inheritance extends beyond class 

diagrams to encompass use cases, enabling the inheritance of 

actors and use cases alike. The implications of simple and 

multiple inheritances warrant thorough examination. Despite 

this, current treatment of inheritance in Object-Oriented 

Design (OOD) typically restricts itself to static aspects, 

leaving dynamic behavior inheritance less defined. 

Consequently, when one use case inherits from another, there 

is an implicit extension of the activity and sequence diagrams 

associated with it [6, 7]. 

The ambiguity of UML semantics also contributes to the 

need for enhanced consistency, as multiple, sometimes 

conflicting, interpretations can be ascribed to a single UML 

expression. The verification of consistency traditionally 

involves rule definition and translation into formal languages. 

Consistency is achieved when distinct software models, which 

overlap in their description of the system's features, satisfy 

established conditions [8-10]. 

Management of model consistency typically encompasses 

three core tasks [5, 10, 11]: (i) the definition of consistency, 

(ii) the detection of inconsistencies, and (iii) the resolution

thereof. Adherence to specified consistency rules, known as

Rules Well Formedness (RWF), is essential for different UML

diagrams (refer to the UML superstructure specification).

Model checking stands as a robust methodology for system 

verification, offering a formal mechanism to affirm the 

correctness of concurrent systems characterized by finite states. 

This approach involves the system's examination based on 

intricate algorithms to ascertain whether the given 

specifications are met. Furthermore, model checking is poised 

to aid in addressing inconsistencies within UML software 

models. Here, a formalism called Split Automata—a variant 

of automata adept at correlating activity diagrams with SPIN 

[12] is utilized.

This research is propelled by the scarcity of studies

addressing the inheritance issue in use cases (UC), particularly 

the impact on the relationship between activity diagrams (AD) 
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and sequence diagrams (SD) [7]. A novel approach is 

proposed: a multi-layer and multi-level strategy for UML 

consistency checking. This includes horizontal consistency 

across generalizable diagrams and vertical consistency that 

leverages the relationship between generalizable and 

specialized diagrams. The challenge addressed is the 

assurance of conformity across UC, SD, and AD to analogous 

requirements. Figure 1 illustrates the primary activities 

involved. 

The subsequent sections are structured as follows: Section 

2 provides an overview of related works, Section 3 delineates 

the fundamental concepts within the researched domains, 

Sections 4 and 5 explicate the proposed approach including the 

consistency checking mechanism, Section 6 presents an IoT 

case study, and the paper culminates with a discussion on 

future research directions, accompanied by concluding 

remarks. 

 

 
 

Figure 1. The process consistency between UC, AD, SD 

 

 

2. RELATED WORKS 

 

The delineation of UML consistency rules constitutes the 

focal point of the present study, situating itself within broader 

discourses pertaining to UML consistency. In this context, the 

contributions by the authors of studies [11, 13] are particularly 

instrumental, having conducted extensive research, compiled, 

and presented an array of UML diagram consistency rules. 

In an organized compilation presented in Table 1 from [13], 

a total of 119 papers have been categorized based on a criterion 

of perspective. These studies encompass a spectrum of 

diagrams, encapsulating structural, behavioral, and integrated 

forms. Notably, out of the 119 papers surveyed, a mere 21 

address behavioral consistency. It was further observed by the 

same author that in response to the inquiry regarding the 

application of UML consistency rules in software engineering 

activities, 253 instances pertained to verification purposes, 

whereas formalization accounted for only 14 instances. 

Among the 119 identified rules, a scant 5, equating to 4%, 

were proposed for inheritance, and these were presented in an 

informal manner. These rules predominantly concentrated on 

the consistency between class diagrams (DCs) and state 

machines (SMs). 

Further scrutiny is given to the methodologies employed in 

40 studies spanning from 2003 to 2016, detailed in Table 2, 

with a focus on both formal and informal techniques. A 

conspicuous majority of these studies have utilized formal 

methods, with logic and state transitions, which account for 

73%, being particularly relevant to the scope of our 

investigation. 

An innovative approach for the automatic verification of 

deadlocks and nondeterminism within UML activity diagrams 

is proposed [14]. This is achieved by introducing a 

compositional Communicating Sequential Processes (CSP) 

semantics for activity diagrams. This semantic framework 

facilitates the automatic derivation of CSP specifications from 

UML models, which are subsequently used as inputs for the 

FDR refinement checker, enabling the automated verification 

of deadlocks and nondeterminism. 

The annexed papers referenced in this section pivot around 

use cases (UC), which serve as a basis for understanding and 

formalizing consistency. This research specifically refers to 

the papers designated as annexes to elucidate the mechanisms 

underpinning consistency. 

In the domain of safety-critical systems, the articulation of 

safety requirements is a matter of paramount importance. An 

incremental approach to refining these requirements through 

scenarios is proposed by Chen et al. [15]. Once the consistency 

of the requirements is verified, these scenarios are subject to 

refinement, with their semantics being captured through a 

transformation into an intermediate semantic model conducive 

to formal verification. The validity of this transformation 

process is corroborated by aligning the requirements with 

actual execution traces. 

The utility of the process algebra language LOTOS 

(Language of Temporal Ordering Specification) is examined 

in the study of Doostali et al. [16], where it serves as the 

chosen language for formal specification. Herein, a mapping 

methodology, designated USLP, is introduced to facilitate the 

translation of UML Statecharts into LOTOS processes. The 

fidelity of these mappings is substantiated through the 

establishment of an isomorphism between the Labelled 

Transition System (LTS) of a Statechart and that of the 

corresponding LOTOS specification. 

A rule-based approach to UML consistency rules is 

explored by Kalibatiene et al. [17], where the authors have 

distilled 50 rules from a corpus of eight articles published 

between 2008 and 2011. Subsequent investigation within this 

research confirms the absence of rules pertaining to 

inheritance in the aforementioned set. 

The need for a formal syntax and semantics for variations 

of Use Case Diagrams (UCD) is addressed in the study of 

Kautz et al. [18]. In response to the absence of a standardized 

language or formal semantics for UC representations, the 
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authors present a semantic differencing operator and subject it 

to empirical validation, highlighting the challenge of 

discerning relationships between similar diagrams. 

Further extending the discussion on use case representation, 

Almendros-Jiménez and Iribarne [8] present a methodology 

that employs Sequence Diagrams (SD) to describe Use Case 

(UC) narratives, identifying inclusion and generalization 

relationships amongst UCs as a part of their approach. 

In the study of Sapna et al. [19], the elements of use case, 

activity, and sequence diagrams are delineated using a schema 

table, albeit the focus is restricted to a subset of elements: use 

case, actor, activity, message, and object. The paper posits that 

each actor in a use case diagram corresponds to a class in an 

activity diagram and establishes a linkage between the objects 

and messages in a sequence diagram to a class and its methods 

in a class diagram. The authors introduce two consistency 

rules between use case and sequence diagrams, utilizing 

Object Constraint Language (OCL) for expression. 

The formalization of consistency across various UML 

diagrams, including UC, AD, Sequence Diagrams (SD), and 

Statecharts (SC), is undertaken using coloured Petri nets in [5]. 

Consistency transitions are defined for use case, action, and 

execution occurrences. Notably, inheritance is not considered 

within their framework. 

 
Table 1. Consistency from model view 

 
Model View 

 One View Multiview  

Structural 44 00 44 

behavioural 26 21 47 

Struc&Beh 04 24 28 

Total 74 45 119 

 

Table 2. Consistency from formal view 

 
Formal Techniques Non Formal Techniques 

State.Transiti 13 OCL+Const.integrity 07 

Logic 13 Sanity Consistency 01 

Process.Alge 02 Xml rules+QVT 03 

Total Formal 29 Total Non formal 11 
 

Table 3. (a) Comparative related works 
 

Study Year FormTech. Diagrams 

[5] 2006 CPN UC, SD, AD 

[9] 2011 -- UC, AD 

[14] 2020 FDR, CSP AD 

[15] 2022 -- Doc.of UC, AD 

[16] 2023 Lotos UML stateCharts 

[17] 2013 OCL SM, SD 

[18] 2022 Logical UC 

[19] 2007 OCL UC, COD, AD, CD 

This Paper 2023 SPIN, Log. UC, AD, SD 

 

Table 3. (b) Comparative related works 
 

Study Year (R, T) S M 

[5] 2006 T -- -- 

[9] 2011 R S -- 

[14] 2020 T -- -- 

[15] 2022 T -- -- 

[16] 2023 T -- -- 

[17] 2013 R -- -- 

[18] 2022 T   

[19] 2007 R -- -- 

This Paper 2023 R, T √ √ 

This paper distinguishes itself from related works through a 

systematic comparison, encapsulated in Table 3. The 

comparison takes into account several criteria: the formal 

techniques employed (FormTech), the UML diagrams under 

consideration (Diagrams), and the presence or absence of 

simple (S) and multiple inheritance (M). Additionally, the 

paper evaluates the proposal of consistency rules (R) and the 

transformation of these rules into formal models (T). Articles 

not addressing a specific concept are indicated with '--'. 

Building upon the foundation laid by previous studies, this 

paper adopts a logical approach to describe the elements of UC, 

AD, and SD, as well as their inter-consistencies. New 

consistency rules are proposed, refining and augmenting those 

previously established. These proposed standards are 

exemplified through a UML model incorporating the relevant 

diagrams. Moreover, the constituents of the consistency rules 

are delineated, with explicit justifications furnished for each 

component. 

 

 

3. BACKGROUND 

 

This section describes the fundamental notions of the 

domains that served as the foundation for our approach.  
 

3.1 Use cases-oriented development 
 

Table 4. IoT Use Case documentation 
 

Use Case N° Use Case Description 

Goal in Context Description of the use IoT case. 

Scope & Level 
Scope and level of the considered 

system. 

Primary/Secondary 

IoT Actors 

Role name or description of the primary 

and secondary actors for the use IoT 

case, sensors, actuators, cloud or other 

associated systems. 

IoT Trigger 

Which action of the primary/secondary 

actors initiate the IoT use case e.g., 

Available sensors. 

Stakeholder 

&Interest 

Name of the stakeholder and interest of 

the stakeholder in the IoT use case e.g 

SmartPhone. 

Preconditions 

Expected state of the system or its 

environment before the IoT use case 

may be applied eg. Data available from 

sensors. 

Postconditions on 

success 

Expected state of the system or its 

environment after successful completion 

of the IoT use case. 

Postconditions on 

failure 

Expected state of the system or its 

environment after unsuccessful 

completion of the IoT use case. 

IoT UC Description 
Flow of events that are normally 

performed in the use IoT case 

Alternative 

Description 

Flow of events that are performed in 

alternative scenarios (numbered). 

Exceptions 
Failure modes or deviations from the 

normal IoT use Case 

IoT Use Case 

elationships 

IoT use cases that are included, 

extended, or inherited. 

Concurrent IoT UC 
IoT use cases that can be applied 

concurrently to the current IoT use case. 

 

The documentation for the use case is formatted in the form 

of a template. We take into account the pertinent facts that will 

be used as a foundation for the determination of some 

consistency standards. The preconditions, postconditions, and 
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explanation of the use case scenario's basic and alternative 

options are the most crucial entries to include. In what follows, 

we are going to focus mostly on the concepts of triggers, pre-

conditions, and post-conditions to propose some rules in the 

context of inheritance. 

The Table 4 provides an illustration of a use case template, 

with the various topic definitions being derived from [20-22] 

and adapted to the context of an IoT application. It is a 

representation of the typical components of an IoT use case 

that may be significant for conveying how a user interacts with 

a system. 

 

3.2 Inheritance of UML behaviour 

 

The term simple inheritance is used when a class only 

inherits from a single other class, while the term multiple 

inheritance is used when multiple classes contribute to the 

class's inheritance tree [23]. 

The inheritance relation is irreflexive, i.e., a class A cannot 

inherit from itself. The relation is transitive if class A inherits 

from class B and B inherits from class C; then A inherits from 

C. The relation is non-symmetric; if class A inherits from class 

B, then B does not inherit from A. 

Also, as specified in the UML literature, an actor can inherit 

from another actor (single inheritance), and an actor can 

inherit from other actors (multiple inheritances). The exact 

definitions are also applicable to UC. 

The four inheritance concepts referred to in the study of van 

der Aalst [6] will be discussed to analyse the effect of 

inheritance in the context of UC. Since the basic ideas are 

general, they can be applied to any IoT UML behaviour 

diagram. 

The author presented two types of behavioural inheritances, 

(i) protocol inheritance and (ii) projection inheritance (see 

Figure 2). 

Protocol inheritance means that if the external behaviour of 

p and q cannot be distinguished when only actions of p that are 

also present in q are executed, then p is a sub-behaviour of q; 

which is conforms to blocking actions new in p and any 

sequence of actions invocable on the super-behaviour can be 

invoked on the sub-behaviour. 

Projection inheritance means that p is a sub-behaviour of q, 

if the external behaviour of p and q cannot be distinguished 

when arbitrary actions of p are performed, but can be 

distinguished when only the effects of actions that are also 

present in q are considered; which conforms to hiding actions 

new in p and any sequence of actions observable from the sub-

behaviour should correspond to an observable sequence of the 

super-behaviour. 

 

 
 

Figure 2. Sub- and Super-behaviour relationship 

 

 

4. PROPOSED APPROACH 

 

The approach provides flexibility for consistency checking 

in a UC inheritance framework by affecting AD and SD. It is 

a combination of definition and translation of consistency 

rules. For this, we proposed three levels to cover the coherence 

of the entire system (UC, AD, SD). It will support the 

following steps: (i) Defining consistency rules between the 

three diagrams on a vertical level which takes into account the 

parental specification, (ii) Setting consistency rules on a 

horizontal level, defining the inherited consistency rules, and 

(iii) a translation to the SPIN [12] Model Checker for a 

dynamic consistency checking of the system (see Figure 3). 

Layers H1, H2, H3, H4, H5, H6, and H7 contribute to the 

horizontal level, and layers V1, V2, V3, V4, V5, V6, V7, and 

V8 provide the vertical level (see Table 4).  

We have isolated classes C1 and C2 that oversee the 

inherited and parental consistency rules, respectively, to put 

the spotlight on consistency management. Class C2 inherits 

layers H1, H2, and H3 from the generalizable diagram, while 

layers H4, H5, and H6 are defined with new rules, especially 

those that reduce the effectiveness of triggers, preconditions, 

and postconditions. Class C3 considers layers V1, V2, V3, V4, 

V5, V6, V7, V8 and V9; class C4 defines the manual 

transformation rules T1, T2, T3, T4, T5, and T6. It generates 

the concurrent processes from Büchi automata translation via 

application to the activity diagram, and generates the 

assertions via manual transformation and the claim property of 

the interaction diagrams (see Table 5). 
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Figure 3. Multi-layer UML consistency checking 

 

Table 5. Layer relation approach 

 

Dia 

Diag 

Horizontal and Vertical Level 

UCp ADp SDp UCc ADc SDc 

UCp RWF H1 H2 V1 V4 V5 

ADp H1 RWF H3 V6 V2 V7 

SDp H2 H3 RWF V9 V8 V3 

UCc V1 V6 V9 RWF H4 H5 

ADc V4 V2 V8 H4 RWF H6 

SDc V5 V6 V3 H5 H6 RWF 

 Transformational Level 

Assert T1 T3 x T2 T4 x 

Never 

claims 
x x T5 x x T6 

 

When the corresponding value in Table 4 is RW, this value 

covers all the consistency rules defined in the UML 

specification and relates to the same diagram. It has been noted 

respectively in Table 5 (Ucp, Ucp), Table 4 (Ucc, Ucc), Table 

5 (ADp, ADp), Table 5 (SDp, SDp), Table 5 (ADc, ADc), 

Table 5 (SDc, SDc). The other values define all the intra-

diagram consistency rules defined in the literature. For 

instance, Table 5 (UCp, ADp) = H1 layer represents the 

consistency rules between the generalizable UCp and ADp 

diagrams and Table 5 (UCp, ADp) = V1 layer represents the 

consistency rules between the generalizable UCp and ADp 

diagrams. The transformation level defines the translation of 

triggers defined in use cases, activity diagrams, and sequence 

diagrams from the generalized and specialized levels to 

Promela. T1 and T2 are associated with UC, T3 and T4 are 

associated with AD, and T5 and T6 are associated with SD. 

It should be noted that Table 5 has been created as a 

template for future work. Its objective is to collect all the UML 

consistency rules encountered in the literature and classify 

them by level and layer, thus enabling the development of a 

tool that recognizes all these rules and thus ensuring a 

consistent environment for modellers. 

 

4.1 Transformational level 

 

The behaviour of an AD is controlled by the constraints 

described in the IoT UC, which may be broken down into three 

categories: triggers, preconditions, and postconditions. we 

associate this with the terminology Correctness Criteria. 

It is usual to represent correctness criteria as a set of 

Boolean conditions that must be met whenever a process 

reaches a certain state. The assert(condition) statement will 

always be run, despite of where it is located within a 

PROMELA. If the condition is true, the claim is false. 

We manually transform each predicate into assertion 

Promela code. Triggers, postconditions, and preconditions are 

all considered predicates. The figure's approach defines six 

transformation rules: T1, T2, T3, T4, T5, and T6. 
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- T1 is a manual transformation for the trigger predicate of 

the general UC to a Promela code denoted assert 

(UCp.trigger). 

- T2 is a manual transformation for the precondition 

predicate of the general UC to a Promela code denoted assert 

(UCp.pre-condition). 

- T3 is a manual transformation for the trigger predicate of 

the general use case to a Promela code denoted assert 

(UCp.post-condition) 

- T4 contains the new rules that ensure consistency between 

the child UC the corresponding child AD. assert (UCc.trigger) 

- T5 contains the new rules that ensure consistency between 

the child UC and the corresponding child SD. assert 

(UCc.precondition) 

- T6 contains the new rules that ensure consistency between 

the child AD and the corresponding SD. assert 

(UCc.postcondition). 

 

4.2 Informal properties 

 

A relation that includes the generalizable IoT use case does 

not include the IoT inherited case. 

If an IoT actor B inherits from an IoT actor A, all the IoT 

UC associated with B cannot inherit from IoT UC associated 

with A. 

When an IoT actor B inherits from an IoT actor A, all IoT 

UC associated with B cannot include from IoT UC associated 

with A. 

When an IoT actor B inherits from an IoT actor A, all IoT 

UC associated with B cannot extend from IoT UC associated 

with A.  

When actor an IoT B inherits from an IoT actor A, B cannot 

be associated with IoT UC associated with A. 

The initial activity edge must have the corresponding 

trigger’s IoT UC as guards. 

The trigger associated with the initial Activity Edge of 

Activity diagram match that of the inherited IoT UC and not 

alter the trigger of the parent IoT UC (to be weakened). 

When an activity ends, the postcondition identified in the 

IoT UC must be true. 

An activity diagram 𝐴𝑢𝑖 extends an activity diagram 𝐴𝑢𝑗 iff 

all nodes of 𝐴𝑢𝑖 are included in 𝐴𝑢𝑗. 

The set of preconditions for an action j associated with 𝐴𝑢𝑖 

must contain the preconditions associated with the IoT UCi. 

The set of postconditions for an action j associated with 𝐴𝑢𝑖 

must contain the postconditions associated with 𝑢𝑖. 

 

 

5. MODEL CHECKING 

 

In this section, we discuss utilising SPIN to ensure 

consistency between UC, AD and SD and the translation of 

AD into ε-BA [7]. SPIN uses a thorough search of the state 

space to validate or invalidate (through the generation of 

counterexamples) the properties of Promela specifications. 

Another helpful feature is the ability to define the never claim, 

a process for expressing undesirable behaviours. 

Model checking will use the layers defined at the previous 

layers (C1, C2, C3, C4) and the transformation layer, which 

contains six levels from T1 to T6. 

A diagram with UC, AD and SD is consistent if the triggers, 

preconditions and postconditions of a use case are fulfilled in 

AD and if the AD's trace collection contains the SD's trace. i.e., 

iff 𝑡𝑟𝑎𝑐𝑒(𝑆𝑑𝑠) ∈ 𝑡𝑟𝑎𝑐𝑒(𝐴𝑑𝑠) . It comprises a set of 

concurrent processes constantly exchanging information with 

one another and each of these processes represents 𝜀_𝐵𝐴, and 

the never claim to represent the trace of SD. If the system's 

SPIN report validates the assertions and confirms the never 

claim then we will know that the SD are consistent with the 

UC, and AD, elsewhere we know there must be inconsistency. 

The modeller must inspect the invalid traces to report the 

errors in requirement models.  

 
5.1 From AD to stutter Büchi automaton (ε-BA) 

 
AD have labels for actions, while ε-BA has labels for 

transitions. Therefore, during translation, the mapping flips the 

roles of an AD's nodes and activity edges so that the nodes of 

the AD represent ε-BA transitions and the activity edges 

represent ε-BA states. The powerset of the AD's set of activity 

edges determines the state set of ε-BA. The powerset is 

required since an AD might exist in multiple nodes at once 

(after visiting a fork node). 

Nodes whose 𝐸𝑖𝑛(𝑁𝑖) =  𝐼𝑖  represent the initial state of ε-

BA and nodes whose 𝐸𝑖𝑛(𝑁𝑖) =  𝐹𝑖 represent the final states of 

ε-BA. Labels for nodes in the AD are equal to those for 

transitions in ε-BA.  

As a process can stay infinitely long, a state of the negation 

of the conjunction of all outgoing events is then added. 

The translation conditions associated with the fork, join and 

merge node are those used in the study of Thramboulidis and 

Christoulakis [3]. 

AD have labels for actions, while ε-BA has labels for 

transitions. Therefore, during translation, the mapping flips the 

roles of an AD's nodes and activity edges so that the nodes of 

the AD represent ε-BA transitions and the activity edges 

represent ε-BA states. The powerset of the AD's set of activity 

edges determines the state set of ε-BA. The powerset is 

required since an AD might exist in multiple nodes at once 

(after visiting a fork node). 

Nodes whose 𝐸𝑖𝑛(𝑁𝑖) =  𝐼𝑖  represent the initial state of ε-

BA and nodes whose 𝐸𝑖𝑛(𝑁𝑖) =  𝐹𝑖 represent the final states of 

ε-BA. Labels for nodes in the AD are equal to those for 

transitions in ε-BA.  

As a process can stay infinitely long, a state of the negation 

of the conjunction of all outgoing events is then added. 

The translation conditions associated with the fork, join and 

merge node are those used in Sundaramoorthy [24]. 

The ε-BA associated to ADi is defined as εBA (ad) = (Q; Σ; 

δ; q0; F0) where, 

-  Q = ℙ(𝑇),  

-  ∑ = 𝐿,  
-  q0 = {(s, t)∈ T| s = i}, 

-  F’ = {{(s, t)}⊆T | {} T / t ∈ F’}, and 

-  𝛿⊆ Q × (Σ U{ε}) × Q is the smallest set satisfying the 

following conditions: 

• Move other than fork or join: 

∀ X ⊆ T: ∀ n1, n2, n3 ∈ N: ((n1, n2) ∈ X ∧ (n2, n3) ∈ T ∧ n2 

∉ 𝐴ND) ⇒ (X, l(n2), X\ {(n1, n2)} U {(n2, n3)}∈  𝛿 

• Move fork or join : 

∀ 𝑋 ⊆ 𝑇: ∀ 𝑗 ∈ 𝐴𝑁𝐷 ∶ (𝛿−(𝑗) ⊆ 𝑋)
⟹ (𝑋, 𝜀, (𝑋 ∖ 𝛿𝑎𝑑

− (𝑗)) ∪  𝛿𝑎𝑑
+  (𝑗) ∈ 𝛿 

- 𝑛𝑒𝑔𝑖: 𝑄𝑖 → 𝑆𝐿𝑖 ∪ {𝜀}  is the node labeling associates to 

each state 𝑄𝑖  a self-loop transition (SLi) which contains the 

negation of the conjunction of all the outgoing states of 𝑆𝐿𝑖 . 

The trace semantics of an activity diagram trace_sem_ad 

(AD) is defined as the language recognized by the εBA 

associated to the AD ad, i.e., trace_sem (AD) =ℒ(𝜀𝐵𝐴(𝐴𝐷)). 
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5.2 Translation Büchi automaton into promela processes 

 

The AD represented by BA are the communication of 

several objects along several lanes of the AD. The resulting 

processes can communicate using channels (Chan Keyword) 

of size 0 to send messages (! Symbol) and receive messages (? 

Symbol) via their corresponding channels which are then 

saved in an enumeration set called mtype. 

We declare a global variable msgrecord which records each 

event (message) transferred through a communication channel 

which we will use as a basis for determining the execution 

trace of an SD. 

The enumeration set mtype records all states and all events 

for the ε-BA. Each state-related variable begins with the letter 

S, transitions begin with the letter t, and negations of events 

begin with the letter NT. if the state is (s, li) the variable Sil1 

corresponds to the state(s_il1), if a transition is log the 

associated variable is Tlog and the negation transition is NTlog. 

In the ε-BA, the control flow is set up by a do loop with a 

local variable state_automaton that goes through the list of 

states 𝑆 = {𝑆1..𝑆𝑛}.  

The channel associated with a process that inherits n other 

processes will be of the form: Chan C_n [0] of {mtype} n 

times. The process will only be activated if all the associated 

values are available. For instance, if the process inherits from 

two others, it has two channels C_1 and C_2. 

 
5.3 Translation from SD to Promela 

 

Trace_sem (SD) is defined as the language recognized by 

the ε-BA associated to the AD, i.e., trace_sem_sd (SD) 

= ℒ(𝜀𝐵𝐴(𝑆𝐷) ) which represents the Promela never claim 

property. 

We can now convert each event into a loop using a guard 

because we recorded each event with the help of the variable 

event (event==message). When the guard evaluates to true, 

this indicates that the event has already taken place; in this 

scenario, we exit the loop and try to match the subsequent 

event; nevertheless, in all other cases, the process must wait. 

If we successfully reach all events, the trace_sem (SD) and 

trace_sem (AD) will be consistent, as will diagrams, i.e., 

trace_sem (SD) ∈ 𝑡𝑟𝑎𝑐𝑒_𝑠𝑒𝑚(𝐴𝐷𝑠) . Stutter events are 

ignored and not registered; they are only used to change states. 
 

5.4 System invariants 

 
The assert statement can be used more generally to 

formalise system invariants, which are boolean conditions that, 

if true in the initial system state, hold true in all reachable 

system states. In PROMELA, place the system invariant in a 

separate monitor process. 

Proctype control_precondition () {assert(invariant)}. 
 

 

6. CASE STUDY 
 

The purpose of this system is to provide immediate medical 

aid to individuals by utilising various forms of technology. We 

use a portion of the application architecture [20], to which we 

have integrated IoT services by utilising diabetes and blood 

pressure sensors. This application allows us to execute the 

approach concepts; in particular, the communication between 

the sensors and the smart doctor. It will be used to develop a 

precise diagnosis of serious diseases caused by the 

combination of diabetes and high blood pressure, which can 

even affect pregnant women through the deformation of their 

babies. The presented automata concern the AD of the diabetes 

sensor, the hypertension sensor, the composite diagram of the 

two diseases, and the activities corresponding to the resulting 

diseases (Hypertensive retinopathy, diabetic nephrology, 

hypertensive nephrosclerosis, baby's deformity) (see Figure 4). 

 

 
 

Figure 4. UML UC for HealthIoT system 
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All the informal properties have been verified.  

It will determine the probability of the diseases 

(Hypertensive retinopathy, diabetic nephrology, hypertensive 

nephrosclerosis, baby's deformity) being affected.  

The diabetes sensor and the blood sensor start after a login 

from the corresponding patient by executing the action 

"Patient has glucose test," which will be transmitted to the 

diabetes doctor by t! phgt and similarly by the blood sensor 

using t! phpb or the diabetes doctor.  

In addition to features Login, Facilities, Logout, Health A-

Z, Resources, Drugs and supplements, New and Experts end 

Feddback presented in Sundaramoorthy [24], we will present 

the following features: The system's primary features are listed 

below: 

Diabetic Disease: This feature allows blood glucose 

measurements to be taken during patient activities and stored 

in a data set and predict probability of diabetes and its type. 

see Figure 5. Figure 6 shows the corresponding Büchi 

automaton. 

Hypertensive Disease: This feature collects patient data, 

usually by fixed times, and puts them in a data set and predict 

probability of hypertensive and its treatment. see Figure 7. The 

Büchi automaton in question is depicted in Figure 8. 

The documentation for the blood sugar sensor is provided 

in Table 6. 

Inheritance Diseases: is an intelligent function that inherits 

hypertensive and Diabetic Diseases for the probability of 

Hypertensive retinopathy, diabetic nephrology, hypertensive 

nephrosclerosis, and baby's deformity based on the required 

patient data. 

- Initial Node ={i} 

- Final Node = {FN1, FN2, FN3} 

- Decision and Merge Nodes XOR= {D1, D2} 

- Fork and Join Nodes AND= {F1, J1} 

- The transition relation T={(I, F0), (F0, L1), (F0, L2), (L1, 

PHGT), (PHGT, D1), (D1, FN1), (D1, FN1), (D1, DLHD), 

(DLHD, F1), (F1, AFT1), (F1, ADPM), (AFT1, J1), (J1, 

DDT) , (DDT, D2), (D2, DT1), (D2, DT2), (DT1, M1), (DT2, 

M1), (M1, F3), (F3, HDHR), (F3, HDNHN), (F3, BD), 

(HDHR, J3), (HDNHN, J3), (BD, J3), (J3, FN3), (L2, PHBPT), 

(PHBPT, D3), (D3, FN2), (D3, DLHH), (DLHH, F2), (F2, 

ADT2), (F2, ALSM), (ADT2, J2), (ALSM, J2), (J2, F3), (F3, 

HDNHN), (F3, BD), (HDHR, J3), (BD, J3), (J3, FN3)} 

- Labelling function l with l(L1) =Login; l(PHGT)=Patient 

Has Glucose Test; l(DLHD)= Determine Likelihood of 

Having diabetes; l(AFT1) = Advice for Test; l(DDT) = 

Determine diabetes Type; l(DT1) = Display Type 1; l(DT2) = 

Display Type 2; l(ADT2) = Advice for Test; l(APM)= Advice 

Proper Meal; L(i)=l(FN1) =l(FN2) =l(D1) =l(D2) =l(F1) =l(F2) 

=ε. 

 

 
 

Figure 5. AD for UC Diabetic 
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Figure 6. Automaton for diabetic AD 

 

 
 

Figure 7. AD for UC Blood Pressure 
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Figure 8. Automaton for AD Blood Pressure 

 

Table 6. Blood sugar sensor 

 
Use Case n°1 Diabetic Disease  

Goal in Context The aim is to enable clients of the IoT system to take the corresponding blood sugar value and 

transmit it to the data set and to give probability of having diabetes. 

Scope & Level Connection Level 

Primary/Secondary IoT Actors Primary: Service Provider  

IoT Trigger After every meal. 

Stakeholder &Interest User 

Preconditions Sensor Available  

Postconditions on success The test sample is sent to the doctor responsible for diabetes. 

Postconditions on failure The system is alerted to the sensor malfunction. 

IoT UC Description 1- check mealtimes 2- read the blood sugar 3- transmit the reading. 

Alternative description -The patient can change the sensor responsible for taking the test. 

Exceptions -The information sent is invalid. 

IoT UC relationships -Login 

 

Table 7. Blood pressure 

 
Use Case n°2 Hypertensive Disease  

Goal in Context The aim is to enable patients of the IoT system to take the corresponding blood pressure value and 

transmit it to the attending doctor for decision-making. 

Scope & Level Connection Level 

Primary/Secondary IoT Actors Primary: Service Provider  

IoT Trigger After every meal. 

Stakeholder &Interest User 

Preconditions Sensor Available  

Postconditions on success The test is sent to the doctor for high blood pressure. 

Postconditions on failure The system is alerted to the sensor malfunction. 

IoT use case description 1- check mealtimes 2- the blood pressure level 3- transmit the reading. 

Alternative Description -The patient can change the sensor responsible for taking the test. 

Exceptions -The information sent is invalid. 

IoT UC relationships -Login 

 

Table 8. Hypertensive/diabete 

 
Use Case n°3  Inheritance Disease 

Goal in Context The aim is to alert patients to the risk of developing a serious illness due to diabetes or high blood pressure. 

Scope & Level Provider (Smart doctor) 

Primary/Secondary Actors Primary: Smart Doctor Secondry: patient  

IoT Trigger Data on blood sugar levels and arterial pressure are available. 

Stakeholder &Interest Patient  

Preconditions Major risk has been reached. 

Postcond. On success Available services. 

Postcondit.on failure Alert the patient that the data is not arriving. 

IoT UC Description 1-likelihood of a major risk of illness. 2-Hypertensive retinopathy 3-Diabetic nephrology 4-Hypertensive 

nephrosclerosis 5-Baby's deformity 

Alternative Description Alert the patient that the data is not arriving. 

Exceptions The required information is invalid 

IoT UC relationships Inherited UC (Sugar & Blood pressure Level). 
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Figure 9. AD for multiple inheritance 

 

Table 7 represents the documentation for the Blood pressure 

sensor. 

-Initial Node ={i} 

-Final Node = {FN1, FN2} 

-Decision and merge nodes XOR= {D1} 

-Fork and join nodes AND= {F1, J1} 

-Labelling function l with l(L1) =Login; 

l(PHBPT)=Symptoms of HPB; l(DLHH)= Determine 

Likelihood of Having Hypertension; l(AFM)= Advice for 

Medication; l(DHBP)= Diet for High Blood Pressure; 

l(i)=l(FN1) =l(FN2) =l(D1) =l(F1) =l(J1) =ε 

-The transition relation T= {(I, L1), (L1, PHBPT), (HPB, 

D1), (D1, FN1), (PHGT, D1), (D1, FN1), (D1, DLHH), 

(DLHH, F1), (F1, AFM), (F1, DHBP), (F1, ARM), (DHBP, 

J1), (AFM, J1), (F1, DHBP), (D1, FN1), (J1, FN2)}. 

Table 8 shows the documentation for the inheritance Blood 

sugar sensor and Blood Pressure sensor. The Figure 9 presents 

the AD pertaining to this UC. 

- Initial Node ={i} 

- Final Node = {FN1, FN2, FN3} 

- Decision and merge nodes XOR= {D1, D2, D3, M1} 

- Fork and join nodes AND= {F0, F1, J1, F2, J2, F3, J3} 

- The transition relation T={(I, F0), (F0, L1), (F0, L2), (L1, 

PHGT), (PHGT, D1), (D1, FN1), (D1, FN1), (D1, DLHD), 

(DLHD, F1), (F1, AFT1), (F1, ADPM), (AFT1, J1), (J1, 

DDT) , (DDT, D2), (D2, DT1), (D2, DT2), (DT1, M1), (DT2, 

M1), (M1, F3), (F3, HDHR), (F3, HDNHN), (F3, BD), 

(HDHR, J3), (HDNHN, J3), (BD, J3), (J3, FN3), (L2, PHBPT), 

(PHBPT, D3), (D3, FN2), (D3, DLHH), (DLHH, F2), (F2, 

ADT2), (F2, ALSM), (ADT2, J2), (ALSM, J2), (J2, F3), (F3, 

HDNHN), (F3, BD), (HDHR, J3), (BD, J3), (J3, FN3)} 

- Labelling function l with l(L1)=Login; l(L2)=Login; 

l(PHGT)=Patient Has Glucose Test; l(DLHD)= Determine 

Likelihood of Having diabetes; l(AFT1)= Advice for Test; 

l(ADPM)=Advice Proper Meal; l(DDT) = Determine diabetes 

Type; l(DT1)= Display Type 1; l(DT2) = Display Type 2; 

l(HDHR) = Having Diabetic and Hypertensive retinopathy; 

l(HDNHN)= Having Diabetic Nephrology and Hypertensive 

Nephrosclerosis; l(BD)= Baby’s Deformity; l(PHBPT)= 

Patient Has Blood Pressure Test; l(DLHH)= Determine 
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Likelihood of Having Hypertension; l(ADT2)= Advice for 

Test; l(ALSM)= Advice Low Sodium Meal; l(i)=l(FN1) 

=l(FN2) =l(FN3) =l(D1) =l(D2) =l(D3) =l(M1) =l(F0) =l(F1) 

=l(J1) =l(F2) =L(J2) =L(F3) =l(J3) =ε. (see Figure 10) 

 

 
 

Figure 10. Multiple inheritance automaton 
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Figure 11. SD for multiple inheritances 

 

We used two timers to simulate the behaviour of the blood 

sugar and arterial hypertension sensors. 

Figure 11 illustrates a valid_trace= (PHBPT, PHGT, DLHH, 

DLHD, AFM, AFT1, DDT, DT1, HDHR, HDNHN, BD)  

The never claim corresponding code: 

#define claim_event_message(message) do:: event == 

message-> break   :: else   od 

never{msg_BA(PHBPT); msg_BA(PHGT); 

msg_BA(DLHH); msg_BA(DLHD); msg_BA(AFM); 

msg_BA(AFT1); msg_BA(DDT); msg_BA(DT1); 

msg_BA(HDHR); msg_BA(HDNHN); msg_BA(BD)} 

An invalid trace is a case where the patient has no result for 

his diabetes, neither type 1 nor type 2, i.e., after DDT, we go 

on to the HDHR, HDNHN, and BD event. 

Invalid_trace= ((PHBPT, PHGT, DLHH, DLHD, AFM, 

AFT1, DDT, HDHR, HDNHN, BD) 

never{msg_BA(PHBPT); msg_BA(PHGT); 

msg_BA(DLHH); msg_BA(DLHD); msg_BA(AFM); 

msg_BA(AFT1); msg_BA(DDT); msg_BA(HDHR); 

msg_BA(HDNHN); msg_BA(BD)} 

 

 

7. CONCLUSIONS 

 

This work was initiated by articles that present statistics on 

UML consistency rules. Because of this effort, we have 

concluded that, despite the significance of inheritance in MDE 

(Model Driven Engineering), only a few works treat this issue 
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in MDE. After investigating several works in-depth, we 

concluded that only some rules were presented to link 

inherited diagrams.  

Although this concept is essential in specification, design 

and object-oriented programming, we found a need for more 

work on the inheritance of diagrams. We set out to develop an 

approach to this topic, from formalisation to model checking.  

Our approach uses the template provided by the UC 

documentation and adapted to the IoT system as a starting 

point. It uses the relationships (Include extension and 

generalisation) between UC, the generalisation relationship 

between actors, and the association between them and UC, 

especially the triggers, preconditions and postconditions of 

UC. 

The proposed approach uses the horizontal levels H1, H2, 

H3, H4, H5, H6 and the vertical levels V1, V2, V3, V4, V5, 

V6, V7, V8, V9. Inheritance is supported in the vertical levels. 

To use the SPIN, we used the Split Automata algorithm, where 

the sequence diagrams' interactions are considered Never 

Claim property. 

In addition, completing this work has made it possible to 

design additional consistency rules according to the horizontal 

level and others according to the vertical level. 

We have assessed the proposed method based on the IoT 

case study by determining how helpful the examined UML 

models, consistency rules, and model types are in determining 

whether or not UML models are consistent.  

In addition to this, we investigated how SPIN makes it 

possible to evaluate inconsistencies that may arise during the 

various stages of software development.  

In the Appendix, you'll see that we've transformed both the 

activity AD and the SD into Promela codes. We have 

confirmed the SD's consistency using SPIN. Our approach is 

successful and efficient, as the verification process only takes 

a few seconds (see Appendix).  

Our inherited consistency rules will be encoded in OCL and 

compared to existing OCL consistency rules. Using ATL 

(Atlas Transformation Language) to generate Promela 

assertions Code automatically. We will also gather and study 

UML models not developed with Eclipse Metamodeling 

Approach. 

In future work, we also envisage taking into account when 

defining the automata of the alternative exceptions, 

postconditions on failure and exceptions of the UC 

documentation. 
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APPENDIX 

 

 
 

Figure 12. Message Sequence Chart from SPIN 

 

Case Study SPIN Simulation result for 10000 steps. (Figure 

12). 

depth-limit (-u10000 steps) reached 

#processes: 9 

10000:proc 8 (inheritance_doctor:1) 

iot_final_version.pml:251 (state 3) 

10000: proc 7 (Doctor_blood:1) 

iot_final_version.pml:201 (state 77) 

10000: proc 6 (doctor_diab:1) 

iot_final_version.pml:135 (state 110) 

10000: proc 5 (Proc_blood:1) 

iot_final_version.pml:118 (state 23) 

10000: proc 4 (Proc_diabete:1) 

iot_final_version.pml:90 (state 30) 

10000: proc 3 (msensor_blood:1) 

iot_final_version.pml:59 (state 3) 

10000: proc 2 (msensor_diab:1) 

iot_final_version.pml:51 (state 3) 

10000: proc 1 (activate_sensor_b:1) 

iot_final_version.pml:41 (state 5) 

10000: proc 0 (activate_sensor:1) 

iot_final_version.pml:37 (state 6) 

9 processes created for 10000 steps. 
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