
Multi-Layer Consistency Validation of IoT Systems with UML Inheritance Dynamic

Diagrams via SPIN Model Checking

Nabil Messaoudi1* , Haouassi Hicham1 , Maarouk Toufik Messaoud1 , Hamdane Mohamed Elkamel2

1 ICOSI Laboratory, Abbes Laghrour University, Khenchela 40000, Algeria
2 Teachers' Training School of Constantine, MISC Laboratory, Abdelhamid Mehri University, Constantine 25000, Algeria

Corresponding Author Email: messaoudi.nabil@univ-khenchela.dz

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.280610 ABSTRACT

Received: 6 October 2023

Revised: 27 November 2023

Accepted: 7 December 2023

Available online: 23 December 2023

The integration of the Unified Modeling Language (UML) with the Internet of Things (IoT)

facilitates the multi-faceted modeling of complex IoT systems. Despite existing

methodologies addressing UML coherence, the literature reveals a paucity of strategies for

ensuring consistency between use cases and their manifestations in activity and sequence

diagrams, particularly when inheritance is employed. This study delves into the validation

of UML behavioral views, focusing on the coherence of use cases, activity diagrams, and

sequence diagrams within IoT specifications through a multi-layered consistency approach.

A methodology is presented for transforming IoT system specifications into Büchi

automata, enabling consistency verification through the SPIN Model Checker. The

robustness of this method is demonstrated through a case study involving a Healthcare IoT

system, highlighting the utility of the proposed validation technique.

Keywords:

Büchi automata, IoT healthcare, IoT,

inheritances, SPIN Model Checker, UML

dynamic diagram, multi-layer UML

consistency checking, model

transformations

1. INTRODUCTION

The complexity inherent in the creation of sophisticated

systems can be mitigated through the development of system

models. Modeling serves as a critical instrument throughout

the various stages of design, offering a lens through which the

intricate nature of systems can be understood and crafted.

Among the multitude of modeling languages, the Unified

Modeling Language (UML) [1] stands out as a prevalent

choice. UML enables the detailed representation of system

structures and behaviors and has gained recognition as a de

facto industry standard. The synergy between UML and the

Internet of Things (IoT) proves particularly advantageous,

allowing the precise definition of objects (e.g., devices,

sensors), their attributes, and interactions, thus enhancing the

clarity and complexity of IoT system development. Moreover,

UML's capacity to visualize and manage complex device

interactions is indispensable in IoT contexts [2, 3].

The objective of employing various models is to forge a

more accurate representation of systems, which in turn

facilitates code generation. The primary impetus for these

models is the clear advantage of identifying and rectifying

design flaws prior to the implementation of actual software

components, as inconsistencies among software models often

emerge as a significant challenge [4, 5].

In the realm of UML, inheritance extends beyond class

diagrams to encompass use cases, enabling the inheritance of

actors and use cases alike. The implications of simple and

multiple inheritances warrant thorough examination. Despite

this, current treatment of inheritance in Object-Oriented

Design (OOD) typically restricts itself to static aspects,

leaving dynamic behavior inheritance less defined.

Consequently, when one use case inherits from another, there

is an implicit extension of the activity and sequence diagrams

associated with it [6, 7].

The ambiguity of UML semantics also contributes to the

need for enhanced consistency, as multiple, sometimes

conflicting, interpretations can be ascribed to a single UML

expression. The verification of consistency traditionally

involves rule definition and translation into formal languages.

Consistency is achieved when distinct software models, which

overlap in their description of the system's features, satisfy

established conditions [8-10].

Management of model consistency typically encompasses

three core tasks [5, 10, 11]: (i) the definition of consistency,

(ii) the detection of inconsistencies, and (iii) the resolution

thereof. Adherence to specified consistency rules, known as

Rules Well Formedness (RWF), is essential for different UML

diagrams (refer to the UML superstructure specification).

Model checking stands as a robust methodology for system

verification, offering a formal mechanism to affirm the

correctness of concurrent systems characterized by finite states.

This approach involves the system's examination based on

intricate algorithms to ascertain whether the given

specifications are met. Furthermore, model checking is poised

to aid in addressing inconsistencies within UML software

models. Here, a formalism called Split Automata—a variant

of automata adept at correlating activity diagrams with SPIN

[12] is utilized.

This research is propelled by the scarcity of studies

addressing the inheritance issue in use cases (UC), particularly

the impact on the relationship between activity diagrams (AD)

Ingénierie des Systèmes d’Information
Vol. 28, No. 6, December, 2023, pp. 1533-1547

Journal homepage: http://iieta.org/journals/isi

1533

https://orcid.org/0000-0002-4245-4225
https://orcid.org/0000-0001-8465-499X
https://orcid.org/0000-0002-5131-7812
https://orcid.org/0000-0002-7502-6964
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280610&domain=pdf

and sequence diagrams (SD) [7]. A novel approach is

proposed: a multi-layer and multi-level strategy for UML

consistency checking. This includes horizontal consistency

across generalizable diagrams and vertical consistency that

leverages the relationship between generalizable and

specialized diagrams. The challenge addressed is the

assurance of conformity across UC, SD, and AD to analogous

requirements. Figure 1 illustrates the primary activities

involved.

The subsequent sections are structured as follows: Section

2 provides an overview of related works, Section 3 delineates

the fundamental concepts within the researched domains,

Sections 4 and 5 explicate the proposed approach including the

consistency checking mechanism, Section 6 presents an IoT

case study, and the paper culminates with a discussion on

future research directions, accompanied by concluding

remarks.

Figure 1. The process consistency between UC, AD, SD

2. RELATED WORKS

The delineation of UML consistency rules constitutes the

focal point of the present study, situating itself within broader

discourses pertaining to UML consistency. In this context, the

contributions by the authors of studies [11, 13] are particularly

instrumental, having conducted extensive research, compiled,

and presented an array of UML diagram consistency rules.

In an organized compilation presented in Table 1 from [13],

a total of 119 papers have been categorized based on a criterion

of perspective. These studies encompass a spectrum of

diagrams, encapsulating structural, behavioral, and integrated

forms. Notably, out of the 119 papers surveyed, a mere 21

address behavioral consistency. It was further observed by the

same author that in response to the inquiry regarding the

application of UML consistency rules in software engineering

activities, 253 instances pertained to verification purposes,

whereas formalization accounted for only 14 instances.

Among the 119 identified rules, a scant 5, equating to 4%,

were proposed for inheritance, and these were presented in an

informal manner. These rules predominantly concentrated on

the consistency between class diagrams (DCs) and state

machines (SMs).

Further scrutiny is given to the methodologies employed in

40 studies spanning from 2003 to 2016, detailed in Table 2,

with a focus on both formal and informal techniques. A

conspicuous majority of these studies have utilized formal

methods, with logic and state transitions, which account for

73%, being particularly relevant to the scope of our

investigation.

An innovative approach for the automatic verification of

deadlocks and nondeterminism within UML activity diagrams

is proposed [14]. This is achieved by introducing a

compositional Communicating Sequential Processes (CSP)

semantics for activity diagrams. This semantic framework

facilitates the automatic derivation of CSP specifications from

UML models, which are subsequently used as inputs for the

FDR refinement checker, enabling the automated verification

of deadlocks and nondeterminism.

The annexed papers referenced in this section pivot around

use cases (UC), which serve as a basis for understanding and

formalizing consistency. This research specifically refers to

the papers designated as annexes to elucidate the mechanisms

underpinning consistency.

In the domain of safety-critical systems, the articulation of

safety requirements is a matter of paramount importance. An

incremental approach to refining these requirements through

scenarios is proposed by Chen et al. [15]. Once the consistency

of the requirements is verified, these scenarios are subject to

refinement, with their semantics being captured through a

transformation into an intermediate semantic model conducive

to formal verification. The validity of this transformation

process is corroborated by aligning the requirements with

actual execution traces.

The utility of the process algebra language LOTOS

(Language of Temporal Ordering Specification) is examined

in the study of Doostali et al. [16], where it serves as the

chosen language for formal specification. Herein, a mapping

methodology, designated USLP, is introduced to facilitate the

translation of UML Statecharts into LOTOS processes. The

fidelity of these mappings is substantiated through the

establishment of an isomorphism between the Labelled

Transition System (LTS) of a Statechart and that of the

corresponding LOTOS specification.

A rule-based approach to UML consistency rules is

explored by Kalibatiene et al. [17], where the authors have

distilled 50 rules from a corpus of eight articles published

between 2008 and 2011. Subsequent investigation within this

research confirms the absence of rules pertaining to

inheritance in the aforementioned set.

The need for a formal syntax and semantics for variations

of Use Case Diagrams (UCD) is addressed in the study of

Kautz et al. [18]. In response to the absence of a standardized

language or formal semantics for UC representations, the

1534

authors present a semantic differencing operator and subject it

to empirical validation, highlighting the challenge of

discerning relationships between similar diagrams.

Further extending the discussion on use case representation,

Almendros-Jiménez and Iribarne [8] present a methodology

that employs Sequence Diagrams (SD) to describe Use Case

(UC) narratives, identifying inclusion and generalization

relationships amongst UCs as a part of their approach.

In the study of Sapna et al. [19], the elements of use case,

activity, and sequence diagrams are delineated using a schema

table, albeit the focus is restricted to a subset of elements: use

case, actor, activity, message, and object. The paper posits that

each actor in a use case diagram corresponds to a class in an

activity diagram and establishes a linkage between the objects

and messages in a sequence diagram to a class and its methods

in a class diagram. The authors introduce two consistency

rules between use case and sequence diagrams, utilizing

Object Constraint Language (OCL) for expression.

The formalization of consistency across various UML

diagrams, including UC, AD, Sequence Diagrams (SD), and

Statecharts (SC), is undertaken using coloured Petri nets in [5].

Consistency transitions are defined for use case, action, and

execution occurrences. Notably, inheritance is not considered

within their framework.

Table 1. Consistency from model view

Model View

 One View Multiview

Structural 44 00 44

behavioural 26 21 47

Struc&Beh 04 24 28

Total 74 45 119

Table 2. Consistency from formal view

Formal Techniques Non Formal Techniques

State.Transiti 13 OCL+Const.integrity 07

Logic 13 Sanity Consistency 01

Process.Alge 02 Xml rules+QVT 03

Total Formal 29 Total Non formal 11

Table 3. (a) Comparative related works

Study Year FormTech. Diagrams

[5] 2006 CPN UC, SD, AD

[9] 2011 -- UC, AD

[14] 2020 FDR, CSP AD

[15] 2022 -- Doc.of UC, AD

[16] 2023 Lotos UML stateCharts

[17] 2013 OCL SM, SD

[18] 2022 Logical UC

[19] 2007 OCL UC, COD, AD, CD

This Paper 2023 SPIN, Log. UC, AD, SD

Table 3. (b) Comparative related works

Study Year (R, T) S M

[5] 2006 T -- --

[9] 2011 R S --

[14] 2020 T -- --

[15] 2022 T -- --

[16] 2023 T -- --

[17] 2013 R -- --

[18] 2022 T

[19] 2007 R -- --

This Paper 2023 R, T √ √

This paper distinguishes itself from related works through a

systematic comparison, encapsulated in Table 3. The

comparison takes into account several criteria: the formal

techniques employed (FormTech), the UML diagrams under

consideration (Diagrams), and the presence or absence of

simple (S) and multiple inheritance (M). Additionally, the

paper evaluates the proposal of consistency rules (R) and the

transformation of these rules into formal models (T). Articles

not addressing a specific concept are indicated with '--'.

Building upon the foundation laid by previous studies, this

paper adopts a logical approach to describe the elements of UC,

AD, and SD, as well as their inter-consistencies. New

consistency rules are proposed, refining and augmenting those

previously established. These proposed standards are

exemplified through a UML model incorporating the relevant

diagrams. Moreover, the constituents of the consistency rules

are delineated, with explicit justifications furnished for each

component.

3. BACKGROUND

This section describes the fundamental notions of the

domains that served as the foundation for our approach.

3.1 Use cases-oriented development

Table 4. IoT Use Case documentation

Use Case N° Use Case Description

Goal in Context Description of the use IoT case.

Scope & Level
Scope and level of the considered

system.

Primary/Secondary

IoT Actors

Role name or description of the primary

and secondary actors for the use IoT

case, sensors, actuators, cloud or other

associated systems.

IoT Trigger

Which action of the primary/secondary

actors initiate the IoT use case e.g.,

Available sensors.

Stakeholder

&Interest

Name of the stakeholder and interest of

the stakeholder in the IoT use case e.g

SmartPhone.

Preconditions

Expected state of the system or its

environment before the IoT use case

may be applied eg. Data available from

sensors.

Postconditions on

success

Expected state of the system or its

environment after successful completion

of the IoT use case.

Postconditions on

failure

Expected state of the system or its

environment after unsuccessful

completion of the IoT use case.

IoT UC Description
Flow of events that are normally

performed in the use IoT case

Alternative

Description

Flow of events that are performed in

alternative scenarios (numbered).

Exceptions
Failure modes or deviations from the

normal IoT use Case

IoT Use Case

elationships

IoT use cases that are included,

extended, or inherited.

Concurrent IoT UC
IoT use cases that can be applied

concurrently to the current IoT use case.

The documentation for the use case is formatted in the form

of a template. We take into account the pertinent facts that will

be used as a foundation for the determination of some

consistency standards. The preconditions, postconditions, and

1535

explanation of the use case scenario's basic and alternative

options are the most crucial entries to include. In what follows,

we are going to focus mostly on the concepts of triggers, pre-

conditions, and post-conditions to propose some rules in the

context of inheritance.

The Table 4 provides an illustration of a use case template,

with the various topic definitions being derived from [20-22]

and adapted to the context of an IoT application. It is a

representation of the typical components of an IoT use case

that may be significant for conveying how a user interacts with

a system.

3.2 Inheritance of UML behaviour

The term simple inheritance is used when a class only

inherits from a single other class, while the term multiple

inheritance is used when multiple classes contribute to the

class's inheritance tree [23].

The inheritance relation is irreflexive, i.e., a class A cannot

inherit from itself. The relation is transitive if class A inherits

from class B and B inherits from class C; then A inherits from

C. The relation is non-symmetric; if class A inherits from class

B, then B does not inherit from A.

Also, as specified in the UML literature, an actor can inherit

from another actor (single inheritance), and an actor can

inherit from other actors (multiple inheritances). The exact

definitions are also applicable to UC.

The four inheritance concepts referred to in the study of van

der Aalst [6] will be discussed to analyse the effect of

inheritance in the context of UC. Since the basic ideas are

general, they can be applied to any IoT UML behaviour

diagram.

The author presented two types of behavioural inheritances,

(i) protocol inheritance and (ii) projection inheritance (see

Figure 2).

Protocol inheritance means that if the external behaviour of

p and q cannot be distinguished when only actions of p that are

also present in q are executed, then p is a sub-behaviour of q;

which is conforms to blocking actions new in p and any

sequence of actions invocable on the super-behaviour can be

invoked on the sub-behaviour.

Projection inheritance means that p is a sub-behaviour of q,

if the external behaviour of p and q cannot be distinguished

when arbitrary actions of p are performed, but can be

distinguished when only the effects of actions that are also

present in q are considered; which conforms to hiding actions

new in p and any sequence of actions observable from the sub-

behaviour should correspond to an observable sequence of the

super-behaviour.

Figure 2. Sub- and Super-behaviour relationship

4. PROPOSED APPROACH

The approach provides flexibility for consistency checking

in a UC inheritance framework by affecting AD and SD. It is

a combination of definition and translation of consistency

rules. For this, we proposed three levels to cover the coherence

of the entire system (UC, AD, SD). It will support the

following steps: (i) Defining consistency rules between the

three diagrams on a vertical level which takes into account the

parental specification, (ii) Setting consistency rules on a

horizontal level, defining the inherited consistency rules, and

(iii) a translation to the SPIN [12] Model Checker for a

dynamic consistency checking of the system (see Figure 3).

Layers H1, H2, H3, H4, H5, H6, and H7 contribute to the

horizontal level, and layers V1, V2, V3, V4, V5, V6, V7, and

V8 provide the vertical level (see Table 4).

We have isolated classes C1 and C2 that oversee the

inherited and parental consistency rules, respectively, to put

the spotlight on consistency management. Class C2 inherits

layers H1, H2, and H3 from the generalizable diagram, while

layers H4, H5, and H6 are defined with new rules, especially

those that reduce the effectiveness of triggers, preconditions,

and postconditions. Class C3 considers layers V1, V2, V3, V4,

V5, V6, V7, V8 and V9; class C4 defines the manual

transformation rules T1, T2, T3, T4, T5, and T6. It generates

the concurrent processes from Büchi automata translation via

application to the activity diagram, and generates the

assertions via manual transformation and the claim property of

the interaction diagrams (see Table 5).

1536

Figure 3. Multi-layer UML consistency checking

Table 5. Layer relation approach

Dia

Diag

Horizontal and Vertical Level

UCp ADp SDp UCc ADc SDc

UCp RWF H1 H2 V1 V4 V5

ADp H1 RWF H3 V6 V2 V7

SDp H2 H3 RWF V9 V8 V3

UCc V1 V6 V9 RWF H4 H5

ADc V4 V2 V8 H4 RWF H6

SDc V5 V6 V3 H5 H6 RWF

 Transformational Level

Assert T1 T3 x T2 T4 x

Never

claims
x x T5 x x T6

When the corresponding value in Table 4 is RW, this value

covers all the consistency rules defined in the UML

specification and relates to the same diagram. It has been noted

respectively in Table 5 (Ucp, Ucp), Table 4 (Ucc, Ucc), Table

5 (ADp, ADp), Table 5 (SDp, SDp), Table 5 (ADc, ADc),

Table 5 (SDc, SDc). The other values define all the intra-

diagram consistency rules defined in the literature. For

instance, Table 5 (UCp, ADp) = H1 layer represents the

consistency rules between the generalizable UCp and ADp

diagrams and Table 5 (UCp, ADp) = V1 layer represents the

consistency rules between the generalizable UCp and ADp

diagrams. The transformation level defines the translation of

triggers defined in use cases, activity diagrams, and sequence

diagrams from the generalized and specialized levels to

Promela. T1 and T2 are associated with UC, T3 and T4 are

associated with AD, and T5 and T6 are associated with SD.

It should be noted that Table 5 has been created as a

template for future work. Its objective is to collect all the UML

consistency rules encountered in the literature and classify

them by level and layer, thus enabling the development of a

tool that recognizes all these rules and thus ensuring a

consistent environment for modellers.

4.1 Transformational level

The behaviour of an AD is controlled by the constraints

described in the IoT UC, which may be broken down into three

categories: triggers, preconditions, and postconditions. we

associate this with the terminology Correctness Criteria.

It is usual to represent correctness criteria as a set of

Boolean conditions that must be met whenever a process

reaches a certain state. The assert(condition) statement will

always be run, despite of where it is located within a

PROMELA. If the condition is true, the claim is false.

We manually transform each predicate into assertion

Promela code. Triggers, postconditions, and preconditions are

all considered predicates. The figure's approach defines six

transformation rules: T1, T2, T3, T4, T5, and T6.

1537

- T1 is a manual transformation for the trigger predicate of

the general UC to a Promela code denoted assert

(UCp.trigger).

- T2 is a manual transformation for the precondition

predicate of the general UC to a Promela code denoted assert

(UCp.pre-condition).

- T3 is a manual transformation for the trigger predicate of

the general use case to a Promela code denoted assert

(UCp.post-condition)

- T4 contains the new rules that ensure consistency between

the child UC the corresponding child AD. assert (UCc.trigger)

- T5 contains the new rules that ensure consistency between

the child UC and the corresponding child SD. assert

(UCc.precondition)

- T6 contains the new rules that ensure consistency between

the child AD and the corresponding SD. assert

(UCc.postcondition).

4.2 Informal properties

A relation that includes the generalizable IoT use case does

not include the IoT inherited case.

If an IoT actor B inherits from an IoT actor A, all the IoT

UC associated with B cannot inherit from IoT UC associated

with A.

When an IoT actor B inherits from an IoT actor A, all IoT

UC associated with B cannot include from IoT UC associated

with A.

When an IoT actor B inherits from an IoT actor A, all IoT

UC associated with B cannot extend from IoT UC associated

with A.

When actor an IoT B inherits from an IoT actor A, B cannot

be associated with IoT UC associated with A.

The initial activity edge must have the corresponding

trigger’s IoT UC as guards.

The trigger associated with the initial Activity Edge of

Activity diagram match that of the inherited IoT UC and not

alter the trigger of the parent IoT UC (to be weakened).

When an activity ends, the postcondition identified in the

IoT UC must be true.

An activity diagram 𝐴𝑢𝑖 extends an activity diagram 𝐴𝑢𝑗 iff

all nodes of 𝐴𝑢𝑖 are included in 𝐴𝑢𝑗.

The set of preconditions for an action j associated with 𝐴𝑢𝑖

must contain the preconditions associated with the IoT UCi.

The set of postconditions for an action j associated with 𝐴𝑢𝑖

must contain the postconditions associated with 𝑢𝑖.

5. MODEL CHECKING

In this section, we discuss utilising SPIN to ensure

consistency between UC, AD and SD and the translation of

AD into ε-BA [7]. SPIN uses a thorough search of the state

space to validate or invalidate (through the generation of

counterexamples) the properties of Promela specifications.

Another helpful feature is the ability to define the never claim,

a process for expressing undesirable behaviours.

Model checking will use the layers defined at the previous

layers (C1, C2, C3, C4) and the transformation layer, which

contains six levels from T1 to T6.

A diagram with UC, AD and SD is consistent if the triggers,

preconditions and postconditions of a use case are fulfilled in

AD and if the AD's trace collection contains the SD's trace. i.e.,

iff 𝑡𝑟𝑎𝑐𝑒(𝑆𝑑𝑠) ∈ 𝑡𝑟𝑎𝑐𝑒(𝐴𝑑𝑠) . It comprises a set of

concurrent processes constantly exchanging information with

one another and each of these processes represents 𝜀_𝐵𝐴, and

the never claim to represent the trace of SD. If the system's

SPIN report validates the assertions and confirms the never

claim then we will know that the SD are consistent with the

UC, and AD, elsewhere we know there must be inconsistency.

The modeller must inspect the invalid traces to report the

errors in requirement models.

5.1 From AD to stutter Büchi automaton (ε-BA)

AD have labels for actions, while ε-BA has labels for

transitions. Therefore, during translation, the mapping flips the

roles of an AD's nodes and activity edges so that the nodes of

the AD represent ε-BA transitions and the activity edges

represent ε-BA states. The powerset of the AD's set of activity

edges determines the state set of ε-BA. The powerset is

required since an AD might exist in multiple nodes at once

(after visiting a fork node).

Nodes whose 𝐸𝑖𝑛(𝑁𝑖) = 𝐼𝑖 represent the initial state of ε-

BA and nodes whose 𝐸𝑖𝑛(𝑁𝑖) = 𝐹𝑖 represent the final states of

ε-BA. Labels for nodes in the AD are equal to those for

transitions in ε-BA.

As a process can stay infinitely long, a state of the negation

of the conjunction of all outgoing events is then added.

The translation conditions associated with the fork, join and

merge node are those used in the study of Thramboulidis and

Christoulakis [3].

AD have labels for actions, while ε-BA has labels for

transitions. Therefore, during translation, the mapping flips the

roles of an AD's nodes and activity edges so that the nodes of

the AD represent ε-BA transitions and the activity edges

represent ε-BA states. The powerset of the AD's set of activity

edges determines the state set of ε-BA. The powerset is

required since an AD might exist in multiple nodes at once

(after visiting a fork node).

Nodes whose 𝐸𝑖𝑛(𝑁𝑖) = 𝐼𝑖 represent the initial state of ε-

BA and nodes whose 𝐸𝑖𝑛(𝑁𝑖) = 𝐹𝑖 represent the final states of

ε-BA. Labels for nodes in the AD are equal to those for

transitions in ε-BA.

As a process can stay infinitely long, a state of the negation

of the conjunction of all outgoing events is then added.

The translation conditions associated with the fork, join and

merge node are those used in Sundaramoorthy [24].

The ε-BA associated to ADi is defined as εBA (ad) = (Q; Σ;

δ; q0; F0) where,

- Q = ℙ(𝑇),

- ∑ = 𝐿,
- q0 = {(s, t)∈ T| s = i},

- F’ = {{(s, t)}⊆T | {} T / t ∈ F’}, and

- 𝛿⊆ Q × (Σ U{ε}) × Q is the smallest set satisfying the

following conditions:

• Move other than fork or join:

∀ X ⊆ T: ∀ n1, n2, n3 ∈ N: ((n1, n2) ∈ X ∧ (n2, n3) ∈ T ∧ n2

∉ 𝐴ND) ⇒ (X, l(n2), X\ {(n1, n2)} U {(n2, n3)}∈ 𝛿

• Move fork or join :

∀ 𝑋 ⊆ 𝑇: ∀ 𝑗 ∈ 𝐴𝑁𝐷 ∶ (𝛿−(𝑗) ⊆ 𝑋)
⟹ (𝑋, 𝜀, (𝑋 ∖ 𝛿𝑎𝑑

− (𝑗)) ∪ 𝛿𝑎𝑑
+ (𝑗) ∈ 𝛿

- 𝑛𝑒𝑔𝑖: 𝑄𝑖 → 𝑆𝐿𝑖 ∪ {𝜀} is the node labeling associates to

each state 𝑄𝑖 a self-loop transition (SLi) which contains the

negation of the conjunction of all the outgoing states of 𝑆𝐿𝑖 .

The trace semantics of an activity diagram trace_sem_ad

(AD) is defined as the language recognized by the εBA

associated to the AD ad, i.e., trace_sem (AD) =ℒ(𝜀𝐵𝐴(𝐴𝐷)).

1538

5.2 Translation Büchi automaton into promela processes

The AD represented by BA are the communication of

several objects along several lanes of the AD. The resulting

processes can communicate using channels (Chan Keyword)

of size 0 to send messages (! Symbol) and receive messages (?

Symbol) via their corresponding channels which are then

saved in an enumeration set called mtype.

We declare a global variable msgrecord which records each

event (message) transferred through a communication channel

which we will use as a basis for determining the execution

trace of an SD.

The enumeration set mtype records all states and all events

for the ε-BA. Each state-related variable begins with the letter

S, transitions begin with the letter t, and negations of events

begin with the letter NT. if the state is (s, li) the variable Sil1

corresponds to the state(s_il1), if a transition is log the

associated variable is Tlog and the negation transition is NTlog.

In the ε-BA, the control flow is set up by a do loop with a

local variable state_automaton that goes through the list of

states 𝑆 = {𝑆1..𝑆𝑛}.

The channel associated with a process that inherits n other

processes will be of the form: Chan C_n [0] of {mtype} n

times. The process will only be activated if all the associated

values are available. For instance, if the process inherits from

two others, it has two channels C_1 and C_2.

5.3 Translation from SD to Promela

Trace_sem (SD) is defined as the language recognized by

the ε-BA associated to the AD, i.e., trace_sem_sd (SD)

= ℒ(𝜀𝐵𝐴(𝑆𝐷)) which represents the Promela never claim

property.

We can now convert each event into a loop using a guard

because we recorded each event with the help of the variable

event (event==message). When the guard evaluates to true,

this indicates that the event has already taken place; in this

scenario, we exit the loop and try to match the subsequent

event; nevertheless, in all other cases, the process must wait.

If we successfully reach all events, the trace_sem (SD) and

trace_sem (AD) will be consistent, as will diagrams, i.e.,

trace_sem (SD) ∈ 𝑡𝑟𝑎𝑐𝑒_𝑠𝑒𝑚(𝐴𝐷𝑠) . Stutter events are

ignored and not registered; they are only used to change states.

5.4 System invariants

The assert statement can be used more generally to

formalise system invariants, which are boolean conditions that,

if true in the initial system state, hold true in all reachable

system states. In PROMELA, place the system invariant in a

separate monitor process.

Proctype control_precondition () {assert(invariant)}.

6. CASE STUDY

The purpose of this system is to provide immediate medical

aid to individuals by utilising various forms of technology. We

use a portion of the application architecture [20], to which we

have integrated IoT services by utilising diabetes and blood

pressure sensors. This application allows us to execute the

approach concepts; in particular, the communication between

the sensors and the smart doctor. It will be used to develop a

precise diagnosis of serious diseases caused by the

combination of diabetes and high blood pressure, which can

even affect pregnant women through the deformation of their

babies. The presented automata concern the AD of the diabetes

sensor, the hypertension sensor, the composite diagram of the

two diseases, and the activities corresponding to the resulting

diseases (Hypertensive retinopathy, diabetic nephrology,

hypertensive nephrosclerosis, baby's deformity) (see Figure 4).

Figure 4. UML UC for HealthIoT system

1539

All the informal properties have been verified.

It will determine the probability of the diseases

(Hypertensive retinopathy, diabetic nephrology, hypertensive

nephrosclerosis, baby's deformity) being affected.

The diabetes sensor and the blood sensor start after a login

from the corresponding patient by executing the action

"Patient has glucose test," which will be transmitted to the

diabetes doctor by t! phgt and similarly by the blood sensor

using t! phpb or the diabetes doctor.

In addition to features Login, Facilities, Logout, Health A-

Z, Resources, Drugs and supplements, New and Experts end

Feddback presented in Sundaramoorthy [24], we will present

the following features: The system's primary features are listed

below:

Diabetic Disease: This feature allows blood glucose

measurements to be taken during patient activities and stored

in a data set and predict probability of diabetes and its type.

see Figure 5. Figure 6 shows the corresponding Büchi

automaton.

Hypertensive Disease: This feature collects patient data,

usually by fixed times, and puts them in a data set and predict

probability of hypertensive and its treatment. see Figure 7. The

Büchi automaton in question is depicted in Figure 8.

The documentation for the blood sugar sensor is provided

in Table 6.

Inheritance Diseases: is an intelligent function that inherits

hypertensive and Diabetic Diseases for the probability of

Hypertensive retinopathy, diabetic nephrology, hypertensive

nephrosclerosis, and baby's deformity based on the required

patient data.

- Initial Node ={i}

- Final Node = {FN1, FN2, FN3}

- Decision and Merge Nodes XOR= {D1, D2}

- Fork and Join Nodes AND= {F1, J1}

- The transition relation T={(I, F0), (F0, L1), (F0, L2), (L1,

PHGT), (PHGT, D1), (D1, FN1), (D1, FN1), (D1, DLHD),

(DLHD, F1), (F1, AFT1), (F1, ADPM), (AFT1, J1), (J1,

DDT) , (DDT, D2), (D2, DT1), (D2, DT2), (DT1, M1), (DT2,

M1), (M1, F3), (F3, HDHR), (F3, HDNHN), (F3, BD),

(HDHR, J3), (HDNHN, J3), (BD, J3), (J3, FN3), (L2, PHBPT),

(PHBPT, D3), (D3, FN2), (D3, DLHH), (DLHH, F2), (F2,

ADT2), (F2, ALSM), (ADT2, J2), (ALSM, J2), (J2, F3), (F3,

HDNHN), (F3, BD), (HDHR, J3), (BD, J3), (J3, FN3)}

- Labelling function l with l(L1) =Login; l(PHGT)=Patient

Has Glucose Test; l(DLHD)= Determine Likelihood of

Having diabetes; l(AFT1) = Advice for Test; l(DDT) =

Determine diabetes Type; l(DT1) = Display Type 1; l(DT2) =

Display Type 2; l(ADT2) = Advice for Test; l(APM)= Advice

Proper Meal; L(i)=l(FN1) =l(FN2) =l(D1) =l(D2) =l(F1) =l(F2)

=ε.

Figure 5. AD for UC Diabetic

1540

Figure 6. Automaton for diabetic AD

Figure 7. AD for UC Blood Pressure

1541

Figure 8. Automaton for AD Blood Pressure

Table 6. Blood sugar sensor

Use Case n°1 Diabetic Disease

Goal in Context The aim is to enable clients of the IoT system to take the corresponding blood sugar value and

transmit it to the data set and to give probability of having diabetes.

Scope & Level Connection Level

Primary/Secondary IoT Actors Primary: Service Provider

IoT Trigger After every meal.

Stakeholder &Interest User

Preconditions Sensor Available

Postconditions on success The test sample is sent to the doctor responsible for diabetes.

Postconditions on failure The system is alerted to the sensor malfunction.

IoT UC Description 1- check mealtimes 2- read the blood sugar 3- transmit the reading.

Alternative description -The patient can change the sensor responsible for taking the test.

Exceptions -The information sent is invalid.

IoT UC relationships -Login

Table 7. Blood pressure

Use Case n°2 Hypertensive Disease

Goal in Context The aim is to enable patients of the IoT system to take the corresponding blood pressure value and

transmit it to the attending doctor for decision-making.

Scope & Level Connection Level

Primary/Secondary IoT Actors Primary: Service Provider

IoT Trigger After every meal.

Stakeholder &Interest User

Preconditions Sensor Available

Postconditions on success The test is sent to the doctor for high blood pressure.

Postconditions on failure The system is alerted to the sensor malfunction.

IoT use case description 1- check mealtimes 2- the blood pressure level 3- transmit the reading.

Alternative Description -The patient can change the sensor responsible for taking the test.

Exceptions -The information sent is invalid.

IoT UC relationships -Login

Table 8. Hypertensive/diabete

Use Case n°3 Inheritance Disease

Goal in Context The aim is to alert patients to the risk of developing a serious illness due to diabetes or high blood pressure.

Scope & Level Provider (Smart doctor)

Primary/Secondary Actors Primary: Smart Doctor Secondry: patient

IoT Trigger Data on blood sugar levels and arterial pressure are available.

Stakeholder &Interest Patient

Preconditions Major risk has been reached.

Postcond. On success Available services.

Postcondit.on failure Alert the patient that the data is not arriving.

IoT UC Description 1-likelihood of a major risk of illness. 2-Hypertensive retinopathy 3-Diabetic nephrology 4-Hypertensive

nephrosclerosis 5-Baby's deformity

Alternative Description Alert the patient that the data is not arriving.

Exceptions The required information is invalid

IoT UC relationships Inherited UC (Sugar & Blood pressure Level).

1542

Figure 9. AD for multiple inheritance

Table 7 represents the documentation for the Blood pressure

sensor.

-Initial Node ={i}

-Final Node = {FN1, FN2}

-Decision and merge nodes XOR= {D1}

-Fork and join nodes AND= {F1, J1}

-Labelling function l with l(L1) =Login;

l(PHBPT)=Symptoms of HPB; l(DLHH)= Determine

Likelihood of Having Hypertension; l(AFM)= Advice for

Medication; l(DHBP)= Diet for High Blood Pressure;

l(i)=l(FN1) =l(FN2) =l(D1) =l(F1) =l(J1) =ε

-The transition relation T= {(I, L1), (L1, PHBPT), (HPB,

D1), (D1, FN1), (PHGT, D1), (D1, FN1), (D1, DLHH),

(DLHH, F1), (F1, AFM), (F1, DHBP), (F1, ARM), (DHBP,

J1), (AFM, J1), (F1, DHBP), (D1, FN1), (J1, FN2)}.

Table 8 shows the documentation for the inheritance Blood

sugar sensor and Blood Pressure sensor. The Figure 9 presents

the AD pertaining to this UC.

- Initial Node ={i}

- Final Node = {FN1, FN2, FN3}

- Decision and merge nodes XOR= {D1, D2, D3, M1}

- Fork and join nodes AND= {F0, F1, J1, F2, J2, F3, J3}

- The transition relation T={(I, F0), (F0, L1), (F0, L2), (L1,

PHGT), (PHGT, D1), (D1, FN1), (D1, FN1), (D1, DLHD),

(DLHD, F1), (F1, AFT1), (F1, ADPM), (AFT1, J1), (J1,

DDT) , (DDT, D2), (D2, DT1), (D2, DT2), (DT1, M1), (DT2,

M1), (M1, F3), (F3, HDHR), (F3, HDNHN), (F3, BD),

(HDHR, J3), (HDNHN, J3), (BD, J3), (J3, FN3), (L2, PHBPT),

(PHBPT, D3), (D3, FN2), (D3, DLHH), (DLHH, F2), (F2,

ADT2), (F2, ALSM), (ADT2, J2), (ALSM, J2), (J2, F3), (F3,

HDNHN), (F3, BD), (HDHR, J3), (BD, J3), (J3, FN3)}

- Labelling function l with l(L1)=Login; l(L2)=Login;

l(PHGT)=Patient Has Glucose Test; l(DLHD)= Determine

Likelihood of Having diabetes; l(AFT1)= Advice for Test;

l(ADPM)=Advice Proper Meal; l(DDT) = Determine diabetes

Type; l(DT1)= Display Type 1; l(DT2) = Display Type 2;

l(HDHR) = Having Diabetic and Hypertensive retinopathy;

l(HDNHN)= Having Diabetic Nephrology and Hypertensive

Nephrosclerosis; l(BD)= Baby’s Deformity; l(PHBPT)=

Patient Has Blood Pressure Test; l(DLHH)= Determine

1543

Likelihood of Having Hypertension; l(ADT2)= Advice for

Test; l(ALSM)= Advice Low Sodium Meal; l(i)=l(FN1)

=l(FN2) =l(FN3) =l(D1) =l(D2) =l(D3) =l(M1) =l(F0) =l(F1)

=l(J1) =l(F2) =L(J2) =L(F3) =l(J3) =ε. (see Figure 10)

Figure 10. Multiple inheritance automaton

1544

Figure 11. SD for multiple inheritances

We used two timers to simulate the behaviour of the blood

sugar and arterial hypertension sensors.

Figure 11 illustrates a valid_trace= (PHBPT, PHGT, DLHH,

DLHD, AFM, AFT1, DDT, DT1, HDHR, HDNHN, BD)

The never claim corresponding code:

#define claim_event_message(message) do:: event ==

message-> break :: else od

never{msg_BA(PHBPT); msg_BA(PHGT);

msg_BA(DLHH); msg_BA(DLHD); msg_BA(AFM);

msg_BA(AFT1); msg_BA(DDT); msg_BA(DT1);

msg_BA(HDHR); msg_BA(HDNHN); msg_BA(BD)}

An invalid trace is a case where the patient has no result for

his diabetes, neither type 1 nor type 2, i.e., after DDT, we go

on to the HDHR, HDNHN, and BD event.

Invalid_trace= ((PHBPT, PHGT, DLHH, DLHD, AFM,

AFT1, DDT, HDHR, HDNHN, BD)

never{msg_BA(PHBPT); msg_BA(PHGT);

msg_BA(DLHH); msg_BA(DLHD); msg_BA(AFM);

msg_BA(AFT1); msg_BA(DDT); msg_BA(HDHR);

msg_BA(HDNHN); msg_BA(BD)}

7. CONCLUSIONS

This work was initiated by articles that present statistics on

UML consistency rules. Because of this effort, we have

concluded that, despite the significance of inheritance in MDE

(Model Driven Engineering), only a few works treat this issue

1545

in MDE. After investigating several works in-depth, we

concluded that only some rules were presented to link

inherited diagrams.

Although this concept is essential in specification, design

and object-oriented programming, we found a need for more

work on the inheritance of diagrams. We set out to develop an

approach to this topic, from formalisation to model checking.

Our approach uses the template provided by the UC

documentation and adapted to the IoT system as a starting

point. It uses the relationships (Include extension and

generalisation) between UC, the generalisation relationship

between actors, and the association between them and UC,

especially the triggers, preconditions and postconditions of

UC.

The proposed approach uses the horizontal levels H1, H2,

H3, H4, H5, H6 and the vertical levels V1, V2, V3, V4, V5,

V6, V7, V8, V9. Inheritance is supported in the vertical levels.

To use the SPIN, we used the Split Automata algorithm, where

the sequence diagrams' interactions are considered Never

Claim property.

In addition, completing this work has made it possible to

design additional consistency rules according to the horizontal

level and others according to the vertical level.

We have assessed the proposed method based on the IoT

case study by determining how helpful the examined UML

models, consistency rules, and model types are in determining

whether or not UML models are consistent.

In addition to this, we investigated how SPIN makes it

possible to evaluate inconsistencies that may arise during the

various stages of software development.

In the Appendix, you'll see that we've transformed both the

activity AD and the SD into Promela codes. We have

confirmed the SD's consistency using SPIN. Our approach is

successful and efficient, as the verification process only takes

a few seconds (see Appendix).

Our inherited consistency rules will be encoded in OCL and

compared to existing OCL consistency rules. Using ATL

(Atlas Transformation Language) to generate Promela

assertions Code automatically. We will also gather and study

UML models not developed with Eclipse Metamodeling

Approach.

In future work, we also envisage taking into account when

defining the automata of the alternative exceptions,

postconditions on failure and exceptions of the UC

documentation.

ACKNOWLEDGMENT

We want to thank our laboratory ICOSI of Khenchela for its

total availability in terms of documentation (Books, Articles)

and the advice of the teachers of the mathematics and

computer science department of the university Abbes

Laghrour, Khenchela, Algeria.

We want to thank the team from the English literature

department at the Abbes Laghrour University in Khenchela for

their assistance throughout the production of this article.

The staff of the Misc of Constantine 2, Algeria, is also

thanked for their kind help.

REFERENCES

[1] Rumbaugh, J., Ivar, J., Grady, B. (2010). The Unified

Modeling Language Reference Manual. Addison-

Wesley Professional; 2nd edition.

[2] Ciccozzi, F., Spalazzese, R. (2016). Mde4iot: Supporting

the internet of things with model-driven engineering. In

International Symposium on Intelligent and Distributed

Computing, Paris, France, pp. 67-76.

https://doi.org/10.1007/978-3-319-48829-5 7

[3] Thramboulidis, K., Christoulakis, F. (2016). UML4IoT-

A UML-based approach to exploit IoT in cyber-physical

manufacturing systems. Computers in Industry, 82: 259-

272. https://doi.org/10.1016/j.compind.2016.05.010

[4] Bashir, R.S., Lee, S.P., Khan, S.U.R., Chang, V., Farid,

S. (2016). UML models consistency management:

Guidelines for software quality manager. International

Journal of Information Management, 36(6): 883-899.

https://doi.org/10.1016/j.ijinfomgt.2016.05.024

[5] Shinkawa, Y. (2006). Inter-model consistency in UML

based on CPN formalism. 2006 13th Asia Pacific

Software Engineering Conference (APSEC’06),

Bangalore, India. https://doi.org/10.1109/apsec.2006.41

[6] van der Aalst, W.M. (2002). Inheritance of dynamic

behaviour in UML. MOCA, 2: 105-120.

[7] Kautz, O., Rumpe, B. (2018). Semantic Differencing of

Activity Diagrams by a Translation into Finite Automata.

In MoDELS (Workshops), pp. 574-583.

[8] Almendros-Jiménez, J.M., Iribarne, L. (2007).

Describing use-case relationships with sequence

diagrams. The Computer Journal, 50(1): 116-128.

https://doi.org/10.1093/comjnl/bxl053

[9] Ibrahim, N., Ibrahim, R., Saringat, M.Z., Mansor, D.,

Herawan, T. (2011). Consistency rules between UML

use case and activity diagrams using logical approach.

International Journal of Software Engineering and its

Applications, 5(3): 119-134.

[10] Chanda, J., Kanjilal, A., Sengupta, S., Bhattacharya, S.

(2009). Traceability of requirements and consistency

verification of UML use case, activity and Class diagram:

A Formal approach. In 2009 Proceeding of International

Conference on Methods and Models in Computer

Science (ICM2CS), New Delhi, India, pp. 1-4.

https://doi.org/10.1109/icm2cs.2009.5397941

[11] Torre, D., Genero, M., Labiche, Y., Elaasar, M. (2023).

How consistency is handled in model-driven software

engineering and UML: an expert opinion survey.

Software Quality Journal, 31(1): 1-54.

https://doi.org/10.1007/s11219-022-09585-2

[12] Holzmann, G.J. (2004). The SPIN model checker: Primer

and reference manual. Reading: Addison-Wesley, 1003.

[13] Torre, D., Labiche, Y., Genero, M., Elaasar, M. (2018).

A systematic identification of consistency rules for UML

diagrams. Journal of Systems and Software, 144: 121-

142. https://doi.org/10.1016/j.jss.2018.06.029

[14] Lima, L., Tavares, A., Nogueira, S.C. (2020). A

framework for verifying deadlock and nondeterminism

in UML activity diagrams based on CSP. Science of

Computer Programming, 197: 102497.

https://doi.org/10.1016/j.scico.2020.102497

[15] Chen, X., Liu, Q., Mallet, F., Li, Q., Cai, S., Jin, Z. (2022).

Formally verifying consistency of sequence diagrams for

safety critical systems. Science of Computer

Programming, 216: 102777.

https://doi.org/10.1016/j.scico.2022.102777.

[16] Doostali, S., Babamir, S.M., Javani, M. (2023). Using a

process algebra interface for verification and validation

1546

of UML statecharts. Computer Standards & Interfaces,

86: 103739. https://doi.org/10.1016/j.csi.2023.103739

[17] Kalibatiene, D., Vasilecas, O., Dubauskaite, R. (2013).

Rule based approach for ensuring consistency in

different UML models. In Information Systems:

Development, Learning, Security: 6th SIGSAND/PLAIS

EuroSymposium 2013, Gdańsk, Poland, pp. 1-16.

https://doi.org/10.1007/978-3-642-40855-7_1

[18] Kautz, O., Rumpe, B., Wachtmeister, L. (2022).

Semantic differencing of use case diagrams. Journal of

Object Technology, 21(3): 1-14.

https://doi.org/10.5381/jot.2022.21.3.a5

[19] Sapna, P.G., Mohanty, H. (2007). Ensuring consistency

in relational repository of UML models. In 10th

International Conference on Information Technology

(ICIT 2007), Rourkela, India, pp. 217-222.

https://doi.org/10.1109/icit.2007.43

[20] Lee, R.Y. (2019). Object-Oriented Software Engineering

with UML: A Hands-on Approach (Computer Science,

Technology, and Applications). Nova Science Pub Inc.

[21] Stephens, M., Rosenberg, D. (2007). Use Case Driven

Object Modeling with UML-Theory and Practice.

Berkeley: Apress.

[22] Amor, S.O.B., Ali, M., Gargouri, F. (2011). Verification

of the consistency between use case and activity

diagrams: A step towards validation of user requirements.

In 13th International Conference on Enterprise

Information Systems, ICEIS 2011, Beijing, China, pp.

396-399. https://doi.org/10.5220/0003505503960399

[23] Stumptner, M., Schrefl, M. (2003). Behavior consistent

inheritance in UML. Conceptual Modeling-ER 2000,

Salt Lake City, Utah, USA, pp. 527–542.

https://doi.org/10.1007/3-540-45393-8_38

[24] Sundaramoorthy, S. (2022). UML Diagramming: A Case

Study Approach. Auerbach Publications.

https://doi.org/10.1201/9781003287124

APPENDIX

Figure 12. Message Sequence Chart from SPIN

Case Study SPIN Simulation result for 10000 steps. (Figure

12).

depth-limit (-u10000 steps) reached

#processes: 9

10000:proc 8 (inheritance_doctor:1)

iot_final_version.pml:251 (state 3)

10000: proc 7 (Doctor_blood:1)

iot_final_version.pml:201 (state 77)

10000: proc 6 (doctor_diab:1)

iot_final_version.pml:135 (state 110)

10000: proc 5 (Proc_blood:1)

iot_final_version.pml:118 (state 23)

10000: proc 4 (Proc_diabete:1)

iot_final_version.pml:90 (state 30)

10000: proc 3 (msensor_blood:1)

iot_final_version.pml:59 (state 3)

10000: proc 2 (msensor_diab:1)

iot_final_version.pml:51 (state 3)

10000: proc 1 (activate_sensor_b:1)

iot_final_version.pml:41 (state 5)

10000: proc 0 (activate_sensor:1)

iot_final_version.pml:37 (state 6)

9 processes created for 10000 steps.

1547

