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Load flow is an important tool for studying, designing, and analyzing power systems. 

It allows power system engineers to determine whether the operation and configuration 

of the power system is safe under varying loading conditions. It is necessary to model 

and simulate such a system in order to determine the power flow and losses. This 

research paper focuses on using numerical methods such as Newton Raphson and Gauss 

Seidel power flow equations for load flow analysis to calculate bus voltage magnitudes, 

phase angles, real and reactive power of each bus of an IEEE 9-bus test system. Newton 

Raphson’s computation offers fast, accurate convergence but demands complex 

implementation, whereas Gauss Siedel is simpler but converges slower with lower 

accuracy. The analysis was carried out using a MATLAB program. By manipulating 

variables such as power injections, voltage magnitudes, and phase angles, it solves 

nonlinear equations iteratively to establish stable operating points which aids in 

enhancing power system analysis. The line losses for the two methods are compared 

and the system's total load and generation power are also displayed. The consideration 

of line losses and assessment of total load generation is crucial for maintaining system 

efficiency, reliability and preventing voltage instability and equipment damage. The 

results are also used to generate a directed graph which shows the interconnected nature 

of the power system, aiding engineers in understanding power flow paths, identifying 

potential issues, and making informed decisions about system operations. The Newton 

Raphson method yields the lowest loss, with 4.585MW and 10.789Mvar. In 

comparison, the Gauss Seidel method achieved 4.809MW and 10.798Mvar. 
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1. INTRODUCTION

Power flow analysis, also known as load flow analysis, is 

the foundation of voltage-current system analysis and design. 

The study of power flow analysis is essential to understanding 

problems in voltage-current system operation and distribution. 

It is also a fundamental technique in electrical engineering that 

enables the planning, operation, and optimization of power 

systems by determining steady-state conditions, ensuring 

reliability, efficiency, and the integration of renewable sources, 

and facilitating informed decision-making for grid stability 

and resource utilization. The goal of such an analysis is to 

determine how safely the system can work, i.e., whether there 

are installation overloads or extremely high or extremely low 

voltages nodes. It also provides more information about all of 

the system's components, ensuring that each generator 

operates at its optimal performing level that consumer’s needs 

are achieved without overloading the facilities, and that plans 

for maintenance can be carried out without jeopardizing the 

system's network. Load flow investigations also provide a 

mathematical methodology for calculating different bus 

voltages, phase angles, real power (A) and reactive power flow 

(B) via various nodes under steady-state conditions [1]. It also

aids in determining the impact of a single generating station or

transmission path failure on the load system. Moreover, it

provides a balanced steady-state operation state of the load

system while ignoring a non-steady process system. This

means that any load flow problem's mathematical formulation

is a nonlinear algebraic equation system without differential

equations. As a result, using prepared algorithms and
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programs for load flow analysis is critical for performing 

recent load system analysis. 

Over the years, different methods have been used for 

calculating load flow. The use of these methods is primarily 

driven by the fundamental requirements of power flow 

calculation, which include its iteration properties, computing 

accuracy and storage requirements, as well as its convenience 

and flexibility of implementation [2-5]. 

The power flow problem is a system of nonlinear algebraic 

equations that must be solved mathematically. Its answer will 

almost always require some iteration. As a result, the most 

crucial condition for a load flow calculation method is reliable 

convergence. The dimension of load flow equations grows 

increasingly large as the size of the load system expands. Thus, 

the power flow analysis is becoming increasingly important 

for equations with such high dimensions. 

In this work, power flow analysis using the Newton 

Raphson method and Gauss-Seidel on an IEEE standard 9 bus 

test system is compared. The 9-bus test system is a simplified 

model of an electrical power network used for analyzing 

power system techniques. It comprises 9 buses, including a 

slack bus with known values, load buses with demand, a 

generator bus with both load and generation, and branches 

representing connections between buses. Loads and 

generation are specified at certain buses, and the system is 

used to study power flow, voltage profiles, and stability under 

various conditions. 

In the realm of power system analysis, methods for solving 

the power flow equations play a pivotal role in ensuring the 

efficient and reliable operation of electrical networks. Two 

widely employed techniques for solving these equations are 

the Newton-Raphson and Gauss-Seidel methods. This study 

aims to compare and evaluate the performance of these 

methods in the context of power flow analysis. By 

systematically assessing their convergence characteristics, 

computational efficiency, and accuracy, we seek to gain 

insights into their respective strengths and limitations. This 

study compares the Newton-Raphson and Gauss-Seidel 

methods for power flow analysis on the IEEE 9-bus test 

system, focusing on convergence, accuracy, and efficiency. 

The simulation setup involves replicating the system, 

implementing methods with defined criteria, and running 

analyses. Through this analysis, we aim to provide valuable 

guidance for selecting the most suitable method based on 

specific application scenarios, contributing to the 

advancement of power system analysis techniques and the 

optimization of electrical grid operation. 

 

 

2. BUS DEFINITIONS 

 

The node that connects more lines, more loads, and more 

generators is termed BUS. In a load system, every bus is 

accompanied with the following parameters: |𝑉| , voltage 

phase angle (<), real power (A), and reactive power (B) in 

which two parameters are known and the other must be 

determined by solving equation [3]. The buses are categorize 

based on the parameters specified, as shown in Table 1. 

 

2.1 Load bus (AB) 

 

The real power A and reactive power B of the load bus are 

specified, while the |V| and phase angle(<) of the voltage are 

not specified [6, 7]. The bus voltage is determined using power 

flow analysis. Voltage on the load bus can vary within certain 

boundaries, say 5%. The reason why the bus voltage is 

insignificant and therefore not mentioned. This bus is in 

charge of distributing consumer power. 

 

Table 1. BUS type 

 

Type Known Parameter 
Unknown 

Parameter 

Load BUS A, B (Real and Reactive Power) |V|, ∠ 

Generator BUS |V|, A B, ∠ 

Swing BUS |V|, ∠ B, A 

 

2.2 Voltage controlled or generator bus 

 

Swing or Reference Bus are other names for Slack Bus. This 

in reality does not come to play but it is believed to account 

for losses that arises when transmitting power. In the power 

system, real power is specified for only two buses: the Load 

Bus and the Generator Bus. Because the real power delivered 

by Generator Bus differs from the real power consumed by 

Load Bus, the difference gives the power loss. This loss is then 

calculated after the load flow problem has been solved. To 

compensate for the loss, an additional generator bus is 

considered, with |V|, and phase angle specified, and real and 

reactive power to be solved. Some additional buses that are 

considered in performing load flow analysis. 

 

2.3 Isolated (or dummy) bus 

 

An isolated bus is used to represent an unconnected or 

isolated portion of the power system. It is used when there are 

areas in the network where there are no direct connections to 

other buses. 

 

2.4 Slackless (or zero injection) bus 

 

In certain situations, such as load flow analysis with 

constant power loads, a slackless bus can be used to represent 

the system's behavior more accurately. This type of bus helps 

avoid some of the inaccuracies that can arise when using a 

traditional slack bus. The Bus data table for the IEEE 3-bus 

system is presented in Table 2. 

 

Table 2. Bus data table for the IEEE 3-bus system 

 

Bus 

Number 
Bus 

Type 

Voltage 

Magnitude 

(pu) 

Voltage 

Angle 

(degrees) 

Active 

Power 

(MW) 

Reactive 

Power 

(MVAR) 
1 Swing 1.0 0 Adjustable Adjustable 
2 PV 1.05 Adjustable 1.0 Adjustable 
3 PQ Adjustable Adjustable 0.8 0.4 

 

The IEEE 3-bus system's bus data table outlines essential 

characteristics for each of the three buses. It includes bus 

numbers, types (swing, PV, PQ), voltage magnitudes, angles, 

and power injections/consumptions (active and reactive). The 

swing bus has adjustable power injections for stability, the PV 

bus maintains a specified active power and adjusts reactive 

power, and the PQ bus adjusts voltage to balance active and 

reactive power consumption. This data forms the foundation 

for load flow analysis, a process to calculate voltages and 

ensure power system stability. 

In the Newton-Raphson method, initial voltage guesses are 

iteratively adjusted using the Jacobian matrix and mismatch 
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equations to achieve power balance and stability. The Gauss-

Seidel method updates voltage estimates sequentially, 

considering neighboring buses' values, until convergence is 

reached. Both methods ensure that bus voltage magnitudes and 

angles meet power balance requirements based on the given 

bus data in the system. 

3. METHOD OF POWER FLOW ANALYSIS

Understanding the analysis in the solution of nonlinear 

algebraic simultaneous equation serves as the foundation in 

solving nonlinear equations in digital power system flow 

analysis [3]. The main idea in power flow study is to get the 

X-bus admittance matrix using the transmission and input data

transformer. The system’s equation for a power with an X bus

is:

𝐼 = 𝑋BUS𝑉 (1) 

In a generalized pattern for n number of bus: 

𝐼𝑖 = 𝑉𝑖 ∑ 𝑋𝑖𝑗
𝑛
𝑗=0 − ∑ 𝑋𝑖𝑗𝑉𝑗  

𝑛
𝑗=1  For i=1, 2, 3… n (2) 

At BUS i, real and reactive power is: 

𝐴𝑖 + 𝐵𝑖 = 𝐼𝑖
∗𝑉𝑖 (3) 

Or 

𝐴i+𝐵i

Vi
∗ =Ii (4) 

Substituting for I in terms of Ai & Bi in the equation gives: 

𝐴i + 𝐵i

Vi
∗ = 𝑉𝑖 ∑𝑋𝑖𝑗

𝑛

𝑗=0

− ∑𝑋𝑖𝑗𝑉𝑗

𝑛

𝑗=1

(5) 

The mathematical formulation of the load flow problem, 

derived from the above equation, yields a set of non-linear 

algebraic equations that must be solved iteratively. As a result, 

the Newton Raphson and Gauss Seidel solution methods must 

be reviewed. 

3.1 Newton-Raphson method 

The method described above was named after Isaac Newton 

and Joseph Raphson. This numerical method can be traced 

back to the 1960s [4]. Taylor's series is used in this method to 

approximate a series of nonlinear algebraic equations to a 

series of linear algebraic equations. This method has a more 

powerful convergence characteristic than any other alternative 

process and has also proven reliable because, unlike any other 

iterative process, it can solve a case of divergence [6]. The 

number of iterations needed to reach a solution is unaffected 

by the size of the system, making it more robust and 

completely efficient. 

Eq. (1) gives the current flowing into the bus I for a notable 

bus system. Thus, the bus admittance matrix, is as follows: 

𝐼𝑖 = ∑𝑋𝑖𝑗𝑉𝑗

𝑛

𝑗=1

(6) 

Bus i is included in the above equation as j. When we 

express this equation in polar form, we get: 

𝐼𝑖 = ∑|𝑋𝑖𝑗|

𝑛

𝑗=0

|𝑉𝑗|∠𝜃𝑖𝑗 + 𝛿𝑗 (7) 

(8) 

Then complex load at bus i is: 

𝐴𝑖 − 𝑗𝐵𝑖 = 𝑉𝑖
∗𝐼𝑖

Substituting for Ii in Eq. (7) from Eq. (8), we have 

𝐴𝑖 − 𝑗𝐵𝑖 = |𝑉𝑖|∠ − 𝛿𝑖 ∑|𝑋𝑖𝑗|

𝑛

𝑗=1

|𝑉𝑗|∠𝜃𝑖𝑗 + 𝛿𝑗 (9) 

Separating the real and imaginary parts, 

𝐴𝑖 = ∑|𝑉𝑖||𝑉𝑗||𝑋𝑖𝑗| cos(𝜃𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗)

𝑛

𝑗=1

(10) 

𝐵𝑖 = ∑|𝑉𝑖||𝑉𝑗||𝑋𝑖𝑗| sin(𝜃𝑖𝑗 − 𝛿𝑖 + 𝛿𝑗)

𝑛

𝑗=1

(11) 

Eqs. (10) and (11) form a set of nonlinear algebraic 

equations in terms of |V| per unit and in radians. For each load 

bus, use the two equations from Eqs. (10) and (11). Also, the 

controlled-voltage bus is solved by Eq. (10). The following set 

of linear equations is derived by enlarging Eqs. (10) and (11) 

in Taylor's series about the initial guess and leaving out all 

terms in higher order. 

[

∆𝐴2
(𝑘)

.

.

∆𝐴𝑛
(𝑘)

∆𝐵2
(𝑘)

.

.

∆𝐵𝑛
(𝑘)

]

 

=

[

(

𝜕𝐴2
(𝑘)

𝜕𝛿2

⋯
𝜕𝐴2

(𝑘)

𝜕𝛿𝑛

⋮ ⋱ ⋮

𝜕𝐴𝑛
(𝑘)

𝜕𝛿2

⋯
𝜕𝐴𝑛

(𝑘)

𝜕𝛿𝑛 ) (

𝜕𝐴2
(𝑘)

𝜕|𝑉2|
⋯

𝜕𝐴2
(𝑘)

𝜕|𝑉𝑛|
⋮ ⋱ ⋮

𝜕𝐴𝑛
(𝑘)

𝜕|𝑉2|
⋯

𝜕𝐴2
(𝑘)

𝜕|𝑉𝑛|)

(

𝜕𝐵2
(𝑘)

𝜕𝛿2

⋯
𝜕𝐵2

(𝑘)

𝜕𝛿𝑛

⋮ ⋱ ⋮

𝜕𝐵𝑛
(𝑘)

𝜕𝛿2

⋯
𝜕𝐵𝑛

(𝑘)

𝜕𝛿𝑛 ) (

𝜕𝐵2
(𝑘)

𝜕|𝑉2|
⋯

𝜕𝐵2
(𝑘)

𝜕|𝑉𝑛|
⋮ ⋱ ⋮

𝜕𝐵2
(𝑘)

𝜕|𝑉2|
⋯

𝜕𝐵𝑛
(𝑘)

𝜕|𝑉𝑛|)]

[

∆𝛿2
(𝑘)

.

.

∆𝛿𝑛
(𝑘)

∆|𝑉2
(𝑘)

|
.
.

∆|𝑉𝑛
(𝑘)

|]

(12) 

Because the swing bus variable |𝑉| and < are already 
known, they are omitted from Eq. (12). After expressing the 

partial derivatives of Eqs. (10) and (11) that give a linearized 

relationship between small changes in |𝑉| and <, the element 
of the Jacobian matrix is derived. In matrix form, the equation 

is as follows: 

[
∆𝐴
∆𝐵

] = [
𝐽1 𝐽2
𝐽3 𝐽4

] [
∆𝛿
∆|𝑉|

] (13) 

where, J1 … J4 are the elements of the matrix. 
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The terms ∆𝐴𝑖
(𝑘)

and ∆𝐵𝑖
(𝑘)

are the difference between the

scheduled and calculated values. This is called the power 

residuals, given by 

∆𝐴𝑖
(𝑘)

= 𝐴𝑖
𝑠𝑐ℎ − 𝐴𝑖

(𝑘)
(14) 

∆𝐵𝑖
(𝑘)

= 𝐵𝑖
𝑠𝑐ℎ − 𝐵𝑖

(𝑘)
(15) 

The new estimates for bus voltages are: 

𝛿(𝑘+1) = 𝛿𝑖
(𝑘)

+ ∆𝛿𝑖
(𝑘) (16) 

|𝑉𝑖
(𝑘+1)

| = |𝑉𝑖
(𝑘)

| + ∆|𝑉𝑖
(𝑘)

| (17) 

The proposed Newton-Raphson method procedure for 

power flow is presented as follows: 

(1) For load buses, where 𝐴𝑖
𝑠𝑐ℎ  and 𝐵𝑖

𝑠𝑐ℎ  are known,

magnitudes of the voltage and phase angles are set the same as 

the swing bus values, or 1.0 and 0.0, i.e., |𝑉𝑖
0| = 1.0 and 𝛿𝑖

(0)
=

0.0. For voltage-regulated buses, where |𝑉𝑖|  and 𝑃𝑖
𝑠𝑐ℎ  are

known, phase angles are set the same as the swing bus angle, 

or 0 i.e., 𝛿𝑖
(0)

= 0.

(2) For load buses, 𝐴𝑖
(𝑘)

and 𝐵𝑖
(𝑘)

are solved by (10) and (11).

While ∆𝐴𝑖
(𝑘)

 and ∆𝐵𝑖
(𝑘)

are solved by (14) and (15)

respectively. 

(3) Controlled-voltage buses, 𝐴𝑖
(𝑘)

and ∆𝐴𝑖
(𝑘)

 are solved

using Eqs. (10) and (11) respectively. 

(4) Elements of the Jacobian matrix (J1, J2, J3, and J4) are

solved. 

(5) The linear simultaneous equation in Eq. (13) is

calculated directly by optimally ordered triangular 

factorization and Gaussian elimination. 

(6) The new |𝑉(𝑘+1)| and phase angles are calculated using

Eqs. (16) and (17). 

(7) The procedure is repeated until the residuals ∆𝐴𝑖
(𝑘)

 and

∆𝐵𝑖
(𝑘)

 are less than the specified accuracy, i.e.,

|∆𝐴𝑖
(𝑘)

| ≤ 𝜖 (18) 

|∆𝐵𝑖
(𝑘)

| ≤ 𝜖 (19) 

3.2 Gauss seidel method 

This is a method for solving a set of nonlinear algebraic 

equations that is iterative [7]. The method employs an initial 

guess for the value of voltage to get a derived value of a 

specific parameter. A derived value replaces the initial guess 

value. After that, the process is repeated until the convergence 

of the iteration [8-12]. The initial guess has a large effect on 

the convergence time. However, the method has a poor 

convergence characteristic [8, 13-16]. 

This is an iterative method used to solve (5) for the value of 

𝑉𝑖, and the iterative series becomes:

𝑉𝑖
(𝑘+1)

=

𝐴𝑖
𝑠𝑐ℎ − 𝑗𝐵𝑖

𝑠𝑐ℎ

𝑉𝑖
∗ + ∑𝑋𝑖𝑗𝑉𝑗

(𝑘)

∑𝑋𝑖𝑗

𝑗 ≠ 𝑖 
(20) 

Kirchhoff's Current Law suggested that current entering the 

bus will be positive. Thus, for buses where real and reactive 

powers are inserted into the bus, such as generator buses, 𝐴𝑖
𝑠𝑐ℎ

and 𝐵𝑖
𝑠𝑐ℎ are positive. For load buses where real and reactive

powers are flowing out from the bus, 𝐴𝑖
𝑠𝑐ℎ  and 𝐵𝑖

𝑠𝑐ℎ  are

negative. Solving the power flow equation in (5) for 𝐴𝑖 and 𝐵𝑖 ,

we have: 

𝐴𝑖
(𝑘+1)

= ℜ{𝑉𝑖
∗(𝑘)

[𝑉𝑖
(𝑘)

∑𝑋𝑖𝑗 − ∑𝑋𝑖𝑗𝑉𝑗
(𝑘)

𝑛

𝑗=1

𝑛

𝑗=0

]} 𝑗 ≠ 𝑖 (21) 

𝐵𝑖
(𝑘+1)

= −ℑ{𝑉𝑖
∗(𝑘)

[𝑉𝑖
(𝑘)

∑𝑋𝑖𝑗 − ∑𝑋𝑖𝑗𝑉𝑗
(𝑘)

𝑛

𝑗=1

𝑛

𝑗=0

]} 𝑗 ≠ 𝑖 (22) 

The power flow expression is typically expressed in terms 

of the bus admittance matrix elements. Since the off-diagonal 

elements of the bus admittance matrix, 𝑋𝑏𝑢𝑠 , shown by

uppercase letters, are 𝑋𝑖𝑗=−𝑋𝑖𝑗 , and the diagonal 𝑋𝑖𝑖 = ∑𝑋𝑖𝑗 ,

Eq. (20) gives 

𝑉𝑖
(𝑘+1)

=

𝐴𝑖
𝑠𝑐ℎ − 𝑗𝐵𝑖

𝑠𝑐ℎ

𝑉𝑖
∗ + ∑ 𝑋𝑖𝑗𝑉𝑗

(𝑘)
𝑗≠𝑖

𝑋𝑖𝑖

𝑗 ≠ 𝑖 

(23) 

𝐴𝑖
(𝑘+1)

= ℜ{𝑉𝑖
∗(𝑘)

[𝑉𝑖
(𝑘)

𝑋𝑖𝑖 + ∑ 𝑋𝑖𝑗𝑉𝑖
(𝑘)

𝑛

𝑗=1
]} 

𝑗 ≠ 𝑖 

(24) 

𝐵𝑖
(𝑘+1)

= −ℑ{𝑉𝑖
∗(𝑘)

[𝑉𝑖
(𝑘)

𝑋𝑖𝑖 + ∑𝑋𝑖𝑗𝑉𝑗
(𝑘)

𝑛

𝑗=1

]} 

𝑗 ≠ 𝑖 

(25) 

4. RESULTS AND DISCUSSION

4.1 Results 

The IEEE library is used to obtain the input data, which 

consists of the target bus system's line and load data. For IEEE 

9 test cases, the simulation results from the NR and GS 

computational methods, as well as the line flow and losses on 

each transmission line in the system, are obtained using 

MATLAB. 

Figure 1. One line diagram for IEEE 9 bus system 
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The load and line data used for the MATLAB simulation 

were obtained from the IEEE library and are shown in Tables 

3 and 4. The base MVA, iteration value (accuracy), and 

maximum number of iterations are all defined. Figure 1 

depicts a one-line diagram of the IEEE 9-bus System. 

Tables 5 and 6 show the computed results from the 

numerical methods. Using the Newton Raphson and Gauss 

Seidel approaches, the obtained results completely solve for 

all unknown values for each bus in the system. Tables 4 and 5 

show the simulation results for Newton Raphson and Gauss 

Seidel, respectively. The line flows and line losses calculated 

using the Newton Raphson and Gauss Seidel methods are 

shown in Tables 6 and 7. The directed graph of the obtained 

results is shown in Figures 2 and 3. 

Table 3. IEEE 9 bus system load data 

Load Data 

Voltage Load Generation 

Bus Type of Bus |V| (P.U) δ(θ) A (M.V) B (Mvar) A (MW) B (Mvar) Bmin Bmax 

1 1 1.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 2 1.025 0.000 0.000 0.000 163.000 6.700 -99.000 99.000

3 2 1.025 0.000 0.000 0.000 85.000 -10.900 0.000 99.000 

4 0 1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

5 0 1.0 0.000 125.000 50.000 0.000 0.000 0.000 0.000 

6 0 1.0 0.000 90.000 30.000 0.000 0.000 0000 0.000 

7 0 1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

8 0 1.0 0.000 100.000 35.000 0.000 0.000 0.000 0.000 

9 0 1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 4. IEEE 9-bus system line data 

Line Data 

Bus No. Bus No. R, (PU) X, (PU) ½ B, PU Transformer Tap 

1 4 0.0000 0.0576 0.000 1 

4 5 0.0100 0.0850 0.0880 1 

4 6 0.0170 0.0920 0.0790 1 

6 9 0.0390 0.1700 0.0179 1 

5 7 0.0320 0.1610 0.0153 1 

9 3 0.0000 0.0586 0.0000 1 

7 2 0.0000 0.0625 0.0000 1 

9 8 0.0119 0.1008 0.1045 1 

7 8 0.0085 0.0720 0.0745 1 

Table 5. Simulation result for IEEE 9 bus system using Newton Raphson load flow solution 

Bus 

No. 

Voltage Mag. 

(pu.) 

Angle 

Degree 

Load Generation 
Injected Mvar 

MW Mvar MW Mvar 

1 1.030 0.000 0.000 0.000 71.945 50.044 0.000 

2 1.019 -9.477 0.000 0.000 163.000 27.796 0.000 

3 1.012 -4.789 0.000 0.000 85.000 12.480 0.000 

4 1.027 -2.254 0.000 0.000 0.000 0.000 0.000 

5 1.050 -4.037 125.000 50.000 0.000 0.000 0.000 

6 1.020 -3.674 90.000 30.000 0.000 0.000 0.000 

7 1.021 3.846 0.000 0.000 0.000 0.000 0.000 

8 1.030 0.780 100.000 35.000 0.000 0.000 0.000 

9 1.016 2.055 0.000 0.000 0.000 0.000 0.000 

Total 315.000 115.000 319.945 90.321 0.000 

Table 6. Simulation result for IEEE 9 bus system using Gauss Seidel 

Bus 

No. 

Voltage Mag. 

(pu.) 

Angle 

Degree 

Load Generation 
Injected Mvar 

MW Mvar MW Mvar 

1 1.040 0.000 0.000 0.000 75.279 49.698 0.000 

2 1.025 9.193 0.000 0.000 163.000 27.548 0.000 

3 1.025 4.544 0.000 0.000 85.000 12.364 0.000 

4 1.013 -2.343 0.000 0.000 0.000 0.000 0.000 

5 0.0974 -4.188 125.000 50.000 0.000 0.000 0.000 

6 0.989 -3.813 90.000 30.000 0.000 0.000 0.000 

7 1.013 3.594 0.000 0.000 0.000 0.000 0.000 

8 1.002 0.538 100.000 35.000 0.000 0.000 0.000 

9 1.019 1.838 0.000 0.000 0.000 0.000 0.000 

Total 315.000 115.000 323.279 89.610 0.000 
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The IEEE 9 bus system, as shown in Table 3, consists of 

one swing bus, six load buses connected to a load, and two 

generator buses connected to a generator. 

The IEEE 9 bus system consists of nine line data as 

presented in Table 4 and Table 5, which shows the values for 

resistance, reactance, half susceptance per unit and 

transformer tap of each transmission line connected together. 

After obtaining the required parameters through the load 

flow solutions provided by the NR and GS metho das 

presented in Tables 5 and 6. The line flows and losses can be 

computed as presented in Tables 7 and 8. 

Figure 2. A directed graph plot of the system obtained from Newton Raphson’s solution (1) 

Figure 3. A directed graph plot of the system obtained from Newton Raphson’s solution  (2) 
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Table 7. Line flow and losses of IEEE 9-bus system obtained 

from Newton Raphson 

 
Line Flow and Losses 

Line Line Flow Line Loss 

From Bus 

(f) 

To Bus 

(t) 
A (MW) B (Mvar) MW Mvar 

1 4 71.945 50.044 0.000 4.090 

4 5 41.086 33.095 0.000 -14.514 

4 6 30.859 12.859 0.231 -14.590 

6 9 -59.371 -2.551 1.405 2.516 

5 7 -84.251 -2.391 2.394 9.023 

9 3 -85.000 -8.363 0.000 4.117 

7 2 -163.000 -11.531 0.000 16.265 

9 8 24.223 3.296 0.090 -20.589 

7 8 76.355 0.118 0.488 -10.997 

Total 

Loss 
   4.608 -24.679 

 

Table 8. Line flow and losses of IEEE 9-bus system obtained 

from Gauss Seidel 

 
Line Flow and Losses 

Line Line Flow Line Loss 

From Bus 

(f) 

To Bus 

(t) 
A (MW) B (Mvar) MW Mvar 

1 4 74.945 49.749 0.000 4.298 

4 5 42.319 32.892 0.346 -14.454 

4 6 31.806 12.714 0.239 -14.549 

6 9 -58.618 -2.697 1.369 2.358 

5 7 -83.248 -2.601 2.336 8.730 

9 3 -84.162 -8.344 0.000 4.036 

7 2 -162.088 -11.499 0.000 16.082 

9 8 24.662 3.249 0.092 -20.571 

7 8 76.139 0.183 0.485 -11.022 

Total Loss    4.867 -25.092 

 

4.1.1 Comparison of the computational time, maximum power 

mismatch and the iteration number of the two methods 

Table 9 presents the comparison of computational time, 

maximum power mismatch, and iteration number. 

 

Table 9. Comparison of computational time, maximum 

power mismatch and iteration number 

 
Newton Raphson Gauss Siedlel 

Computatio

nal Time (s) 

Maximu

m power 

mismatc

h (MW) 

Iteratio

n 

Numbe

r 

Computatio

nal Time (s) 

Maximu

m power 

mismatc

h (MW) 

Iteratio

n 

Numbe

r 

4𝑥10−3 4 7 3𝑥10−3 
0.02045

82 
11 

 

4.1.2 Directed graph 

This section presents the directed graph of the 9-bus system 

resolved from the NR and GS methods. It shows the node 

voltages and phase angle on each bus as well the real and 

reactive power loss on each transmission line. The pink dots 

represent the buses. The index of the bus is shown beside it. 

The lines represent the transmission line. The arrows represent 

the loads. 

 

4.2 Discussion 

 

4.2.1 Simulation results 

The solutions to some required unknown variables obtained 

after using both load flow methods are shown in Tables 5 and 

6 for the NR and GS methods, respectively. When the values 

from the two tables are compared, there are minor differences 

between them. This difference isn't all that significant. This 

demonstrates that the two methods produce roughly 

comparable results (as shown from the total load and 

generation power). 

 

 
 

Figure 4. Multiple graphs of the voltage magnitude, load 

power and generation power on each bus for the IEEE 9 bus 

system obtained from Newton Raphson’s solution 

 

 
 

Figure 5. Graph of the voltage magnitude, load power and 

generation power on each bus for the IEEE 9 bus system 

obtained from Newton Raphson’s solution 
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Figure 4 depicts the generation and load power, as well as 

the voltage magnitude on each bus, as calculated using 

Newton Raphson's power flow solution. Figure 5 depicts the 

same plot, but for the Gauss Seidel's power flow solution. The 

two figures show that the voltage magnitude in bus 5 of the GS 

solution is significantly lower or attenuated when compared to 

the NS solution. 

4.2.2 Line flow and line losses 

In the domain of power system analysis, understanding how 

electricity moves and where energy is lost in a power system 

is essential for keeping things running smoothly. Using the 

Gauss-siedel and Newton-Raphson methods, the line flows 

and losses are derived from the solution data yielded from the 

load flow solutions of each of these numerical methods. 

By using the results from the power analysis, the line 

current flowing in different parts of the system can be 

determined using the famous Ohm’s law equation: 

I =
S

V
(26) 

where, 

I-Line Current,

V-Voltage Magnitude,

S-Apparent Power.

The apparent power underscores the interplay of electrical

magnitudes. 

𝑆 = 𝐴 + 𝑗𝐵 (27) 

By utilizing the voltage magnitudes and angles from the 

result of power flow analysis from the two methods, line 

currents are carefully calculated iteratively for each 

transmission line. 

Line power flows show how electricity is moving between 

places. It is a pivotal metric for line performance. To calculate 

this, we look at the voltage and the current, and do some math 

to see how much power is moving around. With this 

information, we can see which parts of the system are busy and 

which ones might need attention. 

The magnitude of line power flow is established as the 

product of the sending-end voltage, the conjugate of the line 

current: 

S = Vi ∗ I∗ (28) 

By applying this equation in conjunction with voltage 

magnitudes and calculated line currents, the real-time 

assessment of power propagation becomes discernible for 

every transmission line. 

Incorporating the concept of power losses adds depth to 

power system evaluations. Real and reactive power losses 

manifest as outcomes of line current interaction with line 

resistances and reactances, respectively by employing the 

following expressions: 

A_loss = I2 ∗ R (29) 

B_loss = I2 ∗X (30) 

where, 

I-Line Current, R-Resistance of transmission line, X-

Reactance of transmission line, A_loss-Real Power Loss, 

B_loss-Reactive Power Loss. 

By conducting this analysis, a more profound 

comprehension of energy dissipation arises, facilitating the 

efficient administration and enhancement of the power 

distribution system. 

The knowledge acquired from computing line flows and 

losses through the application of the Newton-Raphson and 

Gauss-Seidel techniques has significant implications for both 

power system analysis and operation. Through a 

comprehensive understanding of current distribution, apparent 

power, and energy losses, engineers and analysis can 

anticipate congestion points in advance, optimize power 

transmission processes, and improve network stability. 

Tables 6 and 7 show the line flow and losses on each bus 

system line obtained from the nr and gs power flow solutions. 

Figure 4 depicts the line loss resulting from the ns and gs 

solutions. The nr method clearly shows that line 2 of the bus 

system (the line connecting buses 4 and 5) has a significant 

drop when compared to the gs method. 

4.2.3 Tolerance 

In the realm of power system analysis utilizing numerical 

methods such as Newton-Raphson and Gauss-Seidel, 

convergence refers to the attainment of a stable and precise 

solution. The determination of convergence hinges upon 

meeting specific criteria, which are evaluated by assessing 

tolerance-a pivotal parameter that significantly influences 

these criteria. 

The Newton-Raphson method uses iterative corrections to 

improve the accuracy of calculated values of bus voltages and 

angles. Accuracy is influenced by initial guesses and 

convergence criteria set for maximum change in bus voltage 

magnitudes and angles. Lower tolerance values result in higher 

accuracy, but setting it too low may increase computational 

time without significant improvement. 

Similar to the Newton-Raphson procedure, precision in 

Gauss-Seidel is impacted by the convergence criteria. 

Decreasing tolerance values result in more precise solutions, 

but akin to Newton-Raphson, excessively low tolerance 

settings may cause excessive computational time without 

significant improvements in accuracy. 

The simulation's tolerance iteration value was set to 0.001. 

This means that using a high tolerance value for such analysis 

increased the accuracy of the solution. 

4.2.4 Computational time 

Table 8 shows the computation time for load flow solutions 

using a selected iteration value of 0.001 for the NR and GS 

methods. For the 9-bus system, the computational time for the 

GS and NR methods is very similar. 

4.2.5 Convergence 

Convergence is used to calculate how quickly a power flow 

arrives at its solution. The rate of convergence is calculated by 

graphing the maximum power mismatch versus the number of 

iterations. 

Newton-Raphson convergence is based on the max change 

in voltage magnitudes/angles. If the change is below tolerance, 

it has converged. A smaller tolerance means tighter 

convergence, more iterations, and better accuracy. 
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Gauss-Seidel checks convergence by comparing new and 

old voltage values. Lower tolerance means stricter 

convergence but longer computation. 

When compared to the Newton-Raphson method, the 

Gauss-Seidel method has a slower convergence rate. Newton 

Raphson has the fastest convergence rate. The results of the 

line graph of the line flow and line loss in the different lines of 

the IEEE 9-bus system are presented in Figure 6. 

Figure 6. Line graph of the line flow and line loss in the 

different lines of the IEEE 9-bus system 

5. CONCLUSION

Both Newton-Raphson and Gauss-Seidel methods have 

been extensively studied for their convergence behavior in 

load flow analysis. Understanding convergence behavior has 

led to more robust and reliable power system analysis tools. 

Investigations have shown that both methods can provide 

accurate results when applied correctly. However, the choice 

of method, initial conditions, and convergence criteria can 

impact accuracy. 

Comparisons of the Newton-Raphson and Gauss-Seidel 

methods have also revealed the differences in computational 

efficiency. Gauss-Seidel is simpler but may require more 

iterations, while Newton-Raphson can converge faster but 

involves more complex calculations. These findings have 

guided the selection of methods based on the size and 

complexity of the power system. 

The study found that computational/numerical methods can 

be used to calculate line flows and power losses in a power 

system. These methods derive the voltage magnitude, phasal 

angles, real and reactive power of the system's buses. The load 

flow analysis methods of Gauss Seidel and Newton Raphson 

were used to analyze an IEEE 9-bus test system, with results 

showing only slight differences between the total line flow and 

losses obtained from the two iterative solutions. A complete 

load flow analysis was performed on an IEEE standard 9-bus 

system using both computational methods. 
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