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This research combines the COVID-19 and BCG vaccination subpopulations to 

examine the spread of COVID-19 coinfection and tuberculosis (TB) using a 

compartmental mathematical model. The model analysis yields the non-endemic and 

endemic equilibrium points in addition to the basic reproduction number. The 

vaccination variable in the model can reduce the incidence of COVID-19, TB, and 

coinfection. A sensitivity analysis using elasticity index is conducted and the result is 

that the natural death rate parameter is the most influential in relation to the accelerated 

spread of COVID-19 co-infection with tuberculosis. Additionally, we conduct a time-

dependent sensitivity analysis to determine how varying parameter values influence 

each subpopulation. By using this technique, we calculate the sensitivity index after 

reaching equilibrium of several groups of parameters, and the result is that re-

susceptible, immunity rate, symptomatic transition rate of TB, COVID-19 recovery 

rate, and natural death rate are the most influential for each group of parameters on the 

dynamics of each subpopulation. 
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1. INTRODUCTION

COVID-19 is an infectious disease caused by the SARS-

CoV-2 virus that first appeared in Wuhan, China, in December 

2019 and then spread to Indonesia on March 2, 2020 [1]. For 

more than three years, the COVID-19 epidemic has been 

ongoing. As of June 29, 2023, the disease had claimed the lives 

of 161,871 people in Indonesia and 6951677 people globally. 

The Indonesian government declared that the country is free 

of COVID-19 on June 29, 2023. Co-infection with 

tuberculosis, heart disease, high blood pressure, HIV/AIDS, 

asthma, cholera, and diabetes causes the majority of COVID-

19 case deaths [1, 2]. 

COVID-19 has been examined by scientists from all around 

the world, and researchers in the field of mathematics are 

helping to control the disease. Mathematicians collaborate 

with health professionals to combat the spread of the COVID-

19 infectious disease [1, 3]. To combat the spread of COVID-

19 in the Chinese metropolis of Wuhan, mathematical models 

are being deployed [3]. The basic reproduction number on the 

dynamics of COVID-19 distribution is analyzed to determine 

if the spread is rising or decreasing in Nigeria [4, 5]. If the 

fundamental reproduction number is smaller than one, the 

dynamic model of COVID-19 in China with recruitment 

growth rate logistics spread internationally, and an 

asymptotically stable non-endemic equilibrium point [6]. The 

COVID-19 mathematical model study also took into account 

comorbid and non-comorbid [7], symptomatic and 

asymptomatic disorders in Indonesia [8, 9]. 

The omicron form of COVID-19 first appeared in Africa in 

2022. This variation spreads more quickly than the alpha, beta, 

and delta versions [1]. To maximize viral control, the 

parameters of the omicron variant dispersion model were 

studied [10]. Strategic interventions are carried out to restrict 

the spread of COVID-19 by researching preventative and 

therapy criteria [11]. 

Vaccination against COVID-19 is effective in preventing its 

spread since it increases antibodies, lowers the likelihood of 

transmission, and lessens the virus's significant impact [1]. In 

Indonesia, mathematical models for the transmission of 

COVID-19 that take into consideration the vaccine 

compartment for the Susceptible-Exposed-Infected-

Recovered (SEIR) type have been examined [12, 13], by 

incorporating treatment scenarios [14], or by taking 

immigration characteristics [15]. Efforts to reduce the number 

of people who tested positive for COVID-19 and increase the 

number of people who recovered were given preventive 

controls such as keeping a safe distance, washing hands before 

and after activities, independent isolation, care, medication, 

eating multivitamins, and living a healthy lifestyle [1]. 

Optimal prevention, treatment, and isolation control can 

reduce the frequency of infections and enhance the number of 

recoveries in COVID-19 patients [16, 17]. 

COVID-19 spreads by droplets and free air in a manner 

similar to tuberculosis [1]. Researchers have extensively 

explored the use of mathematical models to combat 
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tuberculosis spread, notably authors in references [18, 19], 

with a focus on immunological variables, demographics, and 

the transportation infrastructure in Moscow, Russia. The 

research [20] reviewed the criteria influencing the growth in 

dissemination and decrease in the number of infected 

individuals in the Congo. The research [21] also investigated 

model studies with respect to children's and adult 

compartments using fractional models. Several articles [17, 22, 

23] investigated the stability of the equilibrium point and the 

basic reproduction number in models of the spread of 

tuberculosis types SIR, SEIR, BSEIR, and SVEIRE, with B 

representing the BCG vaccine compartment. 

BCG immunization is helpful in preventing tuberculosis 

infection [2]. Modeling analysis of tuberculosis spread in 

relation to vaccination compartment has been investigated in 

studies [17, 24]. Individuals infected with tuberculosis who are 

not disciplined in taking anti-tuberculosis drugs may die or 

develop resistance to anti-tuberculosis drugs [2, 25]. vaccine 

control and treatment are provided to efforts to enhance 

immunity, tuberculosis dynamics models [26], and vaccine 

control and treatment [27]. 

Individuals infected with concomitant COVID-19 and 

infectious diseases have a higher risk of dying sooner than 

those who do not have comorbid diseases [1]. The 

effectiveness of treating COVID-19 comorbidities with 

rubella was investigated [28], pneumonia [29], and dengue 

fever [30]. Papers [31, 32] investigated the stability of the 

equilibrium point and model parameters for the dynamics of 

tuberculosis co-infection with HIV/AIDS. The paper [33] 

discussed efforts to accelerate recovery from co-infection with 

COVID-19 and cholera by providing optimal treatment 

control for each disease. 

Because the pattern of COVID-19 transmission is nearly 

identical to that of tuberculosis, persons afflicted with 

tuberculosis are more easily infected with COVID-19 than 

individuals who are not infected with tuberculosis [1]. Several 

researchers, notably, Trajman et al. [34] have analyzed models 

of the propagation of COVID-19 co-infection with 

tuberculosis to establish the characteristics that have a major 

effect on the disease's transmission. Using Pearson's 

coefficients, the COVID-19 co-infection model for omicron 

and delta variants with HIV and diabetes, as well as the 

quarantine compartment, produced prediction values that were 

close to real data.  

Mekonen et al. [35] investigated an eight-compartment 

model of the spread of COVID-19 co-infection with 

tuberculosis. Marimuthu et al. [36] constructed a model of 

COVID-19 co-infection with tuberculosis in India to forecast 

its transmission pattern in the coming years. Lockdown has 

hampered tuberculosis patient services, resulting in an 

increase in tuberculosis dissemination and COVID-19 

tuberculosis co-infection [37]. In terms of the influence of the 

COVID-19 pandemic on TB, the analysis shows that people 

infected with COVID-19 cause an increase in the number of 

people infected with tuberculosis and slow down the cure rate 

[38]. 

Several researchers have explored the regulation of 

countermeasures for co-infection with tuberculosis in an effort 

to minimize the spread of COVID-19 co-infection with 

tuberculosis. In Indonesia, tuberculosis prevention can prevent 

roughly 27,878,840 new cases, while tuberculosis treatment 

can control 5,397,795 new cases [39]. Treatment and care 

control, as well as prevention in the form of physical 

separation and isolation in a hospital or independently, can 

reduce the spread of co-infection with COVID-19 and 

tuberculosis, both infection with each disease COVID-19 and 

tuberculosis, or co-infection of the two diseases, and 

prevention costs are more efficient than treatment costs [40, 

41]. 

On the basis of the research of Mekonen et al. [35] and 

Inayaturohmat et al. [38] that did not include the vaccination 

factor, in this paper, we propose a new model of the 

transmission of co-infection COVID-19 and TB incorporating 

vaccination compartment, since vaccination is effective in 

preventing the spread of COVID-19 [1, 12-17] or BCG [2, 17, 

24-27]. The goals of this study were to: (1) examine the 

mathematical model for the spread of COVID-19 co-infection 

with tuberculosis by focusing on the vaccination compartment, 

(2) determine the equilibrium point, the basic reproduction 

number, and analyze the stability of the equilibrium point, and 

(3) analyze the sensitivity of the model parameters, 

determining the most sensitive parameter for reducing the 

spread of COVID-19 co-infection with tuberculosis. 

 

 

2. MATHEMATICAL MODEL 

 

COVID-19 and TB are both airborne infectious diseases. 

The model investigated in this paper is the co-infection model 

of COVID-19 and tuberculosis. The population is divided into 

eight subpopulations. Individuals in the susceptible 

subpopulation (S) are those who are still healthy. Vaccination 

subpopulation (V), consisting of healthy individuals 

immunized against the COVID-19 and BCG vaccines. 

Individuals who have been vaccinated and are immune to 

COVID-19 and TB join the 𝑅 subpopulation. Individuals who 

are immune to COVID-19 but not to TB, or who are immune 

to TB but not to COVID-19, are classified as subpopulation V. 

Individuals who have been immunized against COVID-19 and 

BCG are vulnerable to COVID-19 and TB again and may 

revert to subpopulation S. Individuals who are still healthy 

come into contact with COVID-19 infected individuals and 

become infected with COVID-19, where they then enter the 

COVID-19 infected subpopulation, as denoted by IC. 

Individuals who are still healthy come into contact with TB-

infected individuals and become infected with TB, where they 

then enter the TB-infected subpopulation, as denoted by IT. 

Individuals in the IC subpopulation come into contact with TB-

infected individuals and become infected with TB, where they 

then enter the co-infected subpopulation with COVID-19 and 

TB, as denoted by ICT. Individuals infected with COVID-19 

who have not recovered after being given vitamins are 

classified as Q. Individuals who have TB but are not infected 

with COVID-19 will enter the tuberculosis treatment 

subpopulation, denoted by T. Individuals infected with 

COVID or TB, or both, will be treated and have a chance to 

recover before joining the recovered subpopulation, denoted 

by R. 

Some additional assumptions for the model in this study are 

as follows: (1) Constant recruitment into the S subpopulation. 

(2) Susceptible individuals who are vaccinated and immune 

will join the R subpopulation. (3) Individuals infected with 

COVID-19 or TB may die as a result of the disease. (4) Each 

subpopulation may die naturally. (5) Infected individuals may 

recover as a result of treatment. (6) Each subpopulation is 

homogeneous. Figure 1 depicts the spread of COVID-19 and 

TB coinfection. 
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Figure 1. Transmission diagram of COVID-19 and 

tuberculosis coinfection model 

 

Based on Figure 1, the mathematical model of the COVID-

19 and TB coinfection is as follows: 

 
𝑑𝑆

𝑑𝑡
= Λ + 𝜑𝑉 − (𝜃 + 𝜉1 + 𝜉2 + 𝜇)𝑆  

𝑑𝑉

𝑑𝑡
= 𝜃𝑆 − (𝜑 + 𝑟1 + 𝜇)𝑉  

𝑑𝐼𝐶

𝑑𝑡
= ξ1𝑆 + 𝜔𝐼𝐶𝑇 − (𝛼𝜉2 + 𝑡1 + 𝛿 + 𝑑1 + 𝜇)𝐼𝐶   

𝑑𝐼𝑇

𝑑𝑡
= ξ2𝑆 + 𝜂𝐼𝐶𝑇 − (𝛾𝜉1 + 𝜌 + 𝑑2 + 𝜇)𝐼𝑇  

𝑑𝐼𝐶𝑇

𝑑𝑡
= 𝛼ξ2𝐼𝐶 + 𝛾𝜉1𝐼𝑇 − (𝜔 + 𝜂 + 𝜓 + 𝑑3 + 𝜇)𝐼𝐶𝑇   

𝑑𝑄

𝑑𝑡
= 𝛿𝐼𝐶 − (𝜏 + 𝑑4 + 𝜇)𝑄  

𝑑𝑇

𝑑𝑡
= 𝜌𝐼𝑇 − (𝜎 + 𝑑5 + 𝜇)𝑇  

𝑑𝑅

𝑑𝑡
= 𝑟1𝑉 + 𝑡1𝐼𝐶 + 𝜏𝑄 + 𝜎𝑇 + 𝜓𝐼𝐶𝑇 − 𝜇𝑅  

(1) 

 

where, 𝜉1 =
𝛽1(𝐼𝐶+𝐼𝐶𝑇)

𝑁
, and 𝜉2 =

𝛽2(𝐼𝑇+𝑇+𝐼𝐶𝑇)

𝑁
, and with initial 

conditions: 

 
𝑆(0) > 0, 𝑉(0) > 0, 𝐼𝐶(0) ≥ 0, 𝐼𝑇(0) ≥ 0,

𝐼𝐶𝑇(0) ≥ 0, 𝑄(0) ≥ 0, 𝑇(0) ≥ 0, 𝑅(0) ≥ 0
  (2) 

 

The changes in the total population per unit time is given by: 

 
𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑁 − (𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 + 𝑑5)  (3) 

 

Notation, description, and value of parameters are presented 

in Table 1. 

All variables in model (1) have non-negative solutions with 

non-negative initial conditions (2) in the following bounded 

region, 

 

Υ = {(𝑆, 𝑉, 𝐼𝐶 , 𝐼𝑇 , 𝐼𝐶𝑇 , 𝑄, 𝑇, 𝑅) ∈ 𝑅+
8 , 𝑁 ≤

Λ

𝜇
}  (4) 

 

It will be shown that the solutions of the model with non-

negative initial conditions will always be non-negative for 

each t > 0, and it is stated in Theorem 1 below. The theorem 

can be interpreted in biologically meanings that population 

size is never be negative. 

Theorem 1 

Based on the initial conditions in Eq. (3), at time t, all 

subpopulations, 𝑆(𝑡), 𝑉(𝑡), 𝐼𝐶(𝑡), 𝐼𝑇(𝑡), 𝐼𝐶𝑇(𝑡), 𝑄(𝑡), 𝑇(𝑡) , 

𝑅(𝑡) are nonnegative. 

 

Proof. 

Define 𝜁 = sup
𝑡>0

{𝑆(𝑡), 𝑉(𝑡) > 0,  𝐼𝐶(𝑡) > 0,  𝐼𝑇(0) >

0,  𝐼𝐶𝑇(𝑡) > 0, 𝑄(𝑡) > 0, 𝑇(𝑡) > 0, 𝑅(𝑡) > 0}. Because 𝑆(𝑡), 

𝑉(𝑡) , 𝐼𝐶(𝑡) , 𝐼𝑇(𝑡) , 𝐼𝐶𝑇(𝑡) , 𝑄(𝑡) , 𝑇(𝑡) , 𝑅(𝑡) are continuous, 

then 𝜁 > 0. 

If 𝜁 = +∞ , then the positivity prevails. If 0 < 𝜁 < +∞ , 

then 𝑆(𝜁) = 0, 𝑉(𝜁) = 0, 𝐼𝑇(𝜁) = 0, 𝐼𝐶𝑇(𝜁) = 0, 𝑄(𝜁) = 0, 

𝑇(𝜁) = 0, and 𝑅(𝜁) = 0. 

From the first differential equation of system (1), 
𝑑𝑆

𝑑𝑡
= Λ +

𝜑𝑉 − (𝜃 + 𝜉1 + 𝜉2 + 𝜇)𝑆, by integrating both sides, we get 

𝑆(𝜁) = 𝑄1𝑆(0) + 𝑄1 ∫ 𝑒−∫(𝜃+𝜉1+𝜉2+𝜇)𝑑𝑡(Λ + 𝜑𝑉)𝑑𝑡
𝜁

0
. 

Because 𝑒−∫(𝜃+𝜉1+𝜉2+𝜇)𝑑𝑡 > 0  and 𝑆(0) > 0 , and also 

from definition of 𝜁, we have 𝑉(𝑡) > 0, 𝐼𝐶(𝑡) > 0, 𝐼𝑇(𝑡) > 0, 

𝐼𝐶𝑇(𝑡) > 0 , 𝑄(𝑡) > 0 , 𝑇(𝑡) > 0 , 𝑅(𝑡) > 0 , then 𝑆(𝜁) > 0 , 

and hence 𝑆(𝜁) ≠ 0. 

In the similar way, for the second until the eighth 

differential equation of system (1), we will obtain (𝑡) > 0, 

𝐼𝐶(𝑡) > 0 , 𝐼𝑇(𝑡) > 0 , 𝐼𝐶𝑇(𝑡) > 0 , 𝑄(𝑡) > 0 , 𝑇(𝑡) > 0 , and 

𝑅(𝑡) > 0. Since 𝜁 is infinite, this means that 𝜁 = +∞, then all 

the solutions of the co-infection model of COVID-19 and TB 

model (1) are non-negative.  

 

Table 1. Parameter values for COVID-19 and TB coinfection 

transmission 

 
Parameter Description Value Reference 

Λ Recruitment rate 13700 Estimated 

𝜃 
Vaccination rates 

from S to V 
0.1 [42] 

𝜑 
Re-susceptible rates 

from V to S 
0.000685 [39] 

𝑟1 
Immunity rate due to 

vaccination 
0.001644 [39] 

𝛽1 

Symptomatic 

transition rate of 

COVID-19 
5.510-6 Assumed 

𝛽2 
Symptomatic 

transition rate of TB 
2  10-6 Assumed 

𝑡1 
Treatment recovery 

rate of IC 
0.33029 [43] 

𝜇 
Natural death rate of 

each subpopulation 
(65×365)-1 Estimated 

𝛿 Quarantine rate 0.13266 [43] 

𝛼 
Transfer rate from IC 

to ICT 
0.01 Assumed 

𝜔 
COVID-19 recovery 

rate of ICT 
0.000389 Assumed 

𝑑1 COVID-19-death rate 0.002 Assumed 

𝛾 
Transfer rate from IT 

to ICT 
0.1 Assumed 

𝜂 TB cure rate of ICT 0.002335 Assumed 

𝜌 Treatment rate of 𝐼𝑇  0.1005 Assumed 

𝑑2 TB-death rate 0.001088 [39] 

𝜓 
Recovery rate due to 

treatment of ICT 
0.0055 Assumed 

𝑑3 
COVID-19 & TB 

coinfection death rate 
0.003 Assumed 

𝜏 
Recovery rate due to 

treatment of Q 
0.11624 [39] 

𝑑4 
COVID-19-death rate 

of Q 
0.001 Assumed 

𝜎 
Recovery rate due to 

treatment of T 
0.001 [39] 

𝑑5 TB-death rate of T 0.000039 [39] 

 

2.1 Nonendemic equilibrium point 

 

The non-endemic point of the model (1) is obtained if the 

rate of spread of each subpopulation is constant and there are 
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no COVID-19 and TB diseases. Non-endemic point is as 

follows 

 

𝐸0 = (𝑆∗, 𝑉∗, 0,0,0,0,0,0, 𝑅∗) 

 

where, 

𝑆∗ =
(𝜑+𝑟1+𝜇)Λ

𝜇(𝜇+𝑟1+𝜑)+𝜃(𝑟1+𝜇)
, 

𝑉∗ =
𝜃Λ

𝜇(𝜇+𝑟1+𝜑)+𝜃(𝑟1+𝜇)
,  

𝑅∗ =
𝜃𝑟1Λ

𝜇(𝜇(𝜇+𝑟1+𝜑)+𝜃(𝑟1+𝜇))
. 

 

2.2 The basic reproduction number 

 

The basic reproduction number of an infectious disease 

spread model is an important parameter for determining 

whether disease spread is increasing or decreasing. The basic 

reproduction number is commonly represented by ℛ0. If ℛ0 >
1 then the spread of the epidemic increases, and vice versa if 

ℛ0 < 1 then the spread of the epidemic then slows or stops. 

The Jacobian matrix of individuals who are in contact between 

active and susceptible infected individuals is obtained using 

model (1) and the non-endemic equilibrium point, namely: 

 

𝐹 = [

𝑞1 0 𝑞1 0
0 𝑞2 𝑞2 0
0 0 0 0
0 0 0 0

]  

 

where, 𝑞1 =
𝛽1Λ(𝜑+𝑟1+𝜇)

𝜇𝑁(𝜇+𝑟1+𝜑)+𝜃(𝑟1+𝜇)
 and 𝑞2 =

𝛽2Λ(𝜑+𝑟1+𝜇)

𝜇𝑁(𝜇+𝑟1+𝜑)+𝜃(𝑟1+𝜇)
. 

Whereas, the Jacobian matrix of non-contact individuals 

between subpopulations and out is: 

 

𝑉 = [

𝑡1 + 𝛿 + 𝑑1 + 𝜇 0 −𝜔 0
0 𝜌 + 𝑑2 + 𝜇 −𝜂 0
0 0 𝜔 + 𝜂 + 𝜓 + 𝑑3 + 𝜇 0
0 −𝜌 0 𝜎 + 𝑑5 + 𝜇

]  

 

One method for determining ℛ0 of an epidemic spread is to 

use the next generation matrix approach [44]. From this we get: 

 

ℛ0 = ℛ0𝐶 + ℛ0𝑇 (5) 

 

where, ℛ0𝐶 =
𝛽1Λ(𝜑+𝑟1+𝜇)

𝜇𝑁(𝑡1+𝛿+𝑑1+𝜇)(𝜇+𝑟1+𝜑)+𝜃(𝑟1+𝜇)
 is the basic 

reproduction number of COVID-19 spread and ℛ0𝑇 =
𝛽2Λ(𝜑+𝑟1+𝜇)

𝜇𝑁(𝜌+𝑑2+𝜇)(𝜇+𝑟1+𝜑)+𝜃(𝑟1+𝜇)
 is the basic reproduction number 

of TB spread. 

From ℛ0𝐶 , it can be shown that the COVID-19 vaccine can 

reduce the number of individuals infected with COVID-19 at 

a rate of 𝑝𝑟1, resulting in a decrease in the basic reproduction 

number of COVID-19 spread. 

 

ℛ0𝐶 =
𝛽1Λ(𝜑+𝑝𝑟1+𝜇)

𝜇𝑁(𝑡1+𝛿+𝑑1+𝜇)(𝜇+𝑝𝑟1+𝜑)+𝜃(𝑝𝑟1+𝜇)
  

 

It will be demonstrated that the COVID vaccine can reduce 

the incidence of COVID-19 infection. Consider the basic 

reproduction number of the spread of COVID-19 in the 

absence of COVID-19 vaccination: 

 

ℛ0𝐶1 =
𝛽1Λ(𝜑+𝜇)

𝜇𝑁(𝑡1+𝛿+𝑑1+𝜇)(𝜇+𝜑)+𝜃𝜇
  

 

By substituting the values of the parameters in Table 1, we 

obtain  

 
𝛽1Λ(𝜑+𝑝𝑟1+𝜇)

𝜇𝑁(𝑡1+𝛿+𝑑1+𝜇)(𝜇+𝑝𝑟1+𝜑)+𝜃(𝑝𝑟1+𝜇)
<

𝛽1Λ(𝜑+𝜇)

𝜇𝑁(𝑡1+𝛿+𝑑1+𝜇)(𝜇+𝜑)+𝜃𝜇
  

 

or 

 

ℛ0𝐶 < ℛ0𝐶1 (6) 

 

In the similar way, consider the basic reproduction number 

for the spread of tuberculosis in the absence of BCG 

vaccination: 

 

ℛ0𝑇 =
𝛽2Λ(𝜑+𝜇)

𝜇𝑁(𝜌+𝑑2+𝜇)(𝜇+𝜑)+𝜃𝜇
  

 

It will be demonstrated that BCG vaccination can reduce the 

spread of tuberculosis at a rate of (1 − 𝑝)𝑟1 , so the basic 

reproduction number for the spread of tuberculosis becomes 

 

ℛ0𝑇1 =
𝛽2Λ(𝜑+(1−𝑝)𝑟1+𝜇)

𝜇𝑁(𝜌+𝑑2+𝜇)(𝜇+(1−𝑝)𝑟1+𝜑)+𝜃((1−𝑝)𝑟1+𝜇)
  

 

The basic reproduction number of tuberculosis spread 

without BCG vaccination is calculated by entering the 

parameter values in Table 1, 

 
𝛽2Λ(𝜑+(1−𝑝)𝑟1+𝜇)

𝜇𝑁(𝜌+𝑑2+𝜇)(𝜇+(1−𝑝)𝑟1+𝜑)+𝜃((1−𝑝)𝑟1+𝜇)
<

𝛽2Λ(𝜑+𝜇)

𝜇𝑁(𝜌+𝑑2+𝜇)(𝜇+𝜑)+𝜃𝜇
  

 

or 

 

ℛ0𝑇 < ℛ0𝑇1 (7) 

 

Based on Eqs. (6) and (7), it can be concluded that 

vaccination can reduce the number of COVID-19, TB, and 

COVID-19 and TB co-infections. 

The following is a theorem regarding the local stability of 

nonendemic equilibrium point. The interpretation of the 

theorem is that the diseases’ infection will be vanished at 

certain conditions. 

 

Theorem 2 

The nonendemic equilibrium point 𝐸0  of the COVID-19 

and TB co-infection model is asymptotically stable locally if 

ℛ0 < 1 and vice versa. 

Proof 

Consider the Jacobian matrix model of Eq. (1) at the 

nonendemic equilibrium point 𝐸0. 

 

𝐽(𝐸0) =

[
 
 
 
 
 
 
 
−𝜃 − 𝜇 𝜑 −𝑆1 −𝑆2 −𝑆1 − 𝑆2 0 −𝑆2 0

𝜃 −ℎ1 0 0 0 0 0 0
0 0 𝑆1 − ℎ2 0 𝑆1 + 𝜔 0 0 0
0 0 0 𝑆2 − ℎ3 𝑆2 + 𝜂 0 𝑆2 0
0 0 0 0 −ℎ4 0 0 0
0 0 𝛿 0 0 −ℎ5 0 0
0 0 0 𝜌 0 0 −ℎ6 0
0 𝑣1 𝑡1 0 𝜓 𝜏 𝜎 −𝜇]

 
 
 
 
 
 
 

  

 

where, 

𝑆1 =
(𝜑+𝑟1+𝜇)𝛽1Λ

𝜇𝑁(𝜇+𝑟1+𝜑)+𝜃(𝑟1+𝜇)
,  

𝑆2 =
(𝜑+𝑟1+𝜇)𝛽2Λ

𝜇𝑁(𝜇+𝑟1+𝜑)+𝜃(𝑟1+𝜇)
,  

ℎ1 = 𝜑 + 𝑟1 + 𝜇,  

ℎ2 = 𝑡1 + 𝛿 + 𝑑1 + 𝜇,  

ℎ3 = 𝜌 + 𝑑2 + 𝜇,  

ℎ4 = 𝜔 + 𝜂 + 𝜓 + 𝑑3 + 𝜇, 
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ℎ5 = 𝜏 + 𝑑4 + 𝜇,

ℎ6 = 𝜎 + 𝑑5 + 𝜇.

The eigenvalues are obtained from the Jacobian matrix, 

𝜆1 = −𝜇, 𝜆2 = −𝜃 − 𝜇,

𝜆3 = −(𝜏 + 𝑑4 + 𝜇),

𝜆4 = −(𝜔 + 𝜂 + 𝜓 + 𝑑3 + 𝜇),

𝜆5 = −
(𝜑+𝑟1+𝜇)𝛽1Λ

𝜇𝑁(𝜇+𝑟1+𝜑)+𝜃(𝑟1+𝜇)
− 𝑡1 + 𝛿 + 𝑑1 + 𝜇,

𝜆6 = −(𝜑 + 𝑟1 + 𝜇),

𝜆7 =
1

2
(−ℎ3 − ℎ6 + 𝑆2) +

1

2
√𝑆2

2 + (−2ℎ3 + 2ℎ6 + 4𝜌)𝑆2 + (ℎ3 − ℎ6)
2,

𝜆8 =
1

2
(−ℎ3 − ℎ6 + 𝑆2) −

1

2
√𝑆2

2 + (−2ℎ3 + 2ℎ6 + 4𝜌)𝑆2 + (ℎ3 − ℎ6)
2.

The value of 𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6 and 𝜆8 are clearly negative,

meanwhile for 𝜆7, By entering the parameter values listed in

Table 1, 𝜆7 becomes negative as well. Because all the eigen

values of the Jacobian matrix at the point of nonendemic 

equilibrium are negative, corresponding to ℛ0 < 1, and vice

versa. Therefore, the nonendemic equilibrium point 𝐸0 in the

COVID-19 and TB co-infection model (1) is asymptotically 

stable locally, and vice versa.  

2.3 Endemic equilibrium point 

When the number of each subpopulation remains constant 

and the disease spreads, endemic equilibrium is reached as 

follows 

𝐸1 = (𝑆∗∗, 𝑉∗∗, 𝐸𝐶
∗∗, 𝐸𝑇

∗∗, 𝐸𝐶𝑇
∗∗ , 𝐼𝐶

∗∗, 𝐼𝑇
∗∗, 𝐼𝐶𝑇

∗∗ , 𝑅∗)

where, 

𝑆∗∗ =
𝑘2Λ

𝑘1𝑘2−𝜃𝜑
, 

𝑉∗∗ =
θΛ

𝑘1𝑘2−𝜃𝜑
, 

𝐼𝐶
∗∗ =

𝑘2Λ𝜉1(𝜂𝛾𝜉1−𝛼𝜔𝜉2−𝑘4𝑘5)

(𝛼𝑘4𝜔𝜉2+𝜂𝛾𝑘3𝜉1−𝑘3𝑘4𝑘5)(𝑘1𝑘2−𝜃𝜑)
, 

𝐼𝑇
∗∗ =

𝜉2𝑘2Λ(𝛼𝜂𝜉1−𝛼𝜔𝜉2+𝑘3𝑘5)

(𝛼𝑘4𝜔𝜉2+𝜂𝛾𝑘3𝜉1−𝑘3𝑘4𝑘5)(𝑘1𝑘2−𝜃𝜑)
, 

𝐼𝐶𝑇
∗∗ =

𝜉2𝑘2Λ𝜉1(𝛼𝑘4+𝛾𝑘3)

(𝛼𝑘4𝜔𝜉2+𝜂𝛾𝑘3𝜉1−𝑘3𝑘4𝑘5)(𝑘1𝑘2−𝜃𝜑)
, 

𝑄∗∗ =
𝛿𝑘2Λ𝜉1(𝜂𝛾𝜉1−𝛾𝜔𝜉2−𝑘4𝑘5)

𝑘6([𝛼𝑘4𝜔𝜉2+𝜂𝛾𝑘3𝜉1−𝑘3𝑘4𝑘5](𝑘1𝑘2−𝜃𝜑))
, 

𝑇∗ =
𝜉2𝜌𝑘2Λ(𝛼𝜂𝜉1−𝛼𝜔𝜉2∓𝑘3𝑘5)

𝑘7([𝛼𝑘4𝜔𝜉2+𝜂𝛾𝑘3𝜉1−𝑘3𝑘4𝑘5](𝑘1𝑘2−𝜃𝜑))
, 

𝑅∗ =
([([−𝛾𝑡1𝜂𝜉1([𝑘3𝜓+𝜔𝑡1]𝛾+𝜓𝛼𝑘4)𝜉2+𝑘4𝑘5𝑡1]𝜉1𝑘7+𝜌𝜉2𝜎(𝛼𝜂𝜉1−𝛼𝜔𝜉2+𝑘4𝑘5))𝑘6−

𝜇𝑘6𝑘7([𝛼𝑘4𝜔𝜉2+𝜂𝛾𝑘3𝜉1−𝑘3𝑘4𝑘5](𝜃𝜑−𝑘1𝑘2))

−𝜏𝜉1𝛿𝑘7(𝜂𝛾𝜉1−𝛾𝜔𝜉2−𝑘4𝑘5])𝑘2−𝑘7𝑟1[𝜉1𝛾𝑘3𝜂+𝑘4(𝛼𝜔𝜉2−𝑘3𝑘5)]𝜃𝑘6)Λ

𝜇𝑘6𝑘7([𝛼𝑘4𝜔𝜉2+𝜂𝛾𝑘3𝜉1−𝑘3𝑘4𝑘5](𝜃𝜑−𝑘1𝑘2))
, 

with 𝑘1 = 𝜃 + 𝜉1 + 𝜉2 + 𝜇,

𝑘2 = 𝜑 + 𝑟1 + 𝜇,

𝑘3 = 𝛼𝜉2 + 𝑡1 + 𝛿 + 𝑑1 + 𝜇,

𝑘4 = 𝛾𝜉1 + 𝜌 + 𝑑2 + 𝜇,

𝑘5 = 𝜔 + 𝜂 + 𝜓 + 𝑑3 + 𝜇,

𝑘6 = 𝜏 + 𝑑4 + 𝜇, and

𝑘7 = 𝜎 + 𝑑5 + 𝜇.

The following theorem states about the stability of the 

endemic equilibrium, and in biologically meanings, it means 

that in some conditions the diseases will continue to spread 

forever. 

Theorem 3 

If ℛ0 > 1 , then the endemic equilibrium 𝐸2  is locally

asymptotic stable. 

Proof. 

Based on the system of Eq. (1) the Jacobian Matrix from the 

system of Eq. (1) above at point 𝐸2

𝐽(𝐸2
∗) =

[
 
 
 
 
 
 
 
 
 
−𝑎11 𝜑 −𝑆1

∗∗ −𝑆2
∗∗ −𝑆1

∗∗ − 𝑆2
∗∗ 0 −𝑆2

∗∗ 0
𝜃 −ℎ1 0 0 0 0 0 0

𝜉1
∗∗ 0 𝑎33 −

𝛼𝛽2𝐼𝐶
∗∗

𝑁
𝑎35 0 −

𝛼𝛽2𝐼𝐶
∗∗

𝑁
0

𝜉2
∗∗ 0 −

𝛾𝛽1𝐼𝑇
∗∗

𝑁
𝑎44 𝑎45 0 𝑆2

∗∗ 0

0 0 𝑎53 𝑎54 𝑎55 0
𝛼𝛽2𝐼𝐶

∗∗

𝑁
0

0 0 𝛿 0 0 −ℎ5 0 0
0 0 0 𝜌 0 0 −ℎ6 0
0 𝑟1 𝑡1 0 𝜓 𝜏 𝜎 −𝜇]

where,  

𝑎11 = 𝜃 + 𝜉1
∗∗ + 𝜉2

∗∗ + 𝜇, 𝑆1
∗∗ =

𝛽1𝑘2Λ

(𝑘1𝑘2−𝜃𝜑)𝑁
, 

𝑆2
∗∗ =

𝛽2𝑘2Λ

(𝑘1𝑘2−𝜃𝜑)𝑁
, 𝜉1

∗∗ =
𝛽1(𝐼𝐶

∗∗+𝐼𝐶𝑇
∗∗ )

𝑁
, 

𝜉2
∗∗ =

𝛽2(𝐼𝑇
∗∗+𝑇∗∗+𝐼𝐶𝑇

∗∗ )

𝑁
, 𝑎33 = 𝑆1

∗∗ − 𝛼𝜉2
∗∗ − ℎ2,

𝑎35 = 𝑆1
∗∗ −

𝛼𝛽2𝐼𝐶
∗∗

𝑁
+ 𝜔, 𝑎44 = 𝑆2

∗∗ − 𝛾𝜉1
∗∗ − ℎ3,

𝑎45 = 𝑆2
∗∗ −

𝛾𝛽1𝐼𝑇
∗∗

𝑁
+ 𝜂, 𝑎53 = 𝛼𝜉2

∗∗ +
𝛾𝛽1𝐼𝑇

∗∗

𝑁
, 

𝑎54 = 𝛾𝜉1
∗∗ +

𝛼𝛽2𝐼𝐶
∗∗

𝑁
, 𝑎55 =

𝛼𝛽2𝐼𝐶
∗∗

𝑁
+

𝛾𝛽1𝐼𝑇
∗∗

𝑁
− ℎ4.

The characteristic equation of 𝐽(𝐸1
∗)  is ℎ(𝜆) = 𝑔(𝜆)(𝜆 +

𝜏 + 𝑑4 + 𝜇)(𝜆 + 𝜇) , where 𝑔(𝜆) = (𝑐0𝜆
6 + 𝑐1𝜆

5 + 𝑐2𝜆
4 +

𝑐3𝜆
3 + 𝑐4𝜆

2 + 𝑐5𝜆 + 𝑐6) . We get 𝜆7 = −𝜏 − 𝑑4 − 𝜇 < 0 ,

𝜆8 = −𝜇 < 0  from polynomial ℎ(𝜆) , and 𝜆𝑖 , 𝑖 =
 1, 2, 3, 4, 5, 6  will be negative if 𝑐𝑗 > 0 , where 𝑗 =

 0, 1, 2, 3, 4, 5, 6 , ℛ0 > 1 , 𝑐1𝑐2 > 𝑐0𝑐3,  𝑐1(𝑐2𝑐3 + 𝑐0𝑐5) >
𝑐1

2𝑐4 + 𝑐0𝑐3
2, and 𝑐1𝑐2𝑐4 > 𝑐0(𝑐1𝑐6 + 𝑐2𝑐5). Because the form

of the coefficients of the polynomial 𝑔(𝜆)  is very long, 

checking the Routh-Hurwitz criterion is accomplished 

numerically. Using the value of parameters provided in Table 

1, we compute the characteristic equation of the Jacobian 

matrix 𝐽(𝐸2
∗) by employing the Maple software. We get 𝑐1 =

0.3091 ; 𝑐2 = 0.1167 ; 𝑐3 = 0.0195 ; 𝑐4 = 0.0013 ; 𝑐5 =
0.000019 ; 𝑐6 = 0.00000000083 ; 𝑐1𝑐2 = 0.0955 ; 𝑐0𝑐3 =
0.0195; 𝑐1(𝑐2𝑐3 + 𝑐0𝑐5) = 0.00071; 𝑐1

2𝑐4 + 𝑐0𝑐3
2 = 0.0005;

𝑐1𝑐2𝑐4 = 0.000048 ; 𝑐0(𝑐1𝑐6 + 𝑐2𝑐5) = 0.0000023 . It

satisfies the condition that the local asymptotically stable 

endemic equilibrium point exists based on the Routh-Hurwitz 

criteria [45].  

3. NUMERICAL SIMULATION

To validate the previous section’s analytical results, 

numerical simulations are performed. We start by simulating 

the solution of system (1) at different time scales. The second 

section presents the numerical sensitivity of the basic 

reproduction number. Third, we analyze the sensitivity of the 

model's parameters to time and determine which parameter is 

the most sensitive. To accomplish this, we use the parameter 

values shown in Table 1 and the initial conditions listed below: 

𝑆(0)  =  267137521190 , 𝑉(0)  =  58200000 , 𝐼𝐶(0)  =
 23601 , 𝐼𝑇(0)  =  16000000 , 𝐼𝐶𝑇(0)  =  9000 , 𝑄(0)  =
 15000, 𝑇(0)  =  6400000, and 𝑅(0)  =  280, with the total 

population is assumed to be 𝑁 =  268000000 . All the 
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simulations are performed using MATLAB software. To solve 

the system of differential equations, we use package function 

ode45. 

 

3.1 Solution of system 
 

Based on the number of subpopulations, we simulate the 

solution of system (1) into three groups. Various time scales 

are used to plot the solution. The susceptible (𝑆), vaccinated 

( 𝑉 ), and recovered ( 𝑅 ) populations make up the first 

subpopulation group. In a short period of time, the susceptible 

population is decreasing in subgraph (a) of Figure 2, while the 

vaccinated population is rapidly increasing and then gradually 

declining, and the recovered population is slowly increasing. 

Long-term, as depicted in subgraph (d) of Figure 2, the 

vaccinated population decreases while the recovered 

population grows until equilibrium is reached. The second 

group consists of populations infected with COVID-19 (𝐼𝐶), 

co-infected with COVID-19 and tuberculosis ( 𝐼𝐶𝑇 ), and 

quarantined (𝑄). In subgraphs (b) and (e) of Figure 2, these 

three subpopulations are declining over both short and long 

periods of time. The final group consists of TB-infected (𝐼𝑇) 

and TB-treated (𝑇) populations. In a short period of time, the 

population infected with tuberculosis decreases in subgraph (c) 

of Figure 2, while the population receiving treatment for 

tuberculosis increases and then declines. As shown in 

subgraph (f) of Figure 2, the population receiving TB 

treatment is decreasing. 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 2. (a) and (d) Plots of susceptible S, vaccinated V, and recovered R subpopulations in different time scales; (b) and (e) 

Plots of 𝐼𝐶 , 𝐼𝐶𝑇 , and Q subpopulations in different time scales; (c) and (f) Plots of 𝐼𝑇  and T subpopulations in different time scales 
 

Table 2. The value of elasticity index of basic reproduction number 
 

Parameter 𝚲 𝜽 𝝋 𝒓𝟏 𝜷𝟏 𝜷𝟐 

Ψ𝑞
ℛ0  1 -4.37e-05 1.26e-05 -1.23e-05 0.37 0.62 

Parameter 𝑡1 𝜇 𝛿 𝑑1 𝜌 𝑑2 

Ψ𝑞
ℛ0  -0.26 -1.0002 -0.107 -0.0016 -0.62 -0.0066 

 
3.2 Sensitivity of the basic reproduction number 

 

The beginning of disease transmission is associated with the 

basic reproduction number ℛ0. To identify the parameter that 

is most sensitive to the spread of disease, we wish to examine 

every parameter that appears in the ℛ0  formula. To 

accomplish this, we define an elasticity index, also known as 

the normalized sensitivity index, as follows 

 

Ψ𝑞
ℛ0 =

𝜕ℛ0

𝜕𝑞
×

𝑞

ℛ0
  

 

where, 𝑞 ∈ {Λ, 𝜃, 𝜑, 𝑟1, 𝛽1, 𝛽2, 𝑡1, 𝜇, 𝛿, 𝑑1, 𝜌, 𝑑2} . This tells 

about the relative change of the beginning disease 

transmission with respect to the changes of the parameters’ 

value. Therefore, the highest absolute value of the elasticity 

index corresponds to the most influential parameters to the 

diseases. We calculate Ψ𝑞
ℛ0  using parameters’ value in Table 

1. The result is given in Table 2 and also depicted in Figure 3. 

We can observe that the natural death 𝜇  gives highest 

proportional impact on ℛ0, followed by the recruitment rate Λ. 

According to the previous section, the basic reproduction 

number ℛ0 can be used to indicate the spread of the COVID-

19 and TB infections. When ℛ0  is less than 1, there is no 

disease transmission. In the meantime, when ℛ0  exceeds 1, 

diseases become endemic. Now, we wish to determine the 

effects of parameter changes on the ℛ0  value, or, in other 
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words, the sensitivity of ℛ0  is evaluated. The basic 

reproduction number ℛ0 is also can be seen as a function of 

two parameters. Thus, we can assess the impact of 

combination of two parameters on ℛ0 by observing its contour 

plot. Due to the large number of model parameters, we restrict 

the analysis to the combination of the COVID-19 and TB 

symptomatic transition rate parameters (𝛽1and 𝛽2) with the 

other included parameters in (5). Then, the contour of ℛ0 is 

plotted. We examine the contour whose ℛ0  value is greater 

than 1. 
 

 
 

Figure 3. Elasticity index of basic reproduction number for 

the case of all parameters 
 

Figure 4 depicts the contour plot of ℛ0  as a function of 

various parameter combinations. In comparison to the effects 

that 𝛽1 and 𝛽2  have on ℛ0  value, all parameters other than 

𝛽1 and 𝛽2  have a negligible or nonexistent effect on ℛ0 . 

Simulations demonstrate that as 𝛽1 and 𝛽2 values increase, 

diseases become more endemic. Therefore, the COVID-19 and 

TB symptomatic transition rate parameters are the most 

influential disease spread parameters, and their values should 

be minimized as much as possible through the implementation 

of control or prevention policies. Comparing parameters 

𝛽1and 𝛽2, we find that parameter 𝛽2 has a greater impact on 

the value of ℛ0 . Consequently, the rate of transition from 

asymptomatic to symptomatic TB must be the top priority for 

regulators. 
 

3.3 Sensitivity analysis of parameters 
 

In this subsection, a sensitivity analysis is conducted to 

determine the effects of parameter changes on the model 

compartment over time. Due to the large number of parameters, 

we group them into five categories based on the similarity of 

their descriptions. Group 1 is for the susceptible rate parameter 

and includes Λ  and 𝜑 . Group 2 is for the coinfected 

population's treatment rate parameter, which consists of 𝜃, 𝑟1, 

𝑡1, 𝛿, 𝜌, 𝜏, and 𝜎. Group 3 is for the symptomatic transition 

rate parameter, and it is made up of 𝛽1, 𝛽2, 𝛼, and 𝛾. Group 4 

is for the death rate parameter, which consists of 𝑑1, 𝑑2, 𝑑3, 

𝑑4 , 𝑑5 , and 𝜇 . Finally, group 5 is for the co-infected 

population's recovery rate parameter, which consists of 𝜔, 𝜂, 

and 𝜓. 
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Figure 4. Sensitivity analysis of the basic reproduction number 𝑅0 affected by symptomatic transition rates 𝛽1 or 𝛽2 with 

combinations of other parameters 

 

The steps for the sensitivity analysis are as follows. Suppose 

the 𝑘 -th group of parameters is denoted 𝑃𝑘 , where 𝑘 =
1,2,3,4,5. Let the vector of compartments is written as 𝑋 =
(𝑆, 𝑉, 𝐼𝐶 , 𝐼𝑇 , 𝐼𝐶𝑇 , 𝑄, 𝑇, 𝑅)′ and the vector of right-hand side of 

(1) is written as 𝐹. We define a sensitivity function Ω𝑘 =
𝜕𝑋

𝜕𝑃𝑘
. 

By doing a total differentiation Ω𝑘 of 𝑡, we get: 

 
𝑑Ω𝑘

𝑑𝑡
=

𝑑

𝑑𝑡

𝜕𝑋

𝜕𝑃𝑘
=

𝜕

𝜕𝑃𝑘

𝑑𝑋

𝑑𝑡
=

𝜕𝐹

𝜕𝑋

𝜕𝑋

𝜕𝑃𝑘
+

𝜕𝐹

𝜕𝑃𝑘
= 𝐽(𝑋)Ω𝑘 +

𝜕𝐹

𝜕𝑃𝑘
  

(8) 

 

where, J(X) is the Jacobian matrix of system (1) evaluated at 

point 𝑋. Matrix Ω𝑘 has size 8×m, where 𝑚 = #𝑃𝑘 , the matrix 

J(X) has size 8×8, and the matrix 
𝜕𝐹

𝜕𝑃𝑘
 has size 8×m. Thus, the 

system of differential equations (8) is solved to get a matrix 

solution Ω𝑘 = [𝑠𝑌
𝑝
]
8×𝑚

, with 𝑠𝑌
𝑎 =

𝜕𝑌

𝜕𝑎
 where 𝑌 ∈ 𝑋  and 𝑎 ∈

𝑃𝑘. By solving system (8), we calculate the sensitivity index 

after reaching equilibrium to observe the most influential 

parameters on the dynamics of all subpopulations. 

 

3.3.1 Group of parameters 1 

There are two parameters for the susceptible rate: Λ, the 

recruitment rate, and 𝜑 , the re-susceptibility rate in the 

vaccinated population. As depicted in Figure 5, the 

recruitment rate benefits the susceptible, vaccinated, and 

recovered populations. The re-susceptibility rate has a positive 

effect on the susceptible population but a negative effect on 

the vaccinated and recovered populations. The remaining 

populations are unaffected by the two parameters. After 

equilibrium has been reached, a comparison of these two 

parameters using the sensitivity index reveals that the re-

susceptible parameter is more sensitive than the recruitment 

rate. 

 

3.3.2 Group of parameters 2 

There are seven parameters in group 2 which represent the 

treatment rate parameter: vaccination rate θ, immunity rate 𝑟1, 

treatment recovery rate 𝑡1 , quarantine rate δ, tuberculosis 

treatment rate ρ, COVID-19 recovery rate τ, and tuberculosis 

recovery rate σ. Figure 6 demonstrates that the vaccination rate 

has positive effects on the vaccinated and recovered 

populations, but negative effects on the susceptible population. 

The rate of immunity has a positive effect on the recovered 

population but a negative effect on the vaccinated population. 

The treatment recovery rate has a positive effect on the 

recovered population but a negative effect on the infected and 

Q populations. The quarantine rate has positive effects on the 

Q population, but negative effects on the infected and 

recovered COVID-19 populations. The treatment rate for 

tuberculosis has a positive effect on T and TB-infected 

populations. The COVID-19 recovery rate has a positive effect 

on the recovered population and a negative effect on the 𝑄 

population. The tuberculosis recovery rate has a positive effect 

on the recovered population while having a negative effect on 

the 𝑇 population. After reaching equilibrium, a comparison of 

these parameters using the sensitivity index reveals that the 

immunity rate is the most sensitive of the group. 

 

3.3.3 Group of parameters 3 

There are four parameters in group 3: Symptomatic 

transition rate of COVID-19 𝛽1, symptomatic transition rate of 

TB 𝛽2, transfer rate from 𝐼𝐶  to 𝐼𝐶𝑇  𝛼, and transfer rate from 𝐼𝑇  

to 𝐼𝐶𝑇  𝛾 . In Figure 7, the symptomatic transition rate of 

COVID-19 has a positive effect on the populations of 𝐼𝐶 , 𝐼𝐶𝑇 , 

𝑄, and 𝑅, but a negative effect on the remaining populations. 

The symptomatic transition rate of tuberculosis has a positive 

influence on the 𝐼𝑇  and 𝑇 populations, but a negative influence 

on the 𝑆 and 𝑉 populations. The transfer rate 𝛼 has a positive 

effect on the 𝐼𝐶𝑇  and 𝑇 populations, but a negative effect on 

the 𝐼𝐶  and 𝑅  populations. The transfer rate 𝛾  has favorable 

effects on the 𝐼𝐶𝑇  and 𝑅 populations, but negative effects on 

the 𝐼𝑇  and 𝑇 populations. According to the sensitivity index at 

equilibrium, the symptomatic transition rate of tuberculosis is 

the most sensitive parameter among others. 
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Figure 5. Sensitivity of parameters (a) Λ and (b) 𝜑 to the populations over time, and sensitivity index of these two parameters 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

 

 
(g) (h) 

 

Figure 6. Sensitivity of parameters (a) 𝜃, (b) 𝑟1, (c) 𝑡1, (d) 𝛿, (e) 𝜌, (f) 𝜏, and (g) 𝜎 to the populations over time, and (h) their 

sensitivity index 
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Figure 7. Sensitivity of parameters (a) 𝛽1, (b) 𝛽2, (c) 𝛼, and (d) 𝛾 to the populations over time, and (e) their sensitivity index 
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Figure 8. Sensitivity of parameters (a) 𝑑1, (b) 𝑑2, (c) 𝑑3, (d) 𝑑4, (e) 𝑑5, and (f) 𝜇 to the populations over time, and (e) their 

sensitivity index 

 

3.3.4 Group of parameters 4 

There are six death rate parameters, namely 𝑑1, 𝑑2, 𝑑3, 𝑑4, 

𝑑5, and 𝜇. As shown in Figure 8, it is evident that none of these 

parameters have a positive effect on populations. The 

parameter 𝑑1  has a negative effect on infected, 𝑄 , and 

recovered COVID-19 populations. The parameter 𝑑2  has a 

negative impact on populations that are TB-infected, 𝑇, and 

recovered. The parameter 𝑑3  has a negative impact on 

populations of TB infected, coinfected, 𝑇 , and recovered. 

Parameter 𝑑4  has a negative effect on both 𝑄 and recovered 

populations. Parameter 𝑑5 has a negative effect on the 𝑇 and 

recovered populations. All populations are negatively 

impacted by the parameter 𝜇 . According to the sensitivity 

index diagram, the natural death rate 𝜇 is the most sensitive 

parameter, followed by parameter 𝑑5. 

 

 

 

 

 

 
(a) (b) (c) 
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Figure 9. Sensitivity of parameters (a) 𝜔, (b) 𝜂, and (c) 𝜓 to the populations over time, and (e) their sensitivity index 

 

3.3.5 Group of parameters 5 

There are three parameters in group 5: COVID-19 recovery 

rate of 𝐼𝐶𝑇  𝜔, TB cure rate of 𝐼𝐶𝑇  𝜂, and recovery rate of 𝐼𝐶𝑇  

due to treatment 𝜓. Figure 9 illustrates that the parameter 𝜔 

has a positive effect on the 𝑆, 𝑉, 𝑄, and 𝑅 populations, but a 

negative effect on the 𝐼𝑇 , 𝐼𝐶𝑇 , and 𝑇 populations. Parameter 𝜂 

has a positive effect on the 𝐼𝑇  and 𝑇  populations, but a 

negative effect on the 𝐼𝐶 , 𝐼𝐶𝑇 , and 𝑅 populations. Parameter 𝜓 

has a positive effect on the 𝑆 , 𝑉 , and 𝑅  populations, but a 

negative effect on the 𝐼𝑇 , 𝐼𝐶𝑇 , and 𝑇 populations. After their 

sensitivity index has reached equilibrium, we can observe that 

the parameter 𝜔  has the greatest impact, followed by 

parameter 𝜓. 

 

 

4. CONCLUSIONS  

 

The new model investigated in this study is a development 

of the work of Mekonen et al. [35] and Inayaturohmat et al. 

[38] in the form of a dynamic model of co-infection with 

COVID-19 and tuberculosis expressed in a system of 

differential equations that takes the vaccination compartment 
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into account. The reproduction number study results indicate 

that the natural date rate is the proportion of parameters that 

significantly influence the spread of COVID-19 and TB 

infection. The re-susceptible rate is the most sensitive of a 

group of susceptible rate factors in the sensitivity analysis. The 

immunity rate is the most sensitive of a group of coinfected 

populations, according to treatment rate criteria. A collection 

of symptomatic transition rate metrics, the tuberculosis 

symptomatic transition rate is the most sensitive. The natural 

death rate is the most vulnerable of the death rate metrics. The 

COVID-19 recovery rate is the most sensitive, according to the 

recovery rate criteria for a group of co-infected populations.  

Based on the findings of this study, future research could 

create a mathematical model that takes into consideration the 

characteristics of recruitment into the infected compartment or 

reinfection from the recovered compartment in COVID-19 co-

infection with tuberculosis. Models can also be created by 

include exposed compartments or compartments resistant to 

anti-tuberculosis medications in COVID-19 co-infection with 

tuberculosis, as well as comorbid dynamic models of COVID-

9 disease with tuberculosis and other infectious diseases. 

Model development can also be accomplished by providing 

optimal control or by employing a fractional, stochastic 

differential equation system technique, and the model must be 

validated using real-world data. 
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