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Let G=(V, E) be a graph. A dominating set S of graph G is defined as a set of vertices 

such that every vertex in V\S is adjacent to at least one vertex in S. The domination 

number of graph G, denoted as γ(G), corresponds to the size of the smallest dominating 

set within G. In other words, γ(G) represents the number of vertices required in the 

minimum dominating set to cover all other vertices in the graph G. In the graph G, our 

objective is to position a protector at each vertex within a subset S of V, ensuring that S 

forms a dominating set, effectively covering all other vertices in G. Moreover, in the 

event that a protector positioned at vertex 𝑣 needs to move along an edge to protect an 

unguarded vertex u, the arrangement of protectors should maintain the property of 

forming a dominating set for the graph. In other words, the movement of protectors 

should maintain the property of domination within the graph, ensuring efficient 

coverage and defense across the network. The bare minimum of security guards is 

necessary to protect all vertices in the graphs. In this article, we find the bounds for 

domination, independent domination number (IDN), connected domination 

number(CDN), total domination number(TDN), and the secure domination 

number(SDN) denoted byγ(An),  γi(An), γc(An),  γt and γs(An) respectively for the

antiprism graph, where An  denoted the 4 - regular graph with girth 3. We further

establish that the TDN is greater than or equal to the SDN of the antiprism graph for 

𝑛 ≥ 3. 
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1. INTRODUCTION

In the realm of graph theory, the properties and 

characteristics of graphs, particularly those without loops or 

multiple edges, hold significant intrigue. Such graphs, denoted 

as 𝐺 = (𝑉, 𝐸) , are characterized as finite and undirected. 

Within this context, a graph 𝐺 has ascribed the label of a d-

regular graph [1, 2]. When each vertex in the set 𝑉(𝐺) displays 

a precisely uniform degree of 𝑑. 

Pioneering explorations into the intricacies of regular 

graphs have brought forth a pertinent concept known as the 

girth, encapsulating the shortest cycle length discernible 

within 𝐺 [3]. The exploration of vertices takes us to the notion 

of open and closed neighborhoods. Specifically, the open 

neighborhood of a vertex 𝑣 ∈ 𝑉  is aptly defined as 𝑁(𝑣) =
{𝑢 ∈ 𝑉: 𝑢𝑣 ∈ 𝐸} . An extension of this concept, the closed 

neighbourhood 𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣}, comprises the union of 

𝑁(𝑣)  and the vertex 𝑣  itself. This framework lays the 

foundation for the definition of private neighbours. A vertex 

𝑢 ∈ 𝑉is an S-private neighbour of 𝑣, where 𝑆 ⊆ V and 𝑣 ∈ 𝑆, 

if the intersection of their neighbourhoods is {v}, i.e., 𝑁[𝑢] ∩
𝑆 = {𝑣}. The set of all 𝑆-private neighbours of v, its denoted 

by 𝑃𝑁(𝑣, 𝑠). Further nuances emerge when considering the 

case of 𝑢 ∈ 𝑉\𝑆, designating 𝑢  as an 𝑆 − external private 

neighbour of 𝑣. 
In the realm of domination theory, a pivotal concept 

surfaces-dominating set. A dominating set 𝑆 within a graph 𝐺 

is a congregation of vertices where each vertex not in 𝑆 has a 

direct connection to at least one vertex within 𝑆 . The 

cardinality of the smallest dominating set in 𝐺 is encapsulated 

in the domination number 𝛾(𝐺). In a graph 𝐺, an independent 

dominating set refers to a dominating set 𝑆 in which no two 

vertices are adjacent to each other. The IDN of graph  𝐺  is 

denoted by  γ𝑖(G) , and represents the size of the smallest

independent dominating set in 𝐺 [4, 5]. 

Broadening our perspective on connected domination, a set 

𝑆  of vertices constitutes a connected dominating set if it 

satisfies two essential conditions. First, 𝑆  serves as a 

dominating set in 𝐺. Second, the subgraph engendered by the 

vertices of S is intrinsically connected. The CDN of graph 𝐺, 

denoted by γc(G), represents the size of the smallest connected

dominating set in 𝐺 [6, 7]. 

A total dominating set of 𝐺 is defined as a dominating set 𝑆 

in which the induced subgraph ⟨𝑆⟩ has no isolated vertex [8, 

9]. It is implied that every vertex in 𝑆 has atleast one adjacent 

vertex in 𝑆, which means that all the vertex in 𝑆 are connected. 
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The TDN of graph G, denoted by γt(G), represents the size of 

the smallest total dominating set in 𝐺. 

A secure dominating set in a graph 𝐺 refers to a dominating 

set S that satisfies two conditions: First, for every vertex 𝑢 in 

the set 𝑉\𝑆, there exists a vertex 𝑣 in 𝑆 such that 𝑢 and 𝑣 are 

adjacent to each other. Second, if we remove vertex 𝑣 from 𝑆 

and add vertex 𝑢, forming the set 𝑆1 = (𝑆\{𝑣}) ∪ {𝑢}, 𝑆1also 

becomes a dominating set. The SDN of graph 𝐺 represents the 

size of the smallest secure dominating set in 𝐺 , and it is 

denoted by γs(G). Cockayne et al. were the first to introduce 

this concept. Several authors have studied it further [10-12]. 

The thought of secure domination finds application in 

specific scenarios wherein the vertex set of 𝐺  defines 

distributed locations within a spatial domain, and the edges of 

𝐺  symbolize occupied connections between these locations. 

Patrolling guards move along the links to safeguard the graph, 

ensuring the protection of both the connections and the 

individual positions at each of these sites. 

The smallest essential assembly of positions in 𝐺, known as 

a minimum secure dominating set encompasses locations 

strategically occupied by guards. This arrangement ensures the 

overall safety and assurance of the entire site complex depicted 

by 𝐺. In this scheme, if a security concern arises at a site, it 

can be addressed either by a guard stationed at that specific 

location or by a guard situated in an adjacent position. 

Regardless of the resolution approach taken, the site's security 

remains intact even after the guard involved has relocated. 

When considering the aforementioned applications, the 

concept of edge domination becomes significant due to its 

ability to provide threshold insights into the cumulative 

failures of edges. These insights, in turn, prove valuable for 

making informed decisions about increasing the number of 

guards to address vulnerabilities within the location complex. 

Cayley graphs serve as effective models for interconnection 

networks, primarily because they are vertex-transitive graphs. 

This relevance is underscored by the fact that the majority of 

modern computers rely on large-scale parallel computing and 

inherently feature these interconnection networks. 

Our primary concern revolves around graphs in which the 

domination number of some or all of the prisms is equivalent 

to double the domination number of the graph itself. In this 

article, we find an IDN, CDN, total domination, and the secure 

domination of antiprism graph An. We further established that 

γ(An) = γi(An)  for n ≥ 3, γc(An) = 𝑛 − 1  for n ≥ 3, and 

also obtained the TDN and SDN of the antiprism graph. 

 

 

2. PRELIMINARIES 

 

In this section, we discuss the construction of antiprism 

graphs and their domination properties. The definitions and the 

associated theorems needed for further sections are 

incorporated. In this paper, the prism graph is denoted by 𝐷𝑛, 

and the antiprism graph is denoted by 𝐴𝑛. 

 

2.1 The quartic graph 𝑸𝒏 

 

“The structure of the Quartic graph with girth 4 is defined 

as follows. Thus 𝑣1 is adjacent with 𝑣𝑛−1, 𝑣𝑛 , 𝑣2, 𝑣4 ; 𝑣2  is 

adjacent with 𝑣𝑛−1, 𝑣1, 𝑣3, 𝑣5; 𝑣3 is adjacent with 𝑣𝑛, 𝑣2, 𝑣4, 𝑣6; 

𝑣𝑖  is adjacent with 𝑣𝑖−1, 𝑣𝑖−3, 𝑣𝑖+1, 𝑣𝑖+3 , where 𝑖 = 4 to 𝑛 −
3, 𝑣𝑛−2 is adjacent with 𝑣𝑛−5, 𝑣𝑛−3, 𝑣𝑛−1, 𝑣1; 𝑣𝑛−1 is adjacent 

with 𝑣𝑛−4, 𝑣𝑛−2, 𝑣𝑛 , 𝑣2  and 𝑣𝑛 is adjacent with 

𝑣𝑖−1, 𝑣𝑖−3, 𝑣1, 𝑣3. Each vertex is obviously of degree 4 and it 

is given in Figure 1. Thus, the graph has edges of 2𝑛. So, we 

have the Quartic graph of order 𝑛 with edges of girth 4 and 2𝑛 

from the structure.” 

 

 
 

Figure 1. Quartic Graph 𝑄8 

 

2.1.1 Dominating set of 𝑄𝑛 

For 𝑛 > 9, a subset S ⊂ V(𝑄𝑛) is a dominant set with girth 

4 of an 𝑛 −vertex of Quartic graph 𝑄𝑛. S is defined by: 

 

𝑆 = {
𝐴 𝑖𝑓 n ≡ 0, 1, 2, 3 (mod 5)

A ∪ {vn−1} if 4 (mod 5)
 

 

2.1.2 Independent dominating set of 𝑄𝑛 

For  𝑛 > 9 , a subset S ⊂ V(𝑄𝑛)  is an independent 

dominating set with girth 4 of a 𝑛 −vertex of Quartic graph 𝑄𝑛. 

S is defined by: 

 

S =

{
 
 

 
 A if n ≡ 0, 2 (mod 5)

B ∪ {vn−1} if n ≡ 4 (mod 5)

C ∪ {vn−3} ∪ {vn−1} if n ≡ 1 (mod 5)

D{vn−5} ∪ {vn−3} ∪ {vn−1} if n ≡ 3 (mod 5)

 

 

where, 

 

A = {v5t+1: t ≥ 0, if 5t + 1 ≤ n} 
B = {v5t+1: t ≥ 0, if 5t + 1 < n − 1} 
C = {v5t+1: t ≥ 0, if 5t + 1 < n − 3} 
D = {v5t+1: t ≥ 0, if 5t + 1 < n − 5} 

 

2.1.3 Connected dominating set of 𝑄𝑛 

For 𝑛 > 9, a subset S ⊂ V(𝑄𝑛) is connected the dominating 

set of an n-vertex Quartic graph with girth 4. S is defined by: 

 

𝑆

= {

{𝐴 = 𝑣𝑖: 𝑖 = 1, 4, 7, 10, … , 𝑛 − 4}, 𝑓𝑜𝑟 𝑛 = 8, 11, 14, …

{𝐵 = 𝑣𝑖: 𝑖 = 1, 4, 7, 10, … , 𝑛}, 𝑓𝑜𝑟 𝑛 = 10, 13, 16, …

{C = 𝑣𝑖: 𝑖 = 1, 4, 7, 10, … , 𝑛 − 2}, 𝑓𝑜𝑟 𝑛 = 9, 12, 18, …

 

 

2.2 The prism graph 𝑫𝒏 

 

The Cartesian product of two graphs, denoted as 𝐺₁ × 𝐺₂, is 

a new graph formed by combining every vertex of 𝐺₁ with 

every vertex of 𝐺₂, creating a vertex set where each vertex 

represents an ordered pair (𝑢, 𝑣), where 𝑢 is a vertex from is 

𝐺₁  and 𝑣  is a vertex from  𝐺₂ . Additionally, two of these 

ordered pairs are connected by an edge in the Cartesian 

product if and only if their corresponding vertices in 𝐺₁ and 
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𝐺₂ are connected by edges in their respective graphs and it is 

mentioned in Figure 2. In essence, the Cartesian product 

generates a graph where the connectivity of each ordered pair 

is determined by the individual edge relationships in the 

original graphs 𝐺₁ and 𝐺₂. 
The prism graph 𝐷n  can be constructed by taking the 

Cartesian product of the cycle 𝐶nand the path 𝑃2 [13], resulting 

in a 3-regular graph depicted in Figure 3. According to the 

research conducted by Raza et al. [14] and Kartelj et al. [15], 

this graph belongs to the category of Archimedean convex 

polytopes. Furthermore, it should be emphasized that the 

prism graph can be considered identical to the Petersen graph, 

denoted as 𝑃(𝑛, 1). From a mathematical perspective, the set 

of vertices and edges in the prism graph 𝐷ₙ is represented as 

𝑉(𝐷ₙ) and 𝐸(𝐷ₙ), respectively. 

 

𝑉(D𝑛) = {(𝑣𝑘 ,  𝑢𝑘), 𝑘 = 1,2, … . , 𝑛} 
𝐸(D𝑛) = {(𝑣𝑘 , 𝑢𝑘), (𝑣𝑘 ,  𝑣𝑘+1), (𝑢𝑘, 𝑢𝑘+1),

𝑘 = 1,2, … . , 𝑛 − 1}  ∪ (𝑣𝑛,  𝑢𝑛)  
∪ (𝑣𝑛 ,  𝑣1)  ∪ (𝑢𝑛,  𝑢1). 

 

 
 

Figure 2. Cartesian product of Graph 

 

 

 
 

Figure 3. (a) Prism Graph 𝐷𝑛 

 

 
 

Figure 3. (b) Prism Graph 𝐷5 with the 3D effect 

2.3 The antiprism graph 𝐀𝐧 

 

The antiprism graph 𝐴𝑛  can be described as a 4-regular 

graph consisting of n - faces, 2n vertices, and 4n edges with 

girth 3, which is represented in Figure 4. The vertex set 𝑉(𝐴𝑛) 
and edge set 𝐸(𝐴𝑛) represent the sets of vertices and edges, 

respectively, in the antiprism graph 𝐴𝑛 [16]. The vertices on 

the inner cycle are denoted by {𝑣1, 𝑣2, … , 𝑣𝑛,} and the vertices 

on the outer cycle are represented by {𝑢1, 𝑢2, … , 𝑢𝑛}. The inner 

vertex of the inner cycle is connected to the outer vertex of the 

outer cycle by two adjacent vertices. This is defined as 

follows: 

 

V(𝐴𝑛) = {𝑣𝑖 ∪ 𝑢𝑖, 𝑓 𝑜𝑟 1 ≤ i ≤ n} 
E(An) = {(𝑣𝑖 ,  𝑣𝑖+1)  ∪ (𝑢𝑖 ,  𝑢𝑖+1)  ∪ (𝑢𝑖 ,  𝑣𝑖)  ∪ (𝑢𝑖 ,  𝑣𝑖+1),

1 ≤ i ≤ n − 1} ∪ (𝑢𝑛 , 𝑢1) ∪ (𝑣𝑛 ,  𝑣1)
∪ (𝑣𝑛 , 𝑢𝑛) ∪ (𝑣1,  𝑢𝑛). 

 

 
 

Figure 4. Antiprism Graph An 

 

2.3.1 Independent dominating set of 𝐴𝑛 

Let's consider an independent dominating set 𝑆, where 𝑆 is 

a subset of the vertex set 𝑉(𝐴𝑛) of the antiprism graph 𝐴𝑛 for 

n ≥ 3. This set S can be defined in the following way: 

 

𝑆

= {

𝐴 ∪ {𝑢𝑛−1}𝑖𝑓 𝑛 = 10𝑟 + 1, 10𝑟 + 3, 10𝑟 + 6, 10𝑟 + 8;
 𝑟 ≥ 0

𝐴 𝑖𝑓 𝑛 = 10𝑟 + 4, 5𝑟, 10𝑟 + 7, 10𝑟 + 9, 10𝑟 + 2;
 𝑟 ≥ 0

 

 

where, 

 

𝐴 = {(𝑣𝑖 , i = 1, 6, 11, 16, 21, …… . , 5t + 1) ∪ (𝑢𝑖, i =
3, 8, 13, 18, 23, …… . . , 5t + 3), t ≥ 0, if 5t + 1, 5t + 3 ≤
n − 1}. 

 

2.3.2 Connected dominating set of 𝐴𝑛 

Let's consider a connected dominating set 𝑆, where 𝑆 is a 

subset of the vertex set 𝑉(𝐴𝑛) of the antiprism graph 𝐴𝑛 for 

n ≥ 3. This set S can be defined in the following way: 

 

𝑆 = {𝑣𝑖  , i = 1, 2, 3, 4, 5, ……… , n − 1 for n ≥ 3}. 
 

2.3.3 Total dominating set of 𝐴𝑛 

Let's consider a total dominating set 𝑆, where 𝑆 is a subset 

of the vertex set 𝑉(𝐴𝑛) of the antiprism graph 𝐴𝑛 for n ≥ 3. 

This set S can be defined in the following way: 

 

𝑆 = {(𝑣𝑖 , i = 1, 2, 8, 9, 15, … . , 7t + 1, 7t + 2) ∪ (𝑢𝑖, i =
4, 5, 11, 12, 18, … , 7t + 4, 7t + 5), t ≥ 0, if 7t + 1, 7t + 2,
7t + 4, 7t + 5 ≤ n for n ≥ 3}. 
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Theorem: 2.1 [17] For n ≥ 3, let 𝐺 be a connected graph 

with n vertices, then 𝛾𝑡(𝐺) ≤
2𝑛

3
. 

 

Theorem: 2.2 Let  𝐺  be a graph with 𝑛  vertices and 

minimum degree (𝛿(𝐺)) of at least 3, then 𝛾𝑡(𝐺) ≤
𝑛

2
. 

 

Theorem: 2.3 [18] Let 𝐶𝑛 be the cycle with n- vertices, then 

𝛾𝑠(𝐶𝑛) = ⌈
3𝑛

7
⌉ for all n ≥ 3. 

 

Theorem: 2.4 [19] For the Quartic graph Qn(𝑛 > 9), the 

domination number, 

 

𝛾(𝑄𝑛) = {
⌈
𝑛

5
⌉  𝑖𝑓 n ≡ 0, 1, 2, 3 (mod 5)

⌈
𝑛

5
⌉ + 1 𝑖𝑓 n ≡ 4 (mod 5)

 

 

Theorem: 2.5 [19] For the Quartic graph Qn(𝑛 > 9), the 

independent domination number, 

 

𝛾𝑖(𝑄𝑛) =

{
 
 

 
 ⌈

𝑛

5
⌉  𝑖𝑓 n ≡ 0, 2 (mod 5) 

⌈
𝑛

5
⌉ + 1 𝑖𝑓 n ≡ 1, 4 (mod 5)

⌈
𝑛

5
⌉ + 2 𝑖𝑓 n ≡ 3 (mod 5)

 

 

Theorem: 2.6 [19] For the Quartic graph Qn (𝑛 > 9), the 

connected domination number, 

 

𝛾𝑐(𝑄𝑛) = {
⌊
𝑛

3
⌋  𝑖𝑓 n ≡ 2 (mod 3) 

⌈
𝑛

3
⌉  𝑖𝑓 n ≡ 0, 1 (mod 3)

 

 

 

3. RESULTS 

 

In this segment, we analyse the parameter called the IDN, 

CDN, TDN, and SDN of the antiprism graph. These results 

indicate a relationship between the independent Domination 

Number IDN and other variables, such as the total domination 

number. Additionally, these findings establish upper bounds 

on the IDN that are optimal and depend on the graph's order. 

 

Theorem: 3.1 For the antiprism graph An the independent 

domination number, γi(An) = ⌈
2n

5
⌉ for all n ≥ 3. 

 

Proof: 

The independent dominating set 𝑆 of An  is Figure 4, it is 

clearly depicted that the vertex 𝑣1  on the inner cycle 

dominates {𝑣𝑛, 𝑢1, 𝑢𝑛, 𝑣2}. The vertex 𝑣3  may be chosen for 

the dominating set as 𝑣2 is already dominated by 𝑣1. To obtain 

the independent dominating set, let us move to the vertex 𝑢3 

which dominates the vertices of the set {𝑣3, 𝑣4, 𝑢2, 𝑢4}. In the 

same way, were attempting to find  γi(An)  is minimum 

independent dominating set. The following details are: 

 

Case 1. If 𝑛 = 10𝑟 + 1, 10𝑟 + 3, 10𝑟 + 6, 10𝑟 + 8;  𝑟 ≥ 0, 

then 𝑆 = 𝐴 ∪ {un−1},  where  𝐴 = {{𝑣5𝑡+1, 𝑢5𝑡+3;  𝑡 ≥

0}, 𝑖𝑓 5𝑡 + 1, 5𝑡 + 3 ≤ 𝑛 − 1}. From definition 2.3.1, every 

vertex in the set 𝑆 is non-adjacent to any other vertex within 𝑆. 

In such cases, the cardinality of set 𝑆, denoted as |𝑆|, is equal 

to the number of vertices in  𝑆 , which can be calculated as 

⌈
2n

5
⌉  for all n ≥ 3. The reasoning for case 𝑛 = 6 is presented, 

where the set of vertices 𝑆 = {𝑣1, 𝑢3, 𝑢5}  is an IDN of A6 

and  |𝑆| = 3 = ⌈
2n

5
⌉ .Similarly argument for the cases 𝑛 =

10𝑟 + 1, 10𝑟 + 3, 10𝑟 + 6, 10𝑟 + 8; 𝑟 ≥ 0. On the contrary, 

if the set of vertices 𝑆 = {𝑣1, 𝑢2, 𝑣4, 𝑢5}  is an independent 

dominating set of 𝐴6  & |𝑆| = 4, then it is contradicting the 

definition of IDN [19]. Therefore, |𝑆| = 3 = γi(𝐴6) = ⌈
2n

5
⌉. 

Hence, γi(𝐴𝑛) = ⌈
2n

5
⌉  for n ≥ 3. 

 

Case 2. If 𝑛 = 10𝑟 + 4, 5𝑟, 10𝑟 + 7, 10𝑟 + 9, 10𝑟 +

2;  𝑟 ≥ 0 , then 𝑆 = {𝐴}  where  𝐴 = {{𝑣5𝑡+1, 𝑢5𝑡+3; 𝑡 ≥

0}, 𝑖𝑓 5𝑡 + 1, 5𝑡 + 3 ≤ 𝑛 − 1}. From definition 2.3.1, every 

vertex in the set 𝑆 is non-adjacent to any other vertex within 𝑆. 

In such cases, the cardinality of set 𝑆, denoted as |𝑆|, is equal 

to the number of vertices in 𝑆, which can be calculated as 

⌈
2n

5
⌉  for all n ≥ 3 . The reasoning for the case  𝑛 = 5  is 

presented, where the set of vertices 𝑆 = {𝑣1, 𝑢3} is an IDN of 

𝐴5 and |𝑆| = 2 = ⌈
2n

5
⌉. Similarly, argument for the cases𝑛 =

10𝑟 + 4, 5𝑟, 10𝑟 + 7, 10𝑟 + 9, 10𝑟 + 2;  𝑟 ≥ 0 . On the 

contrary, if the set of vertices 𝑆 = {𝑣1, 𝑢2, 𝑣4}  is an 

independent dominating set of 𝐴5 & |𝑆| = 3 , then it is 

contradicting the definition of IDN [19]. Consequently, |𝑆| =

2 = γi(𝐴5) = ⌈
2n

5
⌉. Hence, γi(𝐴𝑛) = ⌈

2n

5
⌉  for n ≥ 3. 

 

Theorem: 3.2 For the antiprism graph An the domination 

number, 

 

γ(An) = γi(An) = ⌈
2n

5
⌉ for n ≥ 3. 

 

Proof: 

From Theorem 3.1, we founded γi(An) = ⌈
2n

5
⌉  for n ≥

3. According to definition 2.3.1, 𝑆  is considered an 

independent dominating set of the antiprism graphAn . This 

means that, every vertex in 𝑆  is not adjacent to any other 

vertex within 𝑆. Accordingly, 𝑆 represents the least cardinality 

dominating set of  An . Thus, the equivalent sets are the 

dominating set and the independent dominating set. Therefore, 
|𝑆| = γ(An) = γi(A5) for n ≥ 3. 

Hence, γ(An) = γi(An) = ⌈
2n

5
⌉  for n ≥ 3. 

 

Theorem: 3.3 For the antiprism graph  An  the connected 

domination number, γc(An) = (n − 1) for n ≥ 3. 
 

Proof: 

LetAn be a 4-regular graph with 𝑛 faces, consisting of 2𝑛 

vertices and 4𝑛 edges. It has a girth of 3, indicating that the 

shortest cycle in the graph has a length of 3. The set 
{𝑢1, 𝑢2, … , 𝑢𝑛} indicates the vertices on the outer cycle, while 
{𝑣1, 𝑣2, … , 𝑣𝑛}  denotesthe vertices on the inner cycle. 

According to definition 2.3.2, each vertex within the set 𝑆 is 

guaranteed to have atleast one adjacent vertex also belonging 

to 𝑆, then |𝑆| is equivalent to the number of vertices in 𝑆 is 

equivalent to n − 1 for n ≥ 3. The reasoning for case 𝑛 = 3 is 

presented, where the set of vertices 𝑆 =  {𝑣1, 𝑣2} is connected 

dominance number of A3 and |𝑆| = 2 = n − 1. Likewise, we 

can make a similar argument for cases when 𝑛 ≥ 4 . 
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Conversely, if we consider the set of vertices 𝑆 = {v1, u2,  v2} 
as a connected dominating set of  A3 , where |𝑆| = 3 , it 

contradicts the definition of CDN [19]. Consequently, |𝑆| =
2 = γc(A3) = n − 1. Hence, γc(An) = (n − 1) for n ≥ 3. 

 

Theorem: 3.4 For the antiprism graph An(n ≥ 3), the total 

domination number, 

 

γt(An) = {
⌈
4n

7
⌉  if n ≡ 0, 1, 2, 3, 4, 6 (mod 7)

⌈
4n

7
⌉ + 1  if n ≡ 5 (mod 7).

 

 

Proof: 

Let An is a 4-regular graph with 𝑛 faces, consisting of 2𝑛 

vertices and 4𝑛 edges. It has a girth of 3, indicating that the 

shortest cycle in the graph has a length of 3. The set 
{𝑢1, 𝑢2, . . . , 𝑢𝑛} indicates the vertices on the outer cycle, while 

{𝑣1, 𝑣2, . . . , 𝑣𝑛} denotes the vertices on the inner cycle. Let 𝑆 

be a total dominating set denoted as 𝑆 ⊆ 𝑉(𝐴𝑛) for n ≥ 3, the 

following two cases are: 

 

Case (i) Suppose n ≡ 0, 1, 2, 3, 4, 6 (mod 7). 
According to the clarification of a total dominating set [20], 

the induced subgraph < 𝑆 >  does not contain any isolated 

vertices. This means that 𝑆 contains atleast one neighboring 

vertex for each vertex. From definition 2.3.3, 𝑆  contains at 

least one neighboring vertex for each vertex. Then |𝑆|  is 

equivalent to the number of vertices in 𝑆 is equivalent to ⌈
4n

7
⌉ 

for n ≥ 7. The reasoning for case 𝑛 = 7 is presented, where 

the set of vertices 𝑆 = {𝑣1, 𝑣2, 𝑢4, 𝑢5} is TDN of A7 and |𝑆| =

4 = ⌈
4n

7
⌉  for n ≥ 7.  Similarly argument for the cases n ≡

0, 1, 2, 3, 4, 6 (mod 7). On the contrary, if the set of vertices 

𝑆 = {𝑣1, 𝑢1, 𝑣4,𝑢4,𝑣7} is a total dominating set of A7 & |𝑆| = 5, 

then it’s contradicting the definition of TDN [20]. 

Consequently, |𝑆| = 4 = γt(A7) = ⌈
4n

7
⌉ for n ≥ 7. 

Hence, γt(An) = ⌈
4n

7
⌉  if n ≡ 0, 1, 2, 3, 4, 6 (mod 7). 

 

Case (ii) Supposen ≡ 5 (mod 7). 
According to the clarification of a total dominating set [20], 

the induced subgraph < 𝑆 >  does not contain any isolated 

vertices. This means that 𝑆 contains atleast one neighbouring 

vertex for each vertex. From definition 2.3.3, 𝑆  contains 

atleast one neighbouring vertex for every vertex. Then |𝑆| is 

equivalent to the number of vertices in 𝑆  is equivalent to 

⌈
4n

7
⌉ + 1  for  n ≥ 7 . The reasoning for case 𝑛 = 12  is 

presented, where the set of vertices 𝑆 = {𝑣1, 𝑣2, 𝑢4, 𝑢5,
𝑣8, 𝑣9, 𝑢11, 𝑢12} is total domination number of A12 and |𝑆| =

8 = ⌈
4n

7
⌉ + 1 for n ≥ 7. Similarly argument for the cases n ≡

5 (mod 7).  On the contrary, if the set of vertices 𝑆 =
{𝑣1,  𝑣2,  𝑢3,  𝑢4,  𝑣6,  𝑣7,  𝑢8,  𝑢9, 𝑢12} is a total dominating set 

of A12 and |𝑆| = 9, then it is contradicting the definition of 

TDN [20]. Consequently, |𝑆| = 8 = γt(A12) = ⌈
4n

7
⌉ +

1 for n ≥ 7. 

Hence, γt(An) = ⌈
4n

7
⌉ + 1  if n ≡ 5 (mod 7). 

 

Theorem: 3.5 [19] For the Quartic graph Qn(𝑛 ≥ 10), the 

secure domination number, 

 

𝛾𝑠(𝐺)={
⌊𝑛
3
⌋ + 1 𝑖𝑓 𝑛 ≡ 0 (𝑚𝑜𝑑 3)

⌈𝑛
3
⌉ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Proof: 

Let G contains set of vertices 

{𝑣1, 𝑣2, 𝑣3, ……… . , 𝑣𝑖 , 𝑣𝑖+1, 𝑣𝑛 }. Then all vertices are with 

degree four. Then 𝑣1 vertex is adjacent to 𝑣2, 𝑣4 and 𝑣𝑛, 𝑣𝑛−1. 

It makes girth four. Therefore any 𝑣𝑖 is adjacent to 𝑣𝑖+1, 𝑣𝑖+3 

and 𝑣𝑖−1, 𝑣𝑖−3. The proof of the theorem we having the two 

cases. 

 

Case (i) If 𝑛 ≡ 0(𝑚𝑜𝑑 3).  In this case, the number of 

vertices is 6, 9, 12,…,3i, where 𝑖 = 1,2, … . . , 𝑛.  By the 

construction of quadratic with girth 4 any 𝑣𝑖is dominated by 

𝑣𝑖+1, 𝑣𝑖+3, and 𝑣𝑖−1, 𝑣𝑖−3  vertices so at least two dominating 

vertices need for girth four. But a secure dominating set needs 

three vertices. The dominating set is at least ≤ 2 for 𝑛 > 9 

and it secures dominating set 𝑆 ≤ 4 for 𝑛 > 9 and so on. In 

this way, we proceed with at least one vertex needed to add for 

⌊𝑛
3
⌋  vertices in a secure dominating number. Hence ⌊𝑛

3
⌋ +

1 𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑 3). 
 

Case (ii) Suppose the number of vertices other than 𝑛 ≡
0 (𝑚𝑜𝑑 3). We used the same method. We need not add one 

extra vertex if it proves that ⌈𝑛
3
⌉ in all other vertices. It provides 

the theorem. 

 

Theorem: 3.6 For the antiprism graph An ( n ≥ 3),  the 

secure domination number, γs(An) = {
⌈
n

2
⌉  if n is odd

⌊
𝑛

2
⌋  if n is even.

 

 

Proof: 

The graph An is a 4-regular graph with 𝑛-faces, consisting 

of 2𝑛 vertices and 4𝑛 edges. It has a girth of 3, indicating that 

the shortest cycle in the graph has a length of 3. The set 

{𝑢1, 𝑢2, . . . , 𝑢𝑛} indicates the vertices on the outer cycle, while 

{𝑣1, 𝑣2, . . . , 𝑣𝑛} represents the vertices on the inner cycle. Let 

𝑆 be a secure dominating set 𝑆 ⊆ V(An) for alln ≥ 3. Then it 

is discussed in two cases. 

 

Case (i) When n is odd. 

Let us consider a secure dominating set 𝑆,  where 𝑆 is a 

subset of the vertex set 𝑉(An)  for all n ≥ 3 , is defined as 

follows 𝑆 = {𝑣𝑖; 𝑖 = 1, 3, 5, 7, … . . , 𝑛}, and each vertex in S 

atmost four adjacent vertices in 𝑉 − 𝑆. Then 𝑁[𝑆] = 𝑁[𝑣1] ∪
 𝑁[𝑣3]  ∪  𝑁[𝑣5]  ∪ …… .∪ 𝑁[𝑣𝑛] = 𝑉.  Also, 𝑁[𝑣𝑖] ∩ 𝑆 ≤
2 for n ≥ 3.  Therefore, 𝑆  can be regarded as the secure 

dominating set of  An , and its cardinality, denoted as |𝑆| is 

equal to ⌈
n

2
⌉, where |𝑆| represents the number of vertices in 𝑆. 

Thus, γs(An) = ⌈
n

2
⌉  for n ≥ 3 . Suppose 𝑁[𝑣𝑖] ∩ 𝑆 = 4 for 

any vertex 𝑣𝑖  in S, then |𝑆| = ⌈
n

2
⌉+1 for n ≥ 3 , it is not 

satisfied to be definition of SDN [21]. 

Hence, γs(An) = ⌈
n

2
⌉  if n is odd. 

 

Case (ii) When n is even. 

Let us consider a secure dominating set 𝑆,  where 𝑆 is a 

subset of the vertex set 𝑉(An)  for all n ≥ 3 , is defined as 

follows 𝑆 = {𝑣𝑖;  𝑖 = 1, 3, 5, 7, … . . , 𝑛 − 1}, and every vertex 

in S at most four adjacent vertices in  𝑉 − 𝑆 . Then 𝑁[𝑆] =
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 𝑁[𝑣1] ∪  𝑁[𝑣3]  ∪  𝑁[𝑣5]  ∪ …… .∪ 𝑁[𝑣𝑛] = 𝑉.  Also,

𝑁[𝑣𝑖] ∩ 𝑆 ≤ 2 for n ≥ 9. Therefore, 𝑆 can be regarded as the

secure dominating set of An, and its cardinality, denoted as |𝑆|,

is equal to ⌊
𝑛

2
⌋, where |𝑆| represents the number of vertices in

𝑆. Thus, γs(An) = ⌊
𝑛

2
⌋  for n ≥ 3. Suppose 𝑁[𝑣𝑖] ∩ 𝑆 = 4 for

any vertex 𝑣𝑖  in S, then |𝑆| = ⌊
𝑛

2
⌋+1 for n ≥ 3 , it is not

satisfied to be definition of SDN [21]. Hence, 

γs(An) = ⌊
𝑛

2
⌋  if n is even.

3

4. DISCUSSION

Within our investigation, we plunge into a range of pivotal 

inquiries and assumptions surrounding the IDN. Our focus 

extends to probing the structural characteristics of domination 

perfect graphs and assessing independent domination 

outcomes within diverse graph families. Particularly 

noteworthy is our scrutiny of the maximal ratio between IDN 

and domination number, an analysis of maximum figures, and 

the formulation of upper thresholds for connected 4-regular 

graphs. 

Moreover, an intriguing conjecture, as detailed in reference 

[22], captures our attention. This conjecture postulates 

γ𝑖(G) ≥ 𝑛 remains valid for all connected graphs possessing a

measure of at least 4. This proposition presents itself as a 

compelling subject deserving of thorough investigation. 

The visualization depicted in Figure 5 and Figure 6 aptly 

illustrates the diverse categories of domination parameters. 

The incorporation of Blue darker solid vertices within these 

graphical representations serves to indicate any dominating set, 

offering a visual insight into these intricate concepts. 

We noted some significant findings from the graph Qn, as

presented below. 

(i) When n=7, the graph Qn forms a Quartic graph with a

girth of 3 and n vertices. In this case, we have 𝛾(Qn) = 2 =
𝛾𝑖(Qn)=𝛾𝑐(𝐺Qn) = 𝛾𝑡(Qn).

(ii) When n=8, the graph Qn forms a Quartic graph with a

girth of 3 and n vertices. In this case, we have 𝛾(Qn) = 2 =
𝛾𝑐(Qn)=𝛾𝑡(Qn) but 𝛾𝑖(Qn) = 4.

(iii) When n=9, the graph Qn forms a Quartic graph with a

girth of 3 and n vertices. In this case, we have 𝛾(Qn) = 3 =
𝛾𝑖(Qn)=𝛾𝑐(Qn) = 𝛾𝑡(Qn).

(iv) When n=10, the graph Qn forms a Quartic graph with a

girth of 3 and n vertices. In this case, we have 𝛾(Qn) = 2 =
𝛾𝑖(Qn) but 𝛾𝑐(Qn) = 4 = 𝛾𝑡(Qn).

(v) When n=11, the graph Qn forms a Quartic graph with a

girth of 3 and n vertices. In this case, we have𝛾 (Qn) = 3 =
𝛾𝑐(Qn)=𝛾𝑡(Qn) but 𝛾𝑖(Qn) = 4.

(vi) When n=12, the graph Qn forms a Quartic graph with a

girth of 3 and n vertices. In this case, we have 𝛾(Qn) ≤
𝛾𝑖(Qn) ≤ 𝛾𝑐(Qn)=𝛾𝑡(Qn).

Figure 5. Comparing the different types of dominating set of Qn
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Figure 6. Comparing the different types of dominating set of An 

 

Novel categories of graphs possessing identical domination 

and independent domination numbers are presented, 

accompanied by the precise computation of both their 

domination and independent domination values [23]. For the 

antiprism graph An, then γt(An) = 2 for n=3, γt(An) = 3 for 

n=4 and γt(An) = 4  for n=5 & 6. Furthermore, when 

exploring the antiprism graph  An , it can be observed that 

γ(An) = γi(An) = ⌈
2n

5
⌉  for all n ≥ 3 and γc(An) = (n −

1) for all n ≥ 3. Finally, we analysed the antiprism graph An, 

then γt(An) ≥ γs(An)  for all n ≥ 3 . In this paper, we 

conclude that the inequality is  γi(An) ≤ γ𝑡(An) , γ𝑡(An) ≤
γ𝑐(An)  and γs(An) ≤ γ𝑡(An)  and also inequalities satisfied 

the domination chain. 

 

(i.e.)γ(An) = γi(An) ≤ γs(An) ≤ γt(An) ≥ γc(An) 
 

 

5. APPLICATIONS 

 

The concept of the connected domination number holds 

substantial practical implications in the realm of computer 

networks, particularly in scenarios where a cohesive cluster of 

nodes assumes the role of a fundamental communication 

backbone within the network architecture. This notion gains 

paramount significance, especially within the domain of 

mobile networking technology. Furthermore, the notion of 

domination parameters extends its practical relevance to the 

domain of coding theory. 

The healthcare sector frequently emerges as a prime target 

for malicious cyber activities, grappling with an alarming 

frequency of cyberattacks. In this light, the imperative of 

prioritizing the impregnability of the network infrastructure 

becomes indisputably clear. This strategic emphasis is 

indispensable not only to safeguard critical and sensitive 

information but also to proactively thwart potential threats that 

could emanate from vulnerabilities in the system [24]. 

In the intricate landscape of cybersecurity, the strategic 

integration of a graph-based approach unfolds as an 

advantageous strategy. Within this approach, diverse graph 

domination parameters, including but not limited to location-

based and secure domination, assume pivotal roles. The 

insights derived from these parameters contribute 

substantively to the augmentation of security operations. By 

harnessing the potential of these parameters, security 

professionals acquire an enhanced capacity to meticulously 

scrutinize and bolster their systems against an array of 

potential threats. 

The framework of secure dominating sets can be likened to 

a network of processors (nodes) orchestrating the secure 
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transmission of sensitive patient data to other designated 

processors within the system [25]. This construct facilitates 

seamless remote access for medical practitioners, patients, and 

their families, all while establishing an impervious bulwark 

against any unauthorized access attempts orchestrated by 

malicious hackers. The establishment of secure 

communication conduits through these dominating sets 

furnishes a robust platform for the confidential sharing of 

critical healthcare data among authorized entities [26]. This 

sophisticated architecture effectively ensures the preservation 

of data integrity and privacy, maintaining an unwavering 

stance against potential security breaches. 

Central to the attainment of secure communication 

objectives is the meticulous monitoring of nodes entrenched 

within the minimum secure dominating set. This targeted 

concentration on a specific set of nodes conveys the capability 

to safeguard not only the overall security and coherence of the 

network but also the sanctity of the information transmitted 

through it. Through a vigilant oversight of these pivotal nodes, 

latent vulnerabilities can be promptly identified and 

efficaciously mitigated, ushering in a state of enhanced 

security and fortification for the entire system. 

When we send a message from one mobile device to another 

mobile device in an altered signal range, there is a chance that 

data will be vanished or the message will be sent after an 

extensive time. These are primarily due to the unstructured or 

unsystematic manner in which message service systems are 

located, as well as an unprotected network. The secure 

domination can be used to overcome these issues. We provide 

the least or the smallest amount of message centers through 

secure domination in order to cover and secure the complete 

block or chain of message centers. To address the 

aforementioned difficulties, we propose total and secure 

dominance with a small number of message centers. 

 

 

6. CONCLUSION 

 

This paper contributes to the area of graph protection 

concept. We have explored multiple variations of vertex 

domination concepts within the context of Quartic graph and 

antiprism graph. It is dedicated to the research of the antiprism 

graph's IDN, CDN, TDN, and SDN. We obtain the bounds for 

the aforementioned parameters and in particular, for the CDN 

the bound is n-1, for n≥3. There are several possibilities for 

future work in secure domination, and SDN of a graph can be 

determined by adding, deleting or altering edges, as well as 

deleting vertices and subdivisions. 
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