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In metropolitan areas, traffic jams on city streets are a major source of annoyance and 

financial losses. Recent advancements in data processing algorithms and the widespread 

availability of traffic detectors have made it possible to implement data-driven 

strategies for reducing traffic congestion. In order to benefit from intersection 

cooperation in this setting, this paper presents a distributed control strategy based on 

RL. In this scenario, traffic prediction software's embedding that takes into account the 

state of nearby junctions is used to synthesize an RL controller that controls the traffic 

lights. Loop detector characteristics are insufficient for precise data imputed in 

sophisticated traffic control systems. Most current imputation methods only use these 

extracted characteristics, which leads to the creation of data replicas that lack the 

necessary precision. The clean data are first given a statistical multi-class label, with 

classes ranging from C1 to Cn. Then, using a deep recurrent neural network (RNN) 

model, the best data model is created from the labelled spotless data and applied to the 

class of models in the missed-volume data. Results from simulations using TRANSYT 

demonstrate that the suggested strategy outperforms conventional methods in terms of 

waiting times and other important presentation indices. 
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1. INTRODUCTION

Fifth-generation (5G) wireless networks allow for more 

connectivity and information sharing between devices in 

communication networks than ever before [1]. The Internet of 

Connected Cars (IoCV) has great potential as an IoT 

application because it increases the capacity to build an 

effective transportation system that serves cars. Together, 

intent-based networking and the IoCV pave the way for 

advancements in the ITS that are crucial to shrewd cities. As 

the number of IoCVs grows and the needs of vehicular 

applications become more varied, MNOs must quickly 

develop solutions that ensure users receive services that meet 

or exceed their expectations in terms of quality, efficiency, and 

responsiveness [2]. 

ITS, which dynamically arranges traffic signals to dismiss 

traffic mobbing and improve driving knowledge, has been 

focusing on IoCV traffic control, among other applications [3]. 

Growth in the global population and the subsequent 

proliferation of automobiles contribute to urban congestion. 

The greatest way to make transportation infrastructure more 

flexible, adaptive, and efficient is to implement a plan for 

managing traffic signals [4]. Human-controlled, traditional, 

and sensitive traffic signalling systems include the traffic 

officer's use of hand signals and sometimes verbal interaction 

as his or her instincts determine which vehicles should proceed 

or stop [5]. In the framework of an intelligent transportation 

system, an urban traffic regulation scheme handles the 

regulation of traffic signals and the grooming of traffic flows. 

The regulation of traffic lights is now an essential part of 

traffic administration. On the basis of their respective process 

modes, traffic signal controllers have been classified as either 

timed signal controllers or adaptive signal controllers. Green 

and red lights' cycle times have been reduced, and the timing 

of these signals has adapted from green to red to accommodate 

urban traffic. In order to build signal controllers for 

determining calibrated traffic lights, neural networks and 

fuzzy control models have been published in the literature [6]. 

Different methods of traffic management have been used in 

cities all around the globe. It is still difficult to find a workable 

system for managing traffic lights in congested metropolitan 

regions. Because of the high financial cost and the harmful 

impacts on residents of metropolitan areas, such as the creation 

of air pollution, the delay of emergency services, and stress-
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related nerve disorders, traffic congestion is a severe problem 

in today's cities [7]. Major cities all over the world experienced 

significant drops in motor traffic as a result of the global 

lockdowns brought on by the COVID-19 epidemic in 2020. 

New evidence, however, suggests that traffic congestion may 

soon continue its rising trend over the past few years. Over $53 

billion was lost in 2021 due to traffic congestion in the United 

States, up 41% from the previous year [8]. In this situation, 

effective measures to lessen traffic are of the utmost 

importance. 

One common method for reducing traffic delays is the 

installation of urban traffic control (UTC) schemes at busy 

intersections. Contemporary Intelligent Transportation 

Schemes (ITS) rely on UTC systems as their foundation 

because of the importance of using technology to efficiently 

manage traffic [9]. As traffic detectors become more widely 

used and computational equipment becomes more capable of 

efficiently processing data, researchers are focusing on 

developing data-driven algorithms for implementing a variety 

of high-level applications that help improve traffic 

circumstances [10]. Traffic forecasting and real-time 

automatic controllers for traffic lights, which enable instant 

response based on actual traffic circumstances, are two of the 

most explored applications in this field. There have been 

several proposals for AI-based intelligent traffic management 

systems to manage congested crossings [11, 12]. The Sydney 

Coordinated Adaptive Traffic System (SCATS), SCOOT, 

InSync, and UTOPIA are all examples of such systems. 

Intelligent traffic management systems use loop detector data 

on traffic volumes to manage intersection congestion. Traffic 

volume may be estimated with the use of loop detectors by 

counting the number of cars that drive past a simple magnetic 

field installed on the road. However, these devices have their 

limits and can be inaccurate. 

Critical to any data analysis process, data preparation takes 

on added significance when working with imperfect data, such 

as the wrong and outlier data that results when the real value 

does not match the computed value by the indicator over a 

certain time period [13]. Longer wait times at junctions owing 

to inaccurate data can be frustrating for drivers and contribute 

to pollution from idling vehicles [14]. Congestion at junctions 

and improper timing of signals are only two examples of how 

faulty information may compromise safety. This study 

employs neural networks (NNs), which have these 

applications due to their capacity to uncover complicated 

linkages within the process [15] because of the data-driven 

nature of the issue and the stochastic complexity. The capacity 

to learn optimally from the situation makes RL NNs models 

an attractive candidate for controller design. 

The residual sections of the paper are prearranged as 

shadows: In Section 2, the relevant literature and the 

corresponding problems are presented, while in Section 3, the 

suggested model is introduced and briefly explained. Section 

4 contains the experimental analysis and its comments. The 

research's scientific impact is summed up in Section 5. 

 

 

2. RELATED WORKS 

 

In resources, Dangi et al. [16] propose a hybrid model that 

syndicates autoregressive integrated moving over specific 

intervals. The ARIMA-CNN-LSTM model is compared and 

contrasted with three widely used models: ARIMA, CNN, and 

LSTM. In terms of forecasting output under both normal and 

atypical traffic situations, the suggested model is seen to 

perform better than the other deep learning models evaluated. 

While the recommended models offered by Dangi and 

Lalwani [17] may accurately predict ordinary traffic and so 

help to enhance services, they are unable to do so for the 

unpredictable traffic situations that occur during festivals. To 

address this challenge, we devised CNN+LSTM, a syndicate 

of CNN and LSTM to anticipate cumulative network traffic 

over certain periods, allowing for accurate scaling and 

resource estimation in a 5G network by capitalizing on traffic 

load changes. According to a contrast of the produced output 

with current approaches, the proposed model outdoes the other 

evaluated deep learning replicas and existing methods that 

predict the output in both traffic circumstances. 

In order to facilitate the simultaneous development of 

xApps optimization at the user level, Lacava et al. [18] have 

introduced ns-O-RAN. On top of that, we provide the first-

ever intelligent handover architecture for O-RAN Traffic 

Steering (TS) based on the individual user. An advanced 

Convolutional Neural Network (CNN) architecture is 

integrated with the Random Ensemble Mixture (REM) CQL 

algorithm to choose the best serving base station for each 

network user. Our TS xApp operates on the near-RT RIC and 

directs the ns-O-RAN base stations; it was trained using over 

40 million data points. We conduct an evaluation of the 

performance on deployment supporting up to 126 users over 

eight base stations and find that the xApp-based handover 

increases throughput and spectral competence by an average 

of 50. 

In order to regulate the volume and velocity of data 

transmitted via the 5G-VANET, Ahmed et al. [19] propose a 

smart real-time shaping system that makes use of distributed 

reinforcement learning (RMDRL). In order to control the 

necessary traffic multimedia stream over the 5G-VANET, the 

suggested system picks the accurate judgements of coding 

parameters and rates. In order to get the best traffic rate value 

for real-time hypermedia streaming via a 5G connection, the 

effect of the above-mentioned has been extensively researched 

utilizing five video clips. When compared to the standard 

traffic shaping method, the suggested algorithm achieves 

better results in terms of total frame delay. This study will 

improve the 5G-VANET data connection infrastructure and 

make it possible to build new, more pleasant facilities for 

vehicle production. 

Bojović et al. [20] propose and investigate an XR loopback 

method that uses input from an XR application to adjust XR 

traffic to the current state of a 5G network in real-time. We 

offer several XR loopback methods, tactics, and parameter 

combinations and analyze how these affect the overall 

performance of 5G networks. Using 3GPP mixed XR traffic 

settings, and we create realistic end-to-end 5G network 

situations for our extended simulation campaigns. Adapting to 

5G network circumstances while keeping the XR quality of 

service needs under control, the proposed XR loopback 

method improves XR presentation in 5G networks. Taking full 

use of the 5G network's capabilities, we offer a variety of 

insights and practical perspectives on XR loopback design that 

pave the way for 5G-Advanced network architecture. 

Kavehmadavani et al. [21] present a JIFDR framework for 

managing radio resources in uncertain traffic conditions based 

on a combination of flow-split distribution, dynamic user 

association, and intelligent traffic prediction. To accommodate 

varying conditions over time, we partition the specified 

optimization issue into long-term and short-term subproblems, 
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the latter of which is highly reliant on the ideal dynamic traffic 

demand. To efficiently handle the long-term subproblem, 

which involves anticipating future traffic demands, RAN 

slicing, and flow-split choices, we employ an LSTM model. 

Using a series of convex approximations, the resultant non-

convex short-term subproblem is transformed into a form 

amenable to computer treatment. Finally, simulation data are 

shown to show that the suggested algorithms are superior to 

various industry-standard alternatives. 

In order to meet the varying quality-of-service (QoS) needs 

of various traffic kinds, Habib et al. [22] offer hierarchical 

reinforcement learning (HRL). Using a meta-controller and a 

controller in a bi-level design, HRL is able to greatly boost 

system performance. In our suggested approach, the meta-

controller sets the load-balancing threshold, and the controller 

directs traffic to the most suitable RAT. In comparison and a 

threshold-based heuristic baseline, HRL achieves greater 

average system throughput (8.49%) and reduced network 

latency (27.14%) in simulations. 

To guarantee time-critical traffic's constrained latency and 

dependability while increasing bandwidth utilization, Wu et al. 

[23] present semi-persistent preparation with a pre-emption 

technique. Based on the assessment findings, the suggested 

mechanism is superior to dynamic scheduling in terms of 

reducing end-to-end latency for both time-triggered traffic. 

The suggested strategy achieves end-to-end delay 

performance that is competitive with the static scheduling 

approach for event-triggered traffic. When the network 

demand is high, it greatly increases resource utilization 

compared to the static scheduling strategy. In the simulation, 

the best delay-to-resource utilization ratio is attained when 

30% of the blocks are reserved. 

 

2.1 Problem statement 

 

Congestion on the roads is a major source of frustration in 

the big city. It results in pollution of the environment, 

transportation problems, disruptions to people's daily lives, 

and economic losses. Scientists are working on a solution by 

comparing and contrasting traffic situations in different 

countries. Model predictive techniques were implemented in 

MATLAB to create a traffic light controller for this project. 

We began with a dynamic model based on an intersection and 

proposed expanding a single intersection into eight. We then 

proposed a multiagent model to facilitate the linking of 

intersections. In the end, we proposed a model of predictive 

control as further proof of stability. The following is a brief 

explanation of why this study was conducted: 

❖ Connecting eight city intersections using multiagent 

systems. 

❖ The proposed model's stability and proof. 

❖ The length of the queue of waiting cars is cut down by the 

predictive controller built into the design model. 

❖ Compare the models with and without a controller in 

terms of the mean number of cars waiting in the queue. 

 

 

3. PROPOSED CONTROL SCHEME 

 

According to the suggested control strategy, each 

intersection Ii has a corresponding agent, ai, that can exchange 

data with its neighbouring agents, Ni. When agents are able to 

exchange information with one another, they may work 

together to forecast and manage traffic at intersections Ii and 

Ni. This is because each agent will have access to the state 

information of the neighbourhood Vi= ai Ni. Each intersection 

must be properly instrumented for the collection and 

management of traffic data in real-time. 

In order to distribute the prediction model and implement 

the decoder part in a cloud layer, it is projected an encoder and 

a linear decoder for traffic prediction, similar to the general 

architecture presented by Gómez [24]. To create the final 

prediction, the cloud gets encoded input from all agents in the 

projected scheme, and each agent shares its embedding of the 

forecast encoder with its neighbours and the cloud layer. In 

this method, each agent's RL controller may make use of the 

agent's own traffic data in addition to its own and its 

neighbours' prediction embeddings. 

Each agent in Ni is provided with an embedding of the other 

agents in Ni, and the RL controller is designed to make use of 

the predictor structure. In this configuration, control actions 

may be derived from neighbour data without resorting to cloud 

queries. A high-level diagram of the system's layout is 

portrayed in Figure 1. 

 

 
 

Figure 1. Distributed control scheme based on reinforcement 

learning 

 

 
 

Figure 2. Intersection model with eight stages 
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3.1 Intersection model 

 

The intersection perfect shown in Figure 2 of reference [25] 

is taken into account for controller design. The ideas of motion, 

phases, and cycles are central to this framework. A phase pkP 

is a collection of movements that flow concurrently during 

active, and a movement mj is a flow of cars in a particular 

direction. Figure 2 shows that there are eight possible actions 

(j=0, 1, 2, 3, 4, 6, and 7), with the even numbers (m=m0, 

m=m2, and m=m4) representing left turns and the odd 

numbers (m=m1, m=m3, and m=m7) representing through-

right manoeuvres. Eight phases (k=0, 1, 2, 3, 4, 5, 6, 7, and 8) 

are defined in the model as pairs of continuous movements that 

ensure safety and efficiency. This is the only set of 

permutations that will do. Finally, a traffic light cycle C is a 

predetermined repeating pattern of phases. 

 

3.2 Instrumentation at the intersection 

 

Each junction is presumed to have enough monitoring 

equipment. Detectors at each intersection can gather data in 

real-time on a variety of traffic characteristics for a given 

segment of incoming highways. Cameras pointed in the way 

of approaching highways can collect traffic data through 

image processing and serve as an example of a detector. In this 

method, the observable region is limited by the camera's field 

of view. The anticipated available traffic variables are: 

• Vehicle density: Total vehicles counted in a given region 

divided by a rough estimate of how many cars can fit there. 

• Vehicle queue: The proportion of cars that have stopped 

in the detected region to the total number of vehicles that may 

potentially fit there. 

• Occupancy: The fraction of the surveyed region that was 

driven on. 

• Mean speed: Normalized vehicle velocity in the monitored 

region. 

 

3.3 Control action 

 

Given a constant traffic light cycle Ci, the supervisor is a 

local object at intersection Ii that sets the activation timings tpk 

of the points Pk Pi. A constant cycle duration TCi must be set 

using a theoretical or practical approach for ease and to offer 

robustness against detector failures that preclude the gathering 

of data from a region. The controller then determines the ideal 

green period tGpk (also termed split) for each stage pk at cycle 

start, beginning with intersections. In this case, the least split 

time is five seconds, the yellow period is three seconds, 

duration is two seconds. 

 

3.4 Traffic prediction model 

 

In this part, we offer a high-level introduction to RL and the 

deep RL used in this study. 

The appropriate action rule for an agent is inferred by its 

interactions with the environment, and this is what 

reinforcement learning is all about. A 4-tuple (S, A, P, R) 

defines MDP. Let's say that S represents the original states and 

represents the initial actions. The chance of moving to states′ 

after performing the action in states is defined by the state 

transfer function, P: S A S 120, 1. R: S × A × S⟶ The value 

of R represents the incentive being offered. 

Following the formulation of a plan, the intelligence can 

engage with its surroundings in the manner depicted in Figure 

1. Intelligence in state st makes decision at. According to 

strategy (St.) at each time point t. Then, the state reward 

function is used to determine the following moment's state 

s(t+1) PM (St,At) and reward Rt=R(St,At). By repeating this 

process, we may reconstruct the intelligence's past states and 

behaviours (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝑇). Then, starting at time 0, dt 

represents actions that have been replicated for T historical 

transfers. 

The value function is defined as the weighted average 

rewards that result from continuing the activity from states in 

accordance with the strategy. 

 

𝑄𝜋(𝑠, 𝑎) ≡
𝔼𝑑𝑇

𝜋 [∑ 𝛾𝑘𝑅(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1)|𝑠0 = 𝑠, 𝑎0 = 𝑎𝑇
𝑘=0 ]𝑇→∞

𝐿𝑖𝑚   
(1) 

 

where, 𝜆 ∈ [0,1] is the reduction rate, and 𝔼𝑑𝑇

𝜋  signifies the 

regular process of the incidence mode in policy 𝜋 . Once a 

policy 𝜋, 𝜋′ meets 𝑄𝜋(𝑠, 𝑎) ≥  𝑄𝜋′
(𝑠, 𝑎) in any 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, 

since approach π can be predictable to bring more than 

𝜋′;  𝜋 ≥  𝜋′ is to reinforce learning and get the best technique 

𝜋 ∗ to meet any arrangement π and 𝜋 ∗ ≥  𝜋. 

The value function 𝑄∗ (The optimal value function) is set to 

𝜋∗ (
𝑎

𝑠
) = 𝛿(𝑎 − arg 𝑚𝑎𝑥𝑎′𝑄∗(𝑎, 𝑎′)) . The optimal policy 

function is the optimal Bernoulli equation: 

 

𝑄∗(𝑠, 𝑎) ≡ 𝔼𝑠′[𝑅(𝑠, 𝑎, 𝑠′) + 𝛾𝑚𝑎𝑥𝑎′𝑄∗(𝑠′, 𝑎′)] (2) 

 

Using the aforementioned relational model, we are able to 

make an estimate under the assumption that the requirements 

are met. Q-learning, the representative approach, has been 

proven to function well in numerous trials, but it is challenging 

and big state issues if the state space is discrete and the sum of 

states is not too enormous. The suggested RNN model for 

traffic control detection is described in more detail below. 

 

3.4.1 Architecture of deep RNN 

Deep RNN classifier is fed the extracted characteristics A. 

Layer-by-layer network architecture, deep recurrent neural 

networks [26] are comprised of several recurrent hidden layers. 

The recurrent connection in a Deep RNN continues to exist at 

the hidden layer. The Deep RNN classifier can efficiently 

process data under conditions of variable input feature length. 

It uses the past state's knowledge as input for the current 

forecast, and it iterates using the state's secret data. Because of 

its recurring nature, Deep RNN is excellent at manipulating 

features. Among the standard deep learning algorithms, Deep 

RNN is regarded as particularly effective as a classifier 

because of the temporal structure of the data. 

The configuration of considering the input vector of with 

layer at xth period as 𝐴(𝑤,𝑥) =

{𝐴1
(𝑤,𝑥)

,  𝐴2
(𝑤,𝑥)

,  𝐴𝑎
(𝑤,𝑥)

, … ,  𝐴𝑓
(𝑤,𝑥)

} and vector of with layer at 

𝑂(𝑤,𝑥) = {𝑂1
(𝑤,𝑥)

,  𝑂2
(𝑤,𝑥)

,  𝑂𝑎
(𝑤,𝑥)

, … ,  𝑂𝑓
(𝑤,𝑥)

}  respectively. 

Each vector pair is referred to as a unit. Here, a represents 

some arbitrary integer denoting the wth layer's units, and f 

stands for the total number of those units. 

In addition to this, the arbitrary unit quantity and the total 

sum of units of (𝑤 − 1)𝑡ℎ  layer are denoted as 𝑣  and 𝑈 , 

correspondingly. At this time, the input from the (𝑤 − 1)𝑖 

layer to the wth layer is represented as 𝑤(𝑤) ∈ 𝐿𝑓×𝑈, and the 

recurring weight of the wth layer is characterized as 𝑤(𝑤) ∈
𝐿𝑓×𝑓 . Here, however, the mechanisms of the input vector are 

uttered as, 
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𝐴𝑖
(𝑤,𝑥)

= ∑ 𝑝𝑎𝑚
(𝑤)

𝑂𝑚
(𝑤−1,𝑥)

+ ∑ 𝑜𝑎𝑎
(𝑤)

𝑂𝑎
(𝑤,𝑥−1)𝑓

𝑎
𝑈
𝑘=1   (3) 

 

where, 𝑝𝑎𝑚
(𝑤)

 and 𝑜𝑎𝑎
(𝑤)

 are the elements of 𝑤(𝑤)  and 𝜔𝜔  a 

signifies the arbitrary unit quantity of the wth layer. The 

rudiments of the output vector of the with layer are signified as, 

 

𝑂𝑎
(𝑤,𝑥)

= 𝛾((𝜔))(𝐹𝑎
(𝑤,𝑥)

)  (4) 

 

where, 𝛾((𝜔)) symbolizes the function. However, the function 

as 𝛾(𝐹) = tanh (𝐹) , the corrected function (ReLU) as 

𝛽(𝐹) = max(𝐹, 0) , and the logistic sigmoid purpose as 

𝛾(𝐹) =
1

(1+𝑒−𝐹)
 are the regularly used activation function. 

To abridge the process, 0th weight as 𝑝𝑎0
𝑤  and 0th unit as 

𝑂0
(𝑤−1,𝑥)

 are presented and hence the bias is characterized as, 

 

𝑂(𝑤,𝑥) = 𝛾(𝑤). (𝜔(𝜔)𝑂(𝜔−1,𝑥) + 𝑊(𝜔). 𝑂(𝜔,𝑥−1)) (5) 

 

Here, 𝑂(𝑤,𝑥) signifies the production of the classifier. 

Step 1: Initialisation: 

The first stage is weight initialization, which is written as 

and makes use of the input data's feature vector and class. 

Step 2: Evaluation of error:  

Fitness functions are used to find the best answer; this is 

called a solution, with the smallest Mean Squared Error (MSE) 

selected as the best. Here, we calculate the MSE in the 

following way: 

 

𝑀𝑆𝑒𝑟𝑟 =
1

𝑏
∑ [𝑂𝑎 − 𝑂𝑎

∗]2𝑏
𝑑=1   (6) 

 

where, 𝑂𝑎  signifies the predictable output and 𝑂𝑎
∗  signifies 

the foretold output, b signifies the count of input data where 1 

< d ≤ b. 

Step 3: Resolve of inform equation: 

Here, we identify the training weights for Deep RNN and 

create an update based on those weights that result in the least 

amount of error. 

Step 4: Re‐computation of key founded on error: 

After applying the fix, the error is recalculated. Using the 

least-error-generating approach, we train a deep RNN to 

recognize traffic signals. 

Step 5: Terminate:  

Iteratively reaching the maximum sum of iterations allows 

for the ideal weights to be obtained. 

 

 

4. EXPERIMENTAL ENVIRONMENT 

 

All tests were conducted with due diligence and in a neutral 

setting. This meant that all algorithms were coded in 

MATLAB 2018a and that tests were run on a Windows 7 PC 

with an Intel Core (TM) i7-10520U CPU running at 1.8 GHz 

and 12.00 GB of RAM. 

 

4.1 Data description 

 

The EIM-LD method was evaluated using data acquired 

over the course of a year from the SCATS brainy traffic 

management system in Isfahan, Iran [27]. The information was 

separated into four sections representing the north, south, west, 

and east. The first three detectors are situated in the southern 

approach, the next four in the northern, the next two in the 

western, and the last two in the eastern approach, respectively. 

This study only considers information from detector no. 3 in 

order to better understand how to apply the projected approach 

to data imputation for that instrument. Over the course of a 

year, the detectors at this intersection recorded 96 and 35,040 

instances of daytime and nighttime traffic, respectively. If the 

mean and variance of the data shift over the course of a year, 

then the time series is non-stationary. 

There are several factors that may be derived from traffic 

data, including capacity, period, season, month, day of the 

week, day of the (35:30; Autumn; OCT; Saturday; 13:30; 0; 

0); a year's worth of data showing volume; time of day; season 

of year; month of year; day of week; and day of the month 

from Isfahan's SCATS intelligent traffic management system. 

Both the rainy condition and the holidays are sourced from the 

city's meteorological database. Traffic data is transmitted 

every 15 minutes from each detector, for a total of 35,040 

records per detector every year. "BAD," "DA," and "-" denote 

missing data for the associated volumes. We have 621 missing 

values (or 2.2% of the total) in our data collection. 

 

4.2 Phase 1: Missing and data discovery  

 

At this point, we have successfully partitioned the raw data 

into two distinct sets: clean and missed volume. We begin by 

identifying missing values and inaccurate data that have been 

mislabeled as missing using the SPSS statistical software tool. 

Because of this atypical distribution, the proposed EIM-LD 

approach employs the Chebyshev inequality provided by Eq. 

(7) for varying values of K to identify noisy data. 

 

𝑃(|𝑋 − 𝜇| ≥ 𝑘𝜎) ≤
1

𝑘2  (7) 

 

where, X is a random variable, and m is the expected value. 

The deviating distance from the mean is represented by K, 

while the number of standard deviations is shown by. The 

mean to identify the detectors. The Chebyshev inequality is 

then applied to a range of k values, with outlying k values 

being those that fall beyond the interval's limits. In statistical 

analysis, this method is frequently employed to identify and 

eliminate noisy data. Setting bounds for each period-based 

standard deviation allows for a more precise and trustworthy 

examination of the data by systematically identifying outliers. 

At the end of this process, all noisy data are taken into account 

to create the clean dataset and the dataset. 

 

4.3 Phase 2: Data enrichment 

 

Here, we provide a powerful data enrichment strategy by 

statistically labelling the clean dataset with class tags and 

subclass tags. After that, we build data models and evaluate 

their precision. Imputation precision can be raised by 

combining and classifying missing data volumes. To improve 

data modelling during the imputation stage, the enriched data 

are next partitioned into sets according to traffic classifications. 

Statistical labelling: In this step, we apply multi-class 

C1...Cn statistical labelling on the clean dataset we created in 

the previous step. To begin, five (n=5) traffic types are 

considered, labelled as very low (VL), low (L), which is 

consistent with previous researches [28, 29]. The specialists at 

Isfahan's traffic control department assigned these 

designations based on their knowledge of the city's 

infrastructure and past traffic patterns. 

− Since more precise subclass labels may be generated from 

tighter volume ranges within each of the five class labels, we 
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consider statistical labelling using subclass labels, such as 10 

or 20 labels, to limit imputation error. Data models trained 

using subclass labels should outperform those trained with 

class labels, provided that there are sufficient samples in the 

lesser classes of the subclass labels. 

− Data Model construction: Using class labels and 

subclass labels, the EIM-LD technique builds data replicas 

from the pristine dataset. Models of the data are constructed 

with the help of k-fold and the suggested classifier. The most 

accurate data model among the candidates is chosen by 

comparing their predicted values. 

− Missed-volume classification: The missing-volume 

dataset's examples are then tagged using the candidate data 

perfect to create the labelled missing-volume dataset. The 

imputation stage uses a data model, the accuracy of which may 

be improved with the help of the label applied to the dataset. 

− Constructing the labelled dataset: To create the 

augmented data, which includes multi-class C1...Cn, we 

combine the dataset labelled in the previous phase with the 

labelled clean dataset. By labelling each sample in this 

enriched data set, it is hoped that the imputation accuracy 

would improve over that of the original dataset. 

− Splitting enriched data: Here, the enhanced data is 

partitioned into n separate databases, labelled DC1 through 

DCn. An improved data model is likely to result from splitting 

the enhanced databases, with each database on behalf of a 

different traffic class, C1 through Cn. With this method, it may 

be possible to create more accurate data models for partitioned 

databases. 

TRL TRANSYT software [30] may be used to design, 

analyze, and simulate a wide variety of junctions, including 

those with no signal control, those with many signals, and 

those with priority traffic. The TRANSIT software package 

incorporates a macro-level traffic model, an optimization 

algorithm for traffic signals, and a simulation tool. The basic 

traffic model calculates a starting Performance Index (an 

economic cost based on stops and delays) using data on actual 

traffic flows given by human drivers. As part of an 

optimization process aimed at reducing the Performance Index 

(PI), TRANSYT makes adjustments to the signal timings. 

Fixed signal plans are generated in this article using 

TRANSYT software by analyzing junction geometry, traffic 

flow, and traffic movements. The following are some common 

lingo used in traffic control: 

1) Phase is a signal that is displayed for a certain pedestrian 

or traffic link. One or more signal heads are fed by each phase 

at a junction (mostly the same approach), which operates as an 

electrical circuit from the controller. 

2) Stage is a group of non-concurrent phases that operate 

simultaneously. 

3) Cycle time denotes one complete set of traffic signal 

operations. 

4) Intergreen period is the amount of time between the 

conclusion of one phase's and the beginning of the next point's 

right of way. 

 
4.4 Performance metrics 

 
Metrics like sensitivity, specificity, F-measure, and 

accuracy were employed to assess the efficacy of the 

procedure. Following equations are used in this research to 

define accuracy, sensitivity, and specificity. 

Sensitivity: the quality or condition of being sensitive. 

"A total lack of common decency and sensitivity."  

 

𝑆𝐸 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
  (8) 

 

Specificity: the quality of belonging or relating uniquely to 

a particular subject. 

"The statement of special educational needs lacked 

specificity." 

 

𝑆𝑃 =
𝑡𝑛

𝑡𝑛+𝑓𝑝
  (9) 

 

Accuracy: the quality or state of being correct or precise. 

"We have confidence in the accuracy of the statistics." 

 

𝐴𝐶 =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑝+𝑡𝑛+𝑓𝑛
  (10) 

 

The F-score (also known as the F1 score or F-measure) is a 

metric used to evaluate the performance of a machine learning 

model. It combines precision and recall into a single score. F-

measure formula: 

 

𝐹𝑀 =
𝑡𝑝

𝑡𝑝+1/2(𝑓𝑝+𝑓𝑛)
  (11) 

 

where, tp represents properly classified CRC pictures, fp 

characterizes incorrectly classified CRC images, fn signifies 

incorrectly classified normal CRC images, and tn represents 

normal CRC images that have been correctly categorized. 

 

4.5 Evaluation analysis of proposed model 

 

In this study, the existing techniques used different samples; 

hence these procedures are applied to our dataset for the 

procedure.  

 

Table 1. Comparative investigation of projected RNN with 

numerous deep learning procedures 

 
Models Accuracy Sensitivity Specificity F-Measure 

MLP 77.50 75.00 80.00 76.92 

DBN 80.00 85.00 75.00 80.95 

AE 75.00 80.00 70.00 76.19 

LSTM 85.00 90.00 80.00 85.71 

CNN 87.50 90.00 85.00 87.80 

RL-RNN 95.00 100 90.00 95.24 

 

The comparative analysis of the projected RNN with 

different deep-learning techniques is shown in Table 1. In the 

analysis comparisons, the MLP model attained the following 

results: sensitivity of 75.00, specificity of 80.00, F1-measure 

of 76.92, and accuracy of 77.50, respectively. Another DBN 

model also achieved a sensitivity of, respectively, 85.00, 75.00, 

and 80.95, 80.00. Another AE model achieved the following 

values: sensitivity of 80.00, specificity of 70.00, F1-measure 

of 76.19, and accuracy of 75.00, respectively. And yet another 

LSTM perfect attained sensitivity of 90.00, specificity of 

80.00, F1-measure of 85.71, and accuracy of 85.00, all in the 

respective range. Another CNN model attained the following 

values: sensitivity of 90.00, specificity of 85.00, F1-measure 

of 87.80, and accuracy of 87.50, respectively. And yet another 

RL-RNN model achieved a sensitivity of 100, specificity of 90, 

F1-measure of 95, accuracy of 95, and accuracy of 95, 

respectively as shown in Figure 3 and Figure 4. 
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Figure 3. Graphical comparison of proposed model 

 

 
 

Figure 4. Various DL classifiers comparison 

 

Table 2. Comparative analysis of projected RNN with 

existing representations at 15 epochs 

 
Metrics CNN LSTM RL-RNN 

Sensitivity 70.00 80.00 100 

Specificity 90.00 90.00 90.00 

F-Measure 77.78 84.22 95.24 

Accuracy 80.00 85.00 95.00 

 

 
 

Figure 5. Graphical comparison of various DL models at 15 

epochs 

 

Table 2 represents the proportional investigation of 

projected RNN with existing models at 15 epochs. In the 

analysis, the LSTM model reached a sensitivity value of 80.00, 

the CNN model reached a sensitivity value of 70.00, and 

finally, the RL-RNN model reached a sensitivity value of 100, 

respectively. After that, the LSTM model reached a specificity 

of 90.00, the CNN model reached a specificity of 90.00, and 

finally, the RL-RNN reached 90.00, respectively. And the 

LSTM model reached the F-measure value of 84.21, CNN 

reached the F-measure charge of 77.78, and finally, the RL-

RNN reached the F-measure charge of 95.24, respectively. 

And finally, the LSTM model reached an accuracy value of 

85.00, and the LSTM model reached an accuracy value of 

80.00, and finally, the RL-RNN model reached an accuracy 

value of 95.00, respectively as shown in Figure 5. 

  

Table 3. Average RMSE of imputation for missing data 

when applying class labels C1 through C5 

 
Missing Ratio NMR MR MCR 

10% 50.95 47.73 52.58 

20% 52.60 49.43 54.34 

30% 55.25 52.11 56.70 

40% 57.33 54.57 59.03 

50% 58.94 57.26 59.22 

 

Table 3 above represents the diverse imputation approaches 

using class labels C1 and C5 for different missing designs. In 

10% of the missing ratio, NMR reached 50.95, MR reached 

47.73, and MCR reached 52.58, respectively. 20% of the 

missing ratio of NMR reached 52.60, MR reached 49.43, and 

MCR reached 54.34. In 30%, the missing ratio of NMR 

reached 55.25, MR reached 52.11, and MCR reached 56.70, 

respectively. In 40% of the missing ratio, NMR reached 57.33, 

MR reached 54.57, and MCR reached 59.03, respectively. In 

50% of the missing ratio, NMR reached 58.94, MR reached 

57.26, and MCR reached 59.22, respectively as shown in 

Figure 6. 

 

 
 

Figure 6. Graphical analysis for missing ratio data by using 

proposed model 

 

 

5. CONCLUSION 

 

A novel RL-based RNN distributed control strategy is 

created in order to address the problem of controlling traffic at 

intersections. The method uses an implanting from a traffic 

forecast perfect to represent a portion of the intersection's 

current state and forecast future traffic levels in the area. 

Furthermore, it is observed that they are more tolerant of 

changes in cycle time. Because they offer accurate information 

on the volume of traffic, loop detectors are essential to the 
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success of intelligent traffic management systems. However, 

these systems' effectiveness is lowered because of gaps in the 

traffic volume data that these detectors collect. The majority 

of imputation techniques in use do not improve the accurate 

real data collected by the loop indicators. In this study, we use 

a data enrichment strategy to present an effective imputation 

approach to EIM-LD. First, two distinct datasets are created, 

one without noise or gaps and the other with them filled in. 

Subclass labels have been statistically added to the 

unannotated dataset. The dataset of missing volumes is then 

given labels using the best data model created by the RL-based 

RNN model. It is challenging to identify the classes in the 

statistical multi-class labelling procedure. Through a series of 

pretests, the number of courses and their volume variations 

were manually determined for this study. The ideal classes 

may be automatically found in subsequent efforts using 

continuous and binary metaheuristic algorithms, leading to 

more precise data models. 

 

 

6. FUTURE WORK 

 

Investigation of the integration of different machine 

learning techniques, such as combining RNNs with 

reinforcement learning, to capture both temporal dependencies 

and complex decision-making. 
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