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Fractal dimensions have been widely utilized as analytical tools in image processing 

due to their potential to uncover intricate patterns. This study introduces a novel 

multiscale fractal dimension (MFD), derived from the characteristic function (CF), 

which exhibits unique properties, including self-similarity. One significant aspect of 

image processing research involves the effective reduction of noise, which can interfere 

with image clarity during transmission. Noise in images poses challenges to their 

utilization across various applications. In recent years, the strategy of decreasing noise 

in multiplicative pictures (DNM) has been extensively adopted by researchers to tackle 

this issue. In this context, the newly proposed MFD is applied to DNM as an innovative 

method for enhancing image quality. Preliminary results indicate the proposed 

approach's efficacy, thereby suggesting its potential utility in advanced image 

processing applications. 
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1. INTRODUCTION

Over the last two decades, the application of fractional and 

fractal concepts in various fields has significantly increased 

owing to their inherent advantages. They have demonstrated 

substantial improvement in the field of image processing, as 

evidenced by a vast body of research. Noise in images, which 

poses challenges in image analysis, texture analysis, and 

image segmentation, is a prevalent issue in image processing. 

In response, denoising has emerged as a fundamental step in 

image processing. Recently, the decreasing noise in 

multiplicative images (DNM) model has been introduced, 

which has proven to be particularly useful in the investigation 

of conventional imaging assemblies (CIA) [1, 2], including 

synthetic aperture radar, laser, and ultrasound. Considering the 

practical nature of these image acquisition processes, 

traditional additive noise models are insufficient to capture 

such images, thereby making DNM models an effective 

alternative due to their robust explanation of the CIA [3-6]. 

Fractal and fractional operators have found broad 

applications in various scientific fields, notably in computer 

science and specifically in image processing [7-11]. They have 

been applied in feature processing for medical MRI 

enhancement [12]. Notably, multiplicative noise, considered 

an unwanted signal that contaminates images during digital 

image processing, has been a recurrent topic of study. Studies 

focusing on numerical image processing and statistical 

examination of X-ray images have been carried out to tackle 

difficulties in interpreting X-ray imagery [13]. Additionally, 

differential box-counting methods have been proposed to 

compute the fractal dimension for image enhancement [14, 15], 

with practical applications seen in the study of polymer images 

[16]. Moreover, a specific type of fractal, referred to as a 

quantum fractal or Jackson fractal, has been recently utilised 

in the examination of medical images [17-19]. 

Images affected by multiplicative noise are crucial in the 

analysis of traditional imaging systems like sonar, ultrasound, 

laser, and radar. These images introduce two added layers of 

complexity in comparison to typical Gaussian additive noise 

scenarios: First, the noise multiplies with the original image; 

second, the noise deviates from a Gaussian distribution [20]. 

Studies have been conducted on non-autonomous stochastic 

fractional equations influenced by multiplicative noise, with a 

focus on limiting the fractal dimension within the range of (0, 

1) [21]. Techniques involving transform-domain image

decomposition have been developed for examining fractals

and the surface structures of high-frequency multiplicative

noise in Synthetic Aperture Radar (SAR) sea-ice imagery [22].

Additionally, a process for authenticating medical images has

been introduced, which employs wavelet restoration and

fractal dimension analysis. In this process, images undergo

deletion, and a fractal characteristic is generated as an

authentication image based on the fractal dimension's

uniqueness in the block data [23].

This research introduces a new approach based on a 

distinctive variant of multiscale fractal dimension (MFD), 

which is linked to the Φ-characteristic function. The strength 

of MFD resides in its multidimensional formulaic framework, 

which renders it suitable for the analysis of intricate systems 

like images. The design of MFD windows in this method is 

envisioned using four distinct masks for the x and y 

dimensions. Various filters are employed on these functions. 
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Empirical results suggest that the filtering outcomes of this 

proposed method surpass those achieved by some of the latest 

fractional and fractal filters. 

The subsequent sections are structured as follows: Section 

2 presents the methodology, including the new DNM, 

generalized window, and fractional mask. Section 3 discusses 

the application of the proposed method in image enhancement. 

Finally, Section 4 concludes the study, offering final remarks 

and directions for future work. 

 

 

2. MATHEMATICAL MODELING 

 

2.1 Multi-scale fractal dimension (MFD) 

 

Shape is one of the most crucial visual characteristics used 

to characterize objects in pattern recognition and picture 

analysis. It offers the most pertinent data about an object to 

accomplish its classification and identification. Shape analysis 

is a traditional subject, and literature offers a variety of 

methods to extract data from a shape's geometric aspect, 

enabling the separation and labeling of various regions of an 

image [24-26]. 

Box-totaling dimension (size): The informal and most 

shared process utilized in the nonfiction is the box-counting 

mod [24] for fractal dimension. Assumed a binarized image of 

the retinal vascular tree, we cover the image with a network of 

boxes of side-length and sum how many boxes hold a part of 

the tree. By reducing, we release additional facts about the tree 

from the casing. Assume that 𝑁(℘)  is the box-count as a 

function of the box-totaling dimension [25, 26], which is 

formulated by the structure: 

 

Δ℘ = lim
℘→0

(
log(𝑁(℘))

log(1/℘)
)  (1) 

 

where, ℘ is the size of the grid cells and 𝑁(℘) indicated the 

number of cells.  

In the same manner, in the entropy theory and by utilizing 

values of the object, the method for computing the box-

totaling dimension is calculated, as follows [27, 28]: 

 

Δ℘(𝑒𝑛𝑡𝑟𝑜𝑝𝑦) = lim
℘→0

(
∑

𝑁(℘)
𝑘=1 𝜌𝑘log(𝜌𝑘)

log(1/℘)
)  (2) 

 

where, 𝑁(℘)  is the overall sum of boxes that involves a 

portion of the tree and 𝜌𝑘 =
𝜇𝑘

Ω
∈ (0,1)  is the quantity of 

retinal tree enclosed in the k-the box; 𝜇𝑘 is the sum of pixels 

in the k-the box and Ω is the entire sum of pixels in the tree. A 

correlation structure is formulated by the correlation integral 

approximated by the following summation formal [29]: 

 

Δ℘(𝑐𝑜𝑟𝑟) = lim
℘→0

(
logΘ(℘)

log(℘)
)  (3) 

 

where, 

 

Θ(℘) =
1

𝑁2(℘)
(∑

𝑁(℘)
𝑘,𝑙=1,𝑘≠𝑙 𝐻(℘−∥ 𝜒𝑘 − 𝜒𝑙 ∥)) ≈ ∑𝑁(℘)

𝑘=1 𝜌𝑘
2  

 

where, the Heaviside step function (HSF) is represented by the 

amount of tree pixel combinations containing a separation 

from each other of smaller than ℘ as well as H, accordingly. 

Lastly, the mathematical formula for a real number q∈R\{1} 

considers the broader framework [30]: 

 

Δ℘(𝑞) =
1

1−𝑞
lim
℘→0

(
log(Υ(𝑞,℘))

log(1/℘)
)  (4) 

 

where, 

 

Υ(𝑞, ℘) = ∑𝑁(℘)
𝑘=1 𝜌𝑘

𝑞
  

 

Note that all the above MFD satisfy the following inequality, 

which is a very beneficial patterned when calculating fractal 

dimensions in rehearsal [31, 32]: 

 

Δ0 ≥ Δ1 ≥,⋯ ,≥ Δ𝑁 

 

All these MFDs, including the higher order extensions 

Δ℘(𝑞), have been utilized to describe the overall dynamical, 

topological, and geometric possessions of a specified 

arrangement. Nevertheless, discovering how these possessions 

progress at different scales is very significant point [33]. 

 

2.2 Characteristic function (CF) 

 

Consider a subset S of a larger set LS, the CF, occasionally 

too known as the indicator function, is the function formulated 

to be identically one on S and is zero in another place. CFs are 

occasionally represented utilizing the so-called a special type 

of brackets, and can be suitable evocative strategies since it is 

relaxed to, approximately, for instance, “the CF of the primes” 

somewhat than reiterating an assumed definition. The CF is a 

singular incident of a simple function. The main structure of 

this function can be realized by the following series: 

 

Φ(𝑡) = ∑∞
𝑘=0 (

(𝑖𝑡)𝑘

𝑘!
𝜂𝑘)  

= 1 + (𝑖𝑡)𝜂1 +
(𝑖𝑡)2

2!
𝜂2 +

(𝑖𝑡)3

3!
𝜂3 +

(𝑖𝑡)4

4!
𝜂4+. ..  

= 1 + (𝑖𝑡)𝜂1 −
(𝑡)2

2
𝜂2 −

𝑖(𝑡)3

3!
𝜂3 +

(𝑡)4

4!
𝜂4+. ..  

 

where, 𝜂𝑘 is the moment around zero and i is complex number 

satisfying |𝑖| = 1 such that 𝜂0 = 1. In cumulative formula, it 

can be realized as follows: 

 

lnΦ(𝑡) = ∑∞
𝑘=0 (

(𝑖𝑡)𝑘

𝑘!
𝜅𝑘)  

 

where, 

 

𝜅1 = 𝜂1 

𝜅2 = 𝜂1 − 𝜂2
2 

𝜅3 = 2𝜂1
3 − 3𝜂1𝜂2 + 𝜂3 

⋮  
 

It is clear that the CF satisfying the following properties [34]: 

 

Φ(0) = 1,Φ(𝑡) = Φ(−𝑡), lim
𝑡→∞

Φ(𝑡) = 0 

 

and Φ(𝑡) is convex when t>0. 

 

2.3 MFD using CF 

 

In this place, we formulate our new MFD utilizing the CF. 

For the correlation Eq. (3), we replace the Heaviside by CF to 

obtain the equation: 
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Δ℘(𝑐𝑜𝑟𝑟)Φ = lim
℘→0

(
logΘ(℘)

log(℘)
)  (5) 

 

where, 

 

Θ(℘) =
1

𝑁2(℘)
(∑

𝑁(℘)
𝑘,𝑙=1,𝑘≠𝑙 Φ(℘−∥ 𝜒𝑘 − 𝜒𝑙 ∥)) ≈ ∑𝑁(℘)

𝑘=1 𝜌𝑘
2  

 

And by using the accumulated formula to get the 

generalized structure: 

 

Δ℘(𝑞)|Φ =
1

1−𝑞
lim
℘→0

(
logΦ(𝑞,℘))

log(1/℘)
)  (6) 

 

where, 

 

Φ(𝑞,℘) = ∑𝑁(℘)
𝑘=1 𝜌𝑘

𝑞
, 𝜌𝑘 ≈ ℜ(

(𝑖𝑡)𝑘𝜅𝑘

𝑘!
) ∈ (0,1)  

 

where, ℜ is the real part. 

 

 

3. IMAGE PROCESSING 

 

The image denoising method (IDM) in digital pictures has 

various from virtually unseen. Image denoising measures are 

aiming to return a novel feature that has less noise, i.e., closer 

to the novel noise-free feature. IDMs can recognize by two 

different main approaches: pixel-based picture filtering and 

patch-based filtering. The first method is a contiguity 

functional (juxtaposition) exploited operating one pixel and 

depending on its three dimensional adjacent pixels positioned 

inside a kernel. While, the second category uses blocks of 

similar patches, which are then functioned definitely in order 

to transport an approximation of the main pixel values based 

on comparable bits located within an observe window. This 

technique works the termination and the similarity among the 

frequent segments of the work image (see Figures 1 and 2). 

 

  
 

Figure 1. The first category in IDM is a contiguity operation 

 

   
 

Figure 2. The second category in IDM uses blocks of similar 

patches 

 

 

Mathematically, the issue of image denoising is designed as 

follows:  

 

𝐼𝑛𝑜𝑖𝑠𝑦 = 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝛼 

 

where, Inoisy is the recognized noisy image, Ioriginal is the 

original image, and α indicates the additive white Gaussian 

noise (AWGN) with standard deviation. AWGN is computed 

in applied presentations by numerous approaches, such as 

median absolute deviation [35], block-based approximation 

[36], and standard module analysis [37]. The determination of 

noise decrease is to reduce the noise in the original pictures 

while diminishing the loss of imaginative features and refining 

the signal-to-noise ratio (SNR). The main tests for pictures 

denoising are as surveys [38]: Smooth areas must be plane, 

edges must be threatened devoid of blurring, textures must be 

conserved, and new objects must not be prevented. 

 

3.1 Algorithm 

 

Our algorithm is based on Eqs. (5)-(6). Eq. (5) presents the 

1-D parametric conclusion owning the parameter ℘. While Eq. 

(6) indicated the 2D-parametric conclusion with the 

parameters ℘ and q. We shall apply both of these equations to 

enhance the noisy image. By applying Eqs. (5)-(6), we have 

the suggested enhanced image: 

 

𝐼𝑛𝑜𝑖𝑠𝑦 = 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∗ 𝑊3×3[Δ℘] (7) 

 

and 

 

𝐼𝑛𝑜𝑖𝑠𝑦 = 𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∗ 𝑊3×3[Δ℘(𝑞)] (8) 

 

respectively, where * indicates the convolution product and 

W3×3 is the window mask of dimension 3×3. 

In this study, different masks are organized as follows:  

 

𝑊0∘ =

[
 
 
 
 
0 0 0

Δ℘(2,1) Δ℘(2,2) Δ℘(2,3)

0 0 0 ]
 
 
 
 

 

𝑊45∘ =

[
 
 
 
 
 
0 0 Δ℘(1,3)

0 Δ℘(2,2) 0

Δ℘(3,1) 0 0 ]
 
 
 
 
 

  

(9) 

 

𝑊90∘ =

[
 
 
 
 
 
0 Δ℘(1,2) 0

0 Δ℘(2,2) 0

0 Δ℘(3,2) 0 ]
 
 
 
 
 

 

𝑊135∘ =

[
 
 
 
 
 
Δ℘(1,1) 0 0

0 Δ℘(2,2) 0

0 0 Δ℘(3,3)]
 
 
 
 
 

  

(10) 

 

Similarly, for Δ℘(𝑞) we have the following structures:  
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Ψ0∘ =

[
 
 
 
 
0 0 0

Δ℘(𝑞)(2,1) Δ℘(𝑞)(2,2) Δ℘(𝑞)(2,3)

0 0 0 ]
 
 
 
 

  (11) 

 

Ψ45∘ =

[
 
 
 
 
 
0 0 Δ℘(𝑞)(1,3)

0 Δ℘(𝑞)(2,2) 0

Δ℘(𝑞)(3,1) 0 0 ]
 
 
 
 
 

  (12) 

 

Ψ90∘ =

[
 
 
 
 
 
0 Δ℘(𝑞)(1,2) 0

0 Δ℘(𝑞)(2,2) 0

0 Δ℘(𝑞)(3,2) 0 ]
 
 
 
 
 

  (13) 

 

Ψ135∘ =

[
 
 
 
 
 
Δ℘(𝑞)(1,1) 0 0

0 Δ℘(𝑞)(2,2) 0

0 0 Δ℘(𝑞)(3,3)]
 
 
 
 
 

  (14) 

 

Our algorithm is given in Figure 3. 

 

   
 

Figure 3. The algorithm 

 

In this place, we remark that PNSR (peak signal-to-noise 

ratio) is a trade span for the ratio between the extreme probable 

power of a signal (image) and the power of demeaning noise 

that marks the reliability of its illustration. Because several 

images have a very varied dynamic variety, PSNR is normally 

formulated as a logarithmic quantity utilizing the decibel 

measure. It is formulated by the structure. 

 

𝑃𝑆𝑁𝑅 = 10 ⋅ log10 (
max(𝐼)2

𝛴
)

= 20 ⋅ log10 (
max(𝐼)

√𝛴
)

= 20 ⋅ log10(max(𝐼)) − 10 ⋅ log10(𝛴)

  

 

where, max is the maximum value of the pixel and Σ is the 

mean error: 

 

𝛴 =
1

𝑚 𝑛
∑𝑚−1

𝑖=0 ∑𝑛−1
𝑗=0 [𝐼(𝑖, 𝑗) − ⊤(𝑖, 𝑗)]2  

 

where, ⊤ is the noise image. 

Moreover, the root-mean-square error (RMSE) is a 

regularly utilized ration of the differences between standards 

expected by a design; or it is an estimator and the principles 

detected. The RMSD characterizes the square root of the 

second model moment of the differences between projected 

tenets and experimental ethics or the quadratic mean of these 

modifications. It recognized by the following structure: 

 

ℜ = √
∑𝑛

𝑗=1 (𝐼𝑗−𝐼𝑗)
2

𝑛
  

 

Each pixel in an image possesses a color value that can alter 

during the process of compression and decompression of the 

image. Due to the broad spectrum of frequencies in waveforms, 

PSNR (RMSD) is typically expressed in a logarithmic scale. 

The relationship is demonstrated through PSNR (RMSD) 

along with the probability estimate of the pixel, wherein the 

pixel's number may be indicated by its likelihood. This is 

particularly true in our method, which depends on the pixel's 

probability, as outlined in sections 2.5 and 2.6. 

 

3.2 Convolution matrix 

 

A convolution matrix, often known as a mask, is a tiny 

matrix used for edge detection, embossing, sharpening, and 

other effects. Convolution between the kernel and an image is 

used to achieve this. Alternatively, to put it another way, the 

kernel is the function that determines how each pixel in the 

output image is affected by the neighboring in the input image. 

 

 

4. RESULTS 

 

In this section, we illustrate our results by using the 

suggested information in the above section. Performance 

calculations were operated by software Mathematica 11.2. The 

two collections of pictures involved two gray scale images, 

and two color images. The windows mask of the suggested 

method is given to be functioned with a 3×3 pixels window 

(see Figures 4-5).  

The calculation presentations of MFD were planned by both 

PSNR, and RMSD measures. The PSNR values for the 

transformed values of ℘  for (2.5) and 𝑞  for (2.6), are 

described in the interval ℘ ∈ [0,1] and 𝑞 ∈ (0,1).  Table 1 

shows the ideal value of PSNR is recognized for the second 

method (2.6), for all suggested data. The results test by 

utilizing RMSD have the same conclusion as appeared in 

Table 2. We compared our method with the reference [6], 

where the author used one dimensional fractal differential 

operator. It is clear that our method satisfies a huge 

enhancement comparing with the results in reference [6]. For 

future works, one may suggest another description of MFD, 

using some special functions. Our method can be applied in 

other field of computer science or studied another type of 

image processing. Parametric mathematical structures indicate 

a variety of applications or modification. 

 

 
(a) 
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(b) 

 

Figure 4. (a) The convoluted of image with the suggested 

window 𝑊135∘; (b) The convoluted of image with the 

suggested window 𝑊0∘ 

 

Table 1. Table to test PNSR 

 
Original Image  MFD (2.5) MFD (2.6)  Ibrahim [6]  

         

 

   
35.4221 38.9643  42.5065  31.8799 

    
    

  

 

   

21.9361 24.1297  26.3233  19.7425 

          

 

   

26.9325 29.6257  32.3190  24.2392 

        
  

 

   

28.9911 31.8902 34.7893  26.0920 

    
    

  

 

   

37.6823 41.4506 45.2188  33.9141 

          

 

   
25.1448 27.6593 30.1738  22.6304 

        
  

 

   
24.4467 26.8914 29.3360  22.0020 

    
    

  

 

   

26.1336 28.7469 31.3603  23.5202 

 
 

Figure 5. The convoluted of image with the suggested 

window 𝑊90∘ 

 

Table 2. Table to test RMSD 

 
Original Image  MFD (2.5) MFD (2.6) Ibrahim [6]  

         
   

14.1813 15.5995 17.0176 12.7632 

           
25.0739 27.5813 30.0887 22.5665 

             
14.7517 16.2269 17.7021 13.2766 

             
23.1480 25.4629 27.7777 20.8332 

             

14.9265 16.4192 17.9118 13.4339 

    
         

20.3057 22.3363 24.3669 18.2752 

 

 
5. CONCLUSIONS 

 
Image enhancement refers to the process of improving the 

visual quality of an image by adjusting its color, contrast, 

sharpness, and other visual properties. There are several 

implications of image enhancement, some of which are 

discussed as follows: Better Visualization: the recent image 

enhancement technique can help to reveal more details and 

improve the visual quality of an image, making it easier to 
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interpret and analyze. Moreover, image enhancement 

technique can be used to improve the quality of surveillance 

footage, making it easier to identify suspects or suspicious 

activities. From above by employing the characteristic 

function to define a new multiscale fractal dimension. As an 

application, we employed the suggested MFD to define a 

fractal mask and use it to enhance images. The results showed 

that our method achieved high test results with the help of 

PSNR (Table 1) and RMSE (Table 2). Our data set of images 

is picked form different resources, such as Mathematica, 

Wikipidia and others. For future effort, one can apply the 

above method in different types of images such as medical 

imaging and machine vision systems.  
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