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One difficulty in using circular distribution is the existence of the modified Bessel 

function, 𝐼𝑝(𝜅) , which cannot be computed easily. In this paper, we consider the

problem of calculating the solution of the ratio, 𝐼1(𝜅)(𝐼0(𝜅))
−1
, to extract the value of

the parameter κ, one of the parameters of the sine-model circular distribution. At first, 

a direct calculation is suggested in this paper to compute the solution of the ratio by 

using optimization approach with the nonlinear minimization (Newton-Raphson 

method). After that, to check whether the direct computation for the solution of the ratio 

is better than the function, A1inv(·), in R’s circular package, or not, we consider a 

simulation study designed to compare the results of the function that we have suggested 

with the estimator A1inv(·). Also, we examine the difference between the true value of 

κ and the estimated values using a t-test with level of significance α=0.05 and we 

compare the estimated biases of the estimators with the approximation to the bias for 

the concentration parameter κ.  
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1. INTRODUCTION

Circular statistics which are also called directional statistics 

is a branch of statistics specifically designed to deal with 

circular data. which is data that can be represented as points 

on the unit circle and these points can be represented by an 

angle on circumference of the circle,  𝜃 ∈ [0,2𝜋) , or 𝜃 ∈
(−𝜋, 𝜋], or by the unit vector (𝑐𝑜𝑠 𝜃 , 𝑠𝑖𝑛 𝜃) [1] (see Figure 1). 

The aim of this study is to calculate the solution of the ratio 

𝐼1(𝜅)(𝐼0(𝜅))
−1

which represent the modified Bessel function

of the first kind and order one and zero, and the solution will 

be the value of the parameter 𝜅𝑖; 𝑖 = 1,2, one of the parameters

of the sine-model circular distribution. 

In the circular statistic, circular distributions are of interest 

in a wide range of fields, such as medicine [2] biology [3], 

geology [4], protein dihedral angles [5], political studies [6], 

image analysis [7]. One of the most important distributions is 

von-Mises distribution (see Figure 1).  This distribution was 

introduced by von-Mises in 1918, and the probability density 

function for this distribution is defined by [7]: 

𝑓(𝜃; 𝜇, 𝜅) = (2𝜋𝐼0(𝜅))
−1𝑒𝜅𝑐𝑜𝑠(𝜃−𝜇), 0 ≤ 𝜃 < 2𝜋, (1) 

where, κ is the concentration parameter such that 𝜅 ≥ 0, μ is 

the circular mean and 𝐼0(𝜅) is the modified Bessel function of

order zero [8], which is given by: 

𝐼𝑝(𝜅) =
1

2𝜋
∫ 𝑐𝑜𝑠 (𝑝𝜃)𝑒𝜅𝑐𝑜𝑠𝜃𝑑𝜃
2𝜋

0
, 𝑝 = 0, 1, 2, …. (2) 

Mardia and Sutton [8] introduced the bivariate von-Mises 

with eight parameters before Rivest introduced a six-

parameter version in 1988. For two circular random variables, 

𝜗1 and 𝜗2, the probability density function of sine-model of

the bivariate von-Mises distribution is given by [9-13]: 

𝑓(𝜗1, 𝜗2) = 𝐶𝑠𝑖𝑛𝑒𝑒𝑥𝑝 {𝜅1 𝑐𝑜𝑠(𝜗1 − 𝜇1) +
𝜅2 𝑐𝑜𝑠(𝜗2 − 𝜇2) + 𝛿 𝑠𝑖𝑛(𝜗1 − 𝜇1) 𝑠𝑖𝑛 (𝜗2 − 𝜇2)}

(3) 

for 0 ≤ 𝜗1, 𝜗2 ≤ 2𝜋, 𝜅1, 𝜅2 ≥ 0, 0 ≤ 𝜇1, 𝜇2 ≤ 2𝜋, 𝐶𝑆𝑖𝑛𝑒  is a

normalization constant which is defined by: 

𝐶𝑆𝑖𝑛𝑒 = [4𝜋2  ∑ (2𝑟
𝑟
) (

𝛿2

4𝜅1𝜅2
)
𝑟

∞
𝑖=0 𝐼𝑖(𝜅1)𝐼𝑖(𝜅2)]

−1

. (4) 

One difficulty in using circular distribution is the existence 

of the modified Bessel function, 𝐼𝑝(𝜅) , which cannot be

computed easily.  

Therefore, in this paper, we consider the problem of 

calculating the solution of the function,  

𝑀𝐵(𝜅) = 𝐼1(𝜅)(𝐼0(𝜅))
−1
,

which represents the modified Bessel function of first kind and 

order one and zero. A direct computation is explored for the 

solution of the function 𝑀𝐵(𝜅) .  At first, the optimization 

approach with the nonlinear minimization (Newton-Raphson 

method) is used under the maximum likelihood estimators 

with a specific assumption are used to calculate the solution of 

the ratio 𝐼1(𝜅)(𝐼0(𝜅))
−1

 to reach the optimal solution.

We begin in Section 2, by given a direct computation for the 

solution of the ratio. In Section 3, simulation study is 
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considered to evaluate the performance of the approach that 

we have suggested by using R’s circular package. The 

conclusion and the future of our research will be presented in 

Section 4.  

 

 
 

Figure 1. von-Mises circular distribution under simulated data 

 

 

2. SOLUTION OF THE FIRST KIND MODIFIED 

BESSEL FUNCTION 

 

The presence of the modified Bessel function, 𝐼𝑚(𝜅), is one 

difficulty in using the Sine-Mosel circular distribution. In this 

section we introduce optimization approach with the nonlinear 

minimization (Newton-Raphson method) to calculate the 

inverse of the modified Bessel function for extraction the value 

of the parameter 𝜅𝑖; 𝑖 = 1,2, one of the parameters of sine-

model circular distribution. 

Let 𝐺1 = {(𝜙11, 𝜓11), (𝜙12, 𝜓12), … , (𝜙1𝑛, 𝜓1𝑛)} and 𝐺2 =
{(𝜙21, 𝜓21), (𝜙22, 𝜓22), … , (𝜙2𝑚, 𝜓2𝑚)}  be two independent 

random samples from sine-model circular distribution, 

SBM (𝜇, ∧)  distribution, 𝜇 = (
𝜇1
𝜇2
)  and ∧= (

𝜅1 0
0 𝜅2

), with 

the probability density function: 

 

𝑓(𝜙, 𝜓) = 𝐶𝑆𝑖𝑛𝑒𝑒𝑥 𝑝{𝜅1 𝑐𝑜𝑠(𝜙 − 𝜇1) + 𝜅2 𝑐𝑜𝑠(𝜓 − 𝜇2)
+ 𝛿 𝑠𝑖𝑛(𝜙 − 𝜇1) 𝑠𝑖𝑛(𝜓 − 𝜇2)}. 

 

The direct computation is constructed using the 

optimization approach with the nonlinear minimization 

function in R’s circular package, and the proposed algorithm 

is presented in Algorithm 1. In the R’s circular package, the 

nonlinear minimization caries out a minimization of any 

function (x) using a Newton-Raphson algorithm.  

Newton-Raphson algorithm (NR), which is introduced by 

Isaac Newton and Joseph Raphson [4], is a method for finding 

a better approximation to the root of a continuous and 

differentiable real valued function. The Newton-Raphson 

method of one variable is implemented in the following way: 

Assuming that the root for the function g(x) is near the point 

𝑥 = 𝑥𝑛, the NR algorithm tell us that a better approximation 

for the root is computed as follows: 
 

𝑥𝑛+1 = 𝑥𝑛 −
𝑔(𝑥𝑛)

g′(𝑥𝑛)
,  

 

where, 𝑔′(𝑥𝑛) is the slope of the tangent line to the graph g(x) 

at the point 𝑥 = 𝑥𝑛 . The process should be repeated many 

times by setting 𝑥𝑛 = 𝑥𝑛+1 till 𝑥𝑛+1 close to 𝑥𝑛 in order to get 

the desired accuracy to get a better approximation, where 𝑥𝑛+1 

is the best root approximate. 

To show how the Newton-Raphson technique works let the 

function g(x) take the following formula: 

 

𝑔(𝑥) = 𝑥2 − 4.  

 

In order to find the root of the function g(x) using the 

Newton-Rahson algorithm we need to determine starting point: 

Let 𝑥0 = 3 ⟶ 𝑔(𝑥0) = 5, g′(𝑥0) = 6 ⟶ 𝑥1 = 2.1667 

and 𝑥2 = 2.0789, we repeat the process many times till the 

difference between successive approximations that is smaller 

than chosen tolerance. 

Using the samples {(𝜙11, 𝜓11), (𝜙12, 𝜓12), … , (𝜙1𝑛, 𝜓1𝑛)} 
and {(𝜙21, 𝜓21), (𝜙22, 𝜓22), … , (𝜙2𝑚, 𝜓2𝑚)}  a direct 

computation to compute the inverse of the function 𝑀𝐵(𝜅) 
under sine-model circular distribution with different 

concentration parameters is constructed as follows: 

 

1. Calculate the MLE for the one-sample and two-sample 

sine-model circular distribution which is given by: 

 

𝑅1𝑒𝜗 = 𝑛−1[(∑𝑛𝑖=1 𝑐𝑜𝑠(𝜗𝑖))
2 + (∑𝑛𝑖=1 𝑠𝑖𝑛(𝜗𝑖))

2]0.5  (5) 

 

𝑅2𝑒𝜗 = [[𝑆𝑆𝜗𝑁 + 𝐶𝐶𝜗𝑁]/𝑁; 𝜗 = 𝜙,𝜓, (6) 

 

where, 

 

𝑆𝑆𝜗𝑁 = [(∑ 𝑐𝑜𝑠(𝜗1𝑖
𝑛
𝑖=1 ))2 + (∑ 𝑠𝑖𝑛(𝜗1𝑖)

𝑛
𝑖=1 )2]0.5,  

 

𝐶𝐶𝜗𝑁 = [(∑ 𝑐𝑜𝑠(𝜗2𝑗
𝑚
𝑗=1 ))

2
+ (∑ 𝑠𝑖𝑛(𝜗2𝑗)

𝑚
𝑗=1 )

2
]
0.5

.  

 

2. Consider the starting point 𝜅0  for the concentration 

parameter such that 𝜅0 ∈ [0, ℎ], ℎ > 0. 
3. Apply optimization approach using the starting point 

𝜅0 from Step (2) and the function 𝑔𝑖(𝜅𝑖), 𝑓𝑖(𝜅𝑖) which is 

defined by: 

 

𝑔𝑖(𝜅𝑖) = 𝑎𝑏𝑠[𝑅1𝑒𝜗 − 𝐼1(𝜅𝑖)/𝐼0(𝜅𝑖)] ;  𝑖 = 1,2 

 

𝑓𝑖(𝜅𝑖) = 𝑎𝑏𝑠[𝑅2𝑒𝜗 − 𝐼1(𝜅𝑖)/𝐼0(𝜅𝑖)] ;  𝑖 = 1,2 
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where, 𝑅1𝑒𝜗 and 𝑅2𝑒𝜗 is the right hand side of Eqs. (5)-(6). 

4. The result of the optimization approach will be the solution 

for the function: 

 

𝑀𝐵(𝜅) = 𝐼1(𝜅)(𝐼0(𝜅))
−1
.  

 

This direct computation is constructed using the 

optimization approach with the non- linear minimization 

function in R’s circular package, and is presented in Algorithm 

1. 

 
Algorithm 1: Solution of the First Kind Modified Bessel Function 

Data: Circular data { (𝜙11, 𝜓11), … , (𝜙1𝑛 , 𝜓1𝑛) }, 
{ (𝜙21, 𝜓21), … , (𝜙2𝑚, 𝜓2𝑚) } 
Result: Estimators 𝜅1̂, 𝜅2̂. 

begin 

   input{𝜇1, 𝜇2, 𝜅1, 𝜅2, 𝑛,𝑚, 𝜅0} 
   𝑁 ⟵ 𝑛 +𝑚 

   for (i in 1: 1000) do 

         Generate the data from BvM ((
𝜇1
𝜇2
) , (  

𝜅1 0
0 𝜅2

)) with the 

pdf  

   𝐶𝑠𝑖𝑛𝑒𝑒𝑥𝑝{𝜅1 cos(𝜙 − 𝜇1) + 𝜅2 cos(𝜓 − 𝜇2) + 𝛿𝑠𝑖𝑛(𝜙 −
𝜇1)𝑠𝑖𝑛(𝜓 − 𝜇2)} 
         Calculate  

         𝑆𝑆1𝑁 ⟵ [(∑ cos (𝜙1𝑖)
𝑛
𝑖=1 )2 + (∑ 𝑠𝑖𝑛 (𝜙1𝑖)

𝑛
𝑖=1 )2]0.5 

         𝐶𝐶1𝑁 ⟵ [(∑ cos (𝜙2𝑖)
𝑛
𝑖=1 )2 + (∑ 𝑠𝑖𝑛 (𝜙2𝑖)

𝑛
𝑖=1 )2]0.5  

         𝑆𝑆2𝑁 ⟵ [(∑ cos (𝜓1𝑖)
𝑛
𝑖=1 )2 + (∑ 𝑠𝑖𝑛 (𝜓1𝑖)

𝑛
𝑖=1 )2]0.5 

         𝐶𝐶2𝑁 ⟵ [(∑ cos (𝜓2𝑖)
𝑛
𝑖=1 )2 + (∑ 𝑠𝑖𝑛 (𝜓2𝑖)

𝑛
𝑖=1 )2]0.5  

         
𝐼1(𝜅1̂)

𝐼0(𝜅1̂)
[𝑖] ⟵ [(𝑆𝑆1𝑁 + 𝐶𝐶1𝑁)/𝑁];  

𝐼1(𝜅2̂)

𝐼0(𝜅2̂)
[𝑖] ⟵ [(𝑆𝑆2𝑁 +

𝐶𝐶2𝑁)/𝑁] 
         use Non-Linear Minimization (𝑓1, 𝜅0) 
         use Non-Linear Minimization (𝑓2, 𝜅0) 
  end  

  begin  

        Function (𝜅1) 

        𝑓1(𝜅1) = 𝑎𝑏𝑠 [𝑅𝑒𝜙 − 𝐼1(𝜅1)(𝐼0(𝜅1))
−1
] 

        return (𝑓1(𝜅1)) 
 

  end 

  begin  

        Function (𝜅2) 

        𝑓2(𝜅2) = 𝑎𝑏𝑠 [𝑅𝑒𝜙 − 𝐼1(𝜅2)(𝐼0(𝜅2))
−1
] 

        return (𝑓2(𝜅2)) 
 

 end 

  calculate paired t-test  

1. Test the null hypothesis 𝐻0: 𝐸(𝜅𝑖̂ − 𝜅𝐴𝑖̂) = 0 against  

𝐻1: 𝐸(𝜅𝑖̂ − 𝜅𝐴𝑖̂) ≠ 0                                                                                                                                                 

with level of significant 𝛼 = 0.05 

2. The difference between the true value of  𝜅𝑖; 𝑖 = 1,2 

and the estimations  

 𝜅𝑖̂, 𝜅𝐴𝑖̂ is tested using a t-test with 𝛼 = 0.05 (i.e level 

of significant) 

end  

 

In the R’s circular package, the function NLM (Non-Linear 

Minimization) carries out a minimization of any function 𝑔(𝑥) 
using a Newton-Raphson algorithm, which has been described 

above. The NLM function which is a numerical function based 

on the Newton-Rahson algorithm, where the slope 𝑔′(𝑥𝑛) may 

be numerically estimated. Sometimes it can diverge, but in 

practice, and during our research we have not noticed any such 

behaviour. 

 

 

3. PERFORMANCE EVALUATION 

 

We consider a simulation study in this section to check 

whether the algorithm which has been presented in the 

previous section to compute the solution for the function 

𝑀𝐵(𝜅) is better than the current function, A1inv(·), in R’s 

circular package, or not. We design the simulation to achieve 

several objectives. First, compare the results of the algorithm 

that we have suggested, the estimator 𝜅̂𝑖 , with the estimator 𝜅̂𝐴 

which is calculated using the following formula: 
 

A1inv(x) =

{
 
 

 
 2x + x3 +

5𝑥5

6
, 0 ≤ x < 0.53

−0.4 + 1.39x +
0.43

1−x
, 0.53 ≤ x < 0.85

1

3x−4x2+x3
, 0.85 ≤ x

  

 

Secondly, we have to examine the difference between the 

estimated value with the true value of κ. Thirdly, we calculate 

the biases for each estimator. Fourthly, we have to compare 

the estimated biases of the estimators 𝜅̂𝑖  and 𝜅̂𝐴𝑖  with the 

approximated to the bias of the MLE theoretically which is 

considered by Mardia and Jupp [7], which is given by.  
 

𝐸[𝜅̂𝑖 − 𝜅𝑖] ≃
3𝜅𝑖

𝑛
. 

 

We show the results of the evaluation in Tables 1-4, Figures 

2-5. It is interesting to know that with different values of κ the 

function that we have proposed has a good performance, while 

when the true value of κ is small the function A1inv(.) does 

not show a good performance. Also, we noticed that with 

different values of κ the results of these two functions are close 

to each other, also we noticed that: 

1. Table 1 and Table 2 show that the results of the function 

that we have proposed are close to the true value under 

different values of 𝜅1 and 𝜅2 of the one-sample bivariate sine-

model. 
 

Table 1. Comparison between the true value and the 

estimated values of 𝜅1, and the approximated to the bias 

under, n=500 and 𝜇 = (0
0
) of the one-sample bivariate sine-

model 
 

True 

Parameters 

Estimated 

Parameters 

Approx. 

to Bias 
Estimated Bias 

𝜿𝟏 𝑘̂1 𝑘̂A1 𝜅1 𝑘̂1 𝑘̂A1 

0.2 0.211 0.211 0.001 0.011 0.011 

0.4 0.407 0.41 0.002 0.007 0.001 

0.6 0.605 0.605 0.004 0.005 0.005 

0.8 0.804 0.803 0.005 0.004 0.003 

1.0 1.005 1.001 0.006 0.005 0.001 

1.2 1.203 1.195 0.007 0.003 -0.005 

1.4 1.401 1.394 0.008 0.001 -0.006 

1.6 1.605 1.598 0.010 0.005 0.002 

1.7 1.703 1.696 0.010 0.003 -0.004 

2.0 2.011 2.009 0.012 0.011 0.009 

2.2 2.204 2.197 0.013 0.004 -0.003 

2.6 2.599 2.592 0.016 -0.001 -0.008 

3.1 3.097 3.083 0.019 -0.003 -0.017 

3.6 3.607 3.580 0.022 0.007 -0.019 

5.0 5.026 5.009 0.030 0.026 0.009 

5.5 5.540 5.53 0.033 0.040 0.028 

6.5 6.523 6.516 0.039 0.023 0.016 

8.5 8.535 8.532 0.051 0.035 0.032 

9.5 9.548 9.546 0.057 0.048 0.046 

10 10.079 10.077 0.060 0.079 0.077 

Mean Absolute Error 0.01605 0.0151 
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Table 2. Comparison between the true value and the 

estimated values 𝜅2 𝜅̂2 , and the approximated to the bias 

n=500 and 𝜇 = (0
0
) of the one-sample bivariate sine-model 

 
True 

Parameters 

Estimated 

Parameters 

Approx. 

to Bias 
Estimated Bias 

𝜿𝟐 𝑘̂2 𝑘̂A2 𝜅2 𝑘̂2 𝑘̂A2 

0.25 0.259 0.259 0.002 0.009 0.009 

0.50 0.503 0.503 0.003 0.003 0.003 

0.75 0.753 0.753 0.005 0.003 0.003 

1.00 1.006 1.002 0.006 0.006 0.002 

1.25 1.256 1.249 0.008 0.006 -0.002 

1.50 1.502 1.495 0.009 0.002 -0.005 

1.75 1.755 1.748 0.011 0.005 -0.002 

2.00 2.004 1.996 0.012 0.004 -0.004 

2.25 2.252 2.245 0.014 0.002 -0.003 

2.50 2.501 2.494 0.015 0.001 -0.006 

3.00 3.027 3.015 0.018 0.027 0.015 

3.50 3.518 3.494 0.021 0.018 -0.006 

4.00 4.013 3.985 0.024 0.013 -0.015 

4.50 4.506 4.504 0.027 0.006 0.004 

6.00 6.039 6.029 0.036 0.039 0.029 

7.00 7.039 7.033 0.042 0.039 0.033 

8.00 8.047 8.043 0.048 0.047 0.043 

9.00 9.054 9.051 0.054 0.054 0.050 

10.0 10.066 10.064 0.060 0.066 0.064 

Mean Absolute Error 0.0184 0.01568 

 

2. Table 3 and Table 4 show that the results of the function 

that we have proposed are close to the true value under 

different values of 𝜅1 and 𝜅2 of the two-sample bivariate sine-

model. 

3. The results of the paired t-test in Tables 5-8 indicate that 

for a variety of κ values the suggested estimator and the 

classical estimator are significantly different since the p-values 

of the t-test are < 0.05. 

4. We noticed that the suggested function exhibits a good 

performance compared to the current function A1inv(.). 

 

Table 3. Comparison between the true value and the 

estimated values of 𝜅1, and the approximated to the bias, 

n=500 and 𝜇 = (0
0
) of the two-sample bivariate sine-model 

 
True 

Parameters 

Estimated 

Parameters 

Approx. 

to Bias 
Estimated Bias 

𝜿𝟏 𝑘̂1 𝑘̂A1 𝜅1 𝑘̂1 𝑘̂A1 

0.2 0.209 0.209 0.001 0.009 0.009 

0.4 0.405 0.405 0.002 0.005 0.005 

0.6 0.607 0.607 0.004 0.007 0.007 

0.8 0.806 0.805 0.005 0.006 0.005 

1.0 1.003 0.999 0.006 0.003 -0.001 

1.2 1.201 1.192 0.007 0.009 -0.008 

1.4 1.402 1.396 0.008 0.002 -0.004 

1.6 1.604 1.597 0.009 0.004 -0.003 

1.7 1.702 1.695 0.010 0.002 -0.005 

2.0 1.999 1.992 0.012 -0.008 -0.008 

2.2 2.202 2.195 0.013 0.002 -0.005 

2.6 2.603 2.596 0.016 0.003 -0.004 

3.1 3.099 3.087 0.019 -0.001 -0.014 

3.6 3.604 3.576 0.022 0.004 -0.024 

5.0 5.007 4.991 0.030 0.007 -0.009 

5.5 5.527 5.515 0.033 0.027 0.015 

6.5 6.503 6.496 0.039 0.003 -0.004 

8.5 8.535 8.531 0.051 0.035 0.031 

9.5 9.527 9.525 0.057 0.027 0.025 

10 10.036 10.034 0.060 0.036 0.034 

Mean Absolute Error 0.010 0.011 

 

Table 4. Comparison between the true value of the parameter 

and the estimated values of 𝜅2, and the approximated to the 

bias s n=500 and 𝜇 = (0
0
) of the two-sample bivariate sine-

model 

 
True 

Parameters 

Estimated 

Parameters 

Approx. 

to Bias 
Estimated Bias 

𝜿𝟐 𝑘̂2 𝑘̂A2 𝜅2 𝑘̂2 𝑘̂A2 

0.25 0.259 0.259 0.002 0.009 0.009 

0.50 0.504 0.504 0.003 0.004 0.004 

0.75 0.752 0.751 0.005 0.002 0.001 

1.00 1.004 1.000 0.006 0.004 0.000 

1.25 1.254 1.246 0.008 0.004 -0.005 

1.50 1.505 1.498 0.009 0.005 -0.002 

1.75 1.752 1.745 0.011 0.002 -0.005 

2.00 2.003 1.996 0.012 0.003 -0.004 

2.25 2.251 2.244 0.014 0.001 -0.006 

2.5 2.504 2.497 0.015 0.004 -0.003 

3.00 3.006 2.994 0.018 0.006 -0.006 

3.50 3.512 3.487 0.021 0.012 -0.013 

4.00 4.006 3.978 0.024 0.006 -0.022 

4.50 4.509 4.487 0.027 0.009 -0.013 

6.00 6.038 6.029 0.036 0.038 0.029 

7.00 7.018 7.018 0.042 0.018 0.018 

8.00 8.019 8.015 0.048 0.019 0.015 

9.00 9.013 9.011 0.054 0.013 0.011 

10.0 10.042 10.040 0.060 0.042 0.040 

11.0 11.057 11.056 0.066 0.057 0.056 

Mean Absolute Error 0.0129 0.0131 

 

Table 5. Paired t-test between the suggested function and the 

current function A1inv(.) and a t-test between the true value 

and the estimated values of 𝜅1 with level of significant 𝛼 =
0.05 of the one-sample bivariate sine-model 

 

𝒌𝟏 𝜿̂𝟏 
p-Value of t-Test 

𝜅̂1~𝜅̂𝐴1 𝜅1~𝜅̂1 𝜅1~𝜅̂𝐴2 

0.2 0.211 <2.2×10-16 0.953 0.953 

0.4 0.407 <2.2×10-16 0.291 0.192 

0.6 0.605 <2.2×10-16 0.109 0.091 

0.8 0.804 <2.2×10-16 0.624 0.900 

1.0 1.005 <2.2×10-16 0.286 0.153 

1.2 1.203 <2.2×10-16 0.101 0.177 

1.4 1.401 <2.2×10-16 0.160 0.668 

1.6 1.605 <2.2×10-16 0.874 0.511 

1.7 1.703 <2.2×10-16 0.244 0.286 

2.0 2.011 <2.2×10-16 0.212 0.498 

2.2 2.204 <2.2×10-16 0.575 0.929 

2.6 2.599 <2.2×10-16 0.367 0.574 

3.1 3.097 <2.2×10-16 0.251 0.151 

3.6 3.607 <2.2×10-16 0.458 0.209 

5.0 5.026 <2.2×10-16 0.211 0.438 

5.5 5.540 <2.2×10-16 0.344 0.436 

6.5 6.523 <2.2×10-16 0.523 0.196 

8.5 8.535 <2.2×10-16 0.223 0.311 

9.5 9.548 <2.2×10-16 0.122 0.160 

10 10.079 <2.2×10-16 0.206 0.251 

 

5. In Figure 2 and Figure 3, we can see that the values of the 

estimators 𝜅̂𝑖 and 𝜅̂𝐴𝑖 , i=1, 2 are close to the true values of the 

concentration parameters under different one-sample bivariate 

sine-model. 

6. In Figure 4 and Figure 5, we can see that the values of the 

estimators 𝜅̂𝑖 and 𝜅̂𝐴𝑖 , i=1, 2 are close to the true values of the 

concentration parameters under different two-sample bivariate 

sine-model. 

7. In Figure 6, we can see that the estimated values 𝜅̂𝑖 , i=1, 

2 are so close to the true values of the concentration parameters 
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under different parameters of the sine-models. 

8. Compare the bias for each estimator 𝜅̂𝑖  and 𝜅̂𝐴𝑖  with the 

approximation of the bias we found that the bias for the 

proposed estimator 𝜅̂𝑖 is less than or equal to the approximated 

bias when the sample size is large. 

 

 
 

Figure 2. Comparison between the estimators, 𝜅̂1 and 𝜅̂𝐴1. The panels in this figure show 𝐼1(𝜅)/𝐼0(𝜅) (vertical axis) against the 

true value of the concentration parameter 𝜅1 (horizontal axis) 

 

 
 

Figure 3. Comparison between the estimators, 𝜅̂2 and 𝜅̂𝐴2. The panels in this figure show 𝐼1(𝜅)/𝐼0(𝜅) (vertical axis) against the 

true value of the concentration parameter 𝜅2 (horizontal axis) 
 

 
 

Figure 4. Comparison between the estimators, 𝜅̂1 and 𝜅̂𝐴1. The panels in this figure show 𝐼1(𝜅)/𝐼0(𝜅) (vertical axis) against the 

true value of the concentration parameter 𝜅1 (horizontal axis) 
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Figure 5. Comparison between the estimators, 𝜅̂2 and 𝜅̂𝐴2 . The panels in this figure show 𝐼1(𝜅)/𝐼0(𝜅) (vertical axis) against the 

true value of the concentration parameter 𝜅2 (horizontal axis) 
 

 
 

Figure 6. Comparison between the true value of the parameters 𝜅𝑖 and the estimated values 𝜅̂𝑖, i=1, 2. The panels in this figure 

show 𝐼1(𝜅)/𝐼0(𝜅) (vertical axis) against the true value of the concentration parameter 𝜅𝑖 (horizontal axis) 
 

Table 6. Paired t-test between the suggested function and the 

current function A1inv(.) and a t-test between the true value 

and the estimated values of 𝜅2with level of significant 𝛼 =
0.05 of the one-sample bivariate sine-model 

 

𝒌𝟐 𝜿̂𝟐 
p-Value of t-Test 

𝜅̂2~𝜅̂𝐴2 𝜅2~𝜅̂2 𝜅2~𝜅̂𝐴2 

0.25 0.259 <2.2×10-16 0.681 0.681 

0.50 0.503 <2.2×10-16 0.274 0.260 

0.75 0.753 <2.2×10-16 0.175 0.295 

1.00 1.006 <2.2×10-16 0.842 0.553 

1.25 1.256 <2.2×10-16 0.233 0.140 

1.50 1.502 <2.2×10-16 0.107 0.562 

1.75 1.755 <2.2×10-16 0.280 0.927 

2.00 2.004 <2.2×10-16 0.939 0.323 

2.25 2.252 <2.2×10-16 0.132 0.450 

2.50 2.501 <2.2×10-16 0.826 0.293 

3.00 3.027 <2.2×10-16 0.345 0.549 

3.50 3.518 <2.2×10-16 0.462 0.341 

4.00 4.013 <2.2×10-16 0.975 0.156 

4.50 4.506 <2.2×10-16 0.189 0.801 

6.00 6.039 <2.2×10-16 0.725 0.986 

7.00 7.039 <2.2×10-16 0.357 0.175 

8.00 8.047 <2.2×10-16 0.483 0.661 

9.00 9.054 <2.2×10-16 0.899 0.770 

10.0 10.066 <2.2×10-16 0.268 0.321 

 

 

Table 7. Paired t-test between the suggested function and the 

current function A1inv(.) and a t-test between the true value 

and the estimated values of 𝜅1 with level of significant 𝛼 =
0.05 of the two-sample bivariate sine-model 

 

𝒌𝟏 𝜿̂𝟏 
p-Value of t-Test 

𝜅̂1~𝜅̂𝐴1 𝜅1~𝜅̂1 𝜅1~𝜅̂𝐴1 

0.2 0.209 <2.2×10-16 0.833 0.834 

0.4 0.405 <2.2×10-16 0.175 0.178 

0.6 0.607 <2.2×10-16 0.150 0.183 

0.8 0.806 <2.2×10-16 0.109 0.318 

1.0 1.003 <2.2×10-16 0.232 0.534 

1.2 1.201 <2.2×10-16 0.628 0.222 

1.4 1.402 <2.2×10-16 0.121 0.096 

1.6 1.604 <2.2×10-16 0.145 0.769 

1.7 1.702 <2.2×10-16 0.196 0.358 

2.0 1.999 <2.2×10-16 0.198 0.095 

2.2 2.202 <2.2×10-16 0.980 0.725 

2.6 2.603 <2.2×10-16 0.304 0.653 

3.1 3.099 <2.2×10-16 0.803 0.218 

3.6 3.604 <2.2×10-16 0.143 0.148 

5.0 5.007 <2.2×10-16 0.258 0.429 

5.5 5.527 <2.2×10-16 0.497 0.118 

6.5 6.503 <2.2×10-16 0.195 0.631 

8.5 8.535 <2.2×10-16 0.504 0.706 

9.5 9.527 <2.2×10-16 0.200 0.281 
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Table 8. Paired t-test between the suggested function and the 

current function A1inv(.) and a t-test between the true value 

and the estimated values of 𝜅2with level of significant α=0.05 
 

𝒌𝟐 𝜿̂𝟐 
p-Value of t-Test 

𝜅̂2~𝜅̂𝐴2 𝜅2~𝜅̂2 𝜅2~𝜅̂𝐴2 

0.25 0.259 <2.2×10-16 0.106 0.105 

0.50 0.504 <2.2×10-16 0.150 0.159 

0.75 0.752 <2.2×10-16 0.920 0.602 

1.00 1.004 <2.2×10-16 0.570 0.785 

1.25 1.254 <2.2×10-16 0.112 0.188 

1.50 1.505 <2.2×10-16 0.157 0.129 

1.75 1.752 <2.2×10-16 0.659 0.181 

2.00 2.003 <2.2×10-16 0.222 0.182 

2.25 2.251 <2.2×10-16 0.263 0.892 

2.5 2.504 <2.2×10-16 0.222 0.288 

3.00 3.006 <2.2×10-16 0.168 0.790 

3.50 3.512 <2.2×10-16 0.129 0.601 

4.00 4.006 <2.2×10-16 0.433 0.229 

4.50 4.509 <2.2×10-16 0.180 0.283 

6.00 6.038 <2.2×10-16 0.130 0.223 

7.00 7.018 <2.2×10-16 0.116 0.188 

8.00 8.019 <2.2×10-16 0.369 0.597 

9.00 9.013 <2.2×10-16 0.204 0.152 

10.0 10.042 <2.2×10-16 0.147 0.199 

 

 

4. CONCLUSIONS AND FUTURE WORKS 
 

4.1 Conclusions 

 

Optimization approach with the nonlinear minimization 

(Newton-Raphson method) of the sine-model circular 

distribution parameters is used to construct a solution of the 

ratio of the modify Bessel function of the first kind and order 

one and zero (𝑀𝐵(𝜅) = 𝐼1(𝜅)(𝐼0(𝜅))
−1
.  This ratio is one 

difficulty in using circular distribution, which cannot be 

computed easily. After that, a simulation study is considered 

to examine the performance of the algorithm that we have 

suggested using R’s circular package.  

The results of the simulation show that under simulated data 

from sine-model circular distribution, the estimated values 

𝜅̂𝑖; 𝑖 = 1,2  which have been computed by the suggestion 

algorithm are close to the true values of the parameter 𝜅𝑖; 𝑖 =
1,2, and this indicates that the proposed algorithm exhibits a 

good performance.  

It is interesting to know that with different values of κ the 

function that we have proposed has a good performance, while 

when the true value of κ is small the function A1inv(.) does 

not show a good performance. Also, we noticed that with 

different values of κ the results of these two functions are close 

to each other, also we noticed that the results of the paired t-

test give us evidence that for a variety of κ values the suggested 

estimator and the classical estimator are significantly different 

since the p-values of the t-test are < 0.05. 
 

4.2 Future works 

 

Future works could involve: 

i. Consider a more efficient unbiased method which could 

be used to estimate the concentration parameters of the 

sine-model circular distribution. 

ii. Estimate the parameters of the cosine-model circular 

distribution under different concentration parameters. 

iii. Calculate the solution of the ratio of the modified Bessel 

function of the first kind and order one and zero and with 

the estimators in Step 2. 
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NOMENCLATURE 
 

𝐼𝑝(𝜅) modified Bessel function 

CSine normalization constant 

𝑀𝐵(𝜅) ratio of the modified Bessel function of first 

kind and order one and zero 

SBM(𝜇, ∧) bivariate sine-model 

NR Newton-Raphson  
 

Greek symbols 
 

𝜇 Mean 

𝜅 Concentration 
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