
Generalized RKM Method for Solving Sixth-Order Fractional Ordinary Differential 

Equations 

Murtadha A. Kadhim1* , AllahBakhsh Yazdani Cherati1 , Mohammed S. Mechee2

1 Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar 4741695447, 

Iran 
2 Information Technology Research and Development Center (ITRDC), Najaf 540011, Iraq 

Corresponding Author Email: murtadha.abduljawad.iku@atu.edu.iq

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.110108 ABSTRACT 

Received: 13 August 2023 

Revised: 22 October 2023 

Accepted: 28 November 2023 

Available online: 30 January 2024 

Different types of DEs have a wide range of applications in both engineering and 

science. Typically, when modelling a physical quantity's variation, Recently, it has been 

found that models based on the theory of fractional-order derivatives and integrals 

provide an exceptionally good description of a wide range of scientific phenomena. The 

FDE is a differential equation that contains some derivatives of non-integer powers 

order. FDEs have become increasingly significant in the theoretical and applied parts 

of a wide variety of scientific and technical disciplines in recent years. The high-order 

ODE can be reduced to systems of first order ODEs, which can then be solved. Directly 

attacking the issue with numerical methods, however, is much more efficient in terms 

of accuracy, number of function evaluations, and processing time. In this article, the 

RKM method for solving ordinary differential equations has been introduced. This 

numerical approach has been generalized to be suitable for solving a class of fractional 

differential equations (FDEs). However, the developed RKM approach with three- and 

four-stages for solving sixth-order FODEs is developed. Moreover, this technique was 

used to solve various test problems, these examples to which the developed method was 

applied were for various functions with different values of ⍺ and then, the solutions of 

the developed numerical method were compared with the exact solution, the numerical 

results proved the efficiency and accuracy of the modified technique. 
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1. INTRODUCTION

The fractional differential equation (FDE) is a differential 

equation that contains some derivatives of non-integer powers 

order. FDEs have become increasingly significant in the 

theoretical and applied parts of a wide variety of scientific and 

technical disciplines in recent years [1-3]. 

The higher-order ODE can be reduced to a system of first-

order ODEs, which enables for direct numerical solution to the 

problem. However, the direct method is more efficient in terms 

of accuracy, number of functions calls, and processing time. 

So, in recent years the authors have been applied numerical 

methods to solve several problems of type FDEs for different 

orders, for examples, Sohaib et al. created Legendre wavelet 

estimate for sixth-order boundary value problems [4]. Also, 

Syam and Al-Refai produced a numerical technique dependent 

on the Chebyshev collocation approach. Atangana-Baleanu 

fractional derivatives are used to solve linear and nonlinear 

FDEs [5], Khader et al. [6] used the Chebyshev collocation 

technique in order to solve the FDEs that arise from the 

optimization issue, Khalouta and Kadem used the inverse 

fractional Shehu transform approach for solving linear 

homogeneous and non-homogeneous FDEs [7]. Cardone et al. 

[8] developed multivalve collocation techniques, which can be

used with both ordinary or FDEs. In 2019, Patrício et al. [9] 

introduced a novel technique for dealing with initial and 

boundary value problems in conventional FDEs. However, 

Hinze et al. proposed a new numerical method for fractional-

order ODEs. The method describes the Caputo fractional 

differential operator in endless states [10], Saqib et al. [11] 

used Caputo Fabrizio fractional derivative and Laplace 

transform to solve heat transfer fractional differential 

equations in a mixed nanofluid. Also, Kumar and Daftardar-

Gejji [12] proposed six predictor-corrector systems fixing 

non-linear FDEs, moreover, Daraghmeh et al. [13] suggested 

and applied the homotopy perturbation and the matrix 

approach approaches to get a solution approximation to the 

linear FDEs. Furthermore, Ahmed [14] used the 4th order 

Runge-Kutta method then, adapted Runge-Kutta Mersian 

methods for the purpose of solving initial value problems in 

Brnoulli's equation involving fractional derivatives, 

Turkyilmazoglu [15] invented the Adomian decomposition 

method (ADM) is a classic technique for solving FDEs. In 

addition to, Nieto [16] constructed an implicit solution to 

FDEs, plotted the Caputo FDEs and their results are contrasted 

to those obtained using the traditional logistic equation. In the 

same way, Mechee and Aidi [17] developed a direct numerical 

method, for solving FDEs of third order and then, different 

Mathematical Modelling of Engineering Problems 
Vol. 11, No. 1, January, 2024, pp. 84-90 

Journal homepage: http://iieta.org/journals/mmep 

84

https://orcid.org/0009-0004-1222-0219
https://orcid.org/0000-0002-3352-5829
https://orcid.org/0000-0003-2410-4851
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.110108&domain=pdf


 

stages of RKD methods are generated for solving third-order 

FDEs. As well as, Mechee and Aidi [18] focused on 

developing first-, second-, and third-stage direct numerical 

techniques for solving fifth-order partial differential equations 

and the effectiveness of the new approaches in comparison to 

the analytical method has been demonstrated via the analysis 

of numerical examples. In this study, sixth-order FODEs may 

be introduced and solved using modified RKM methods. 

Several examples of numerical implementations of the FDEs 

are used to test the developed approach.  

 

 

2. PRELIMINARY 

 

This section introduced some basic concepts for this study. 

 

2.1 Kinds of quasi-linear FODEs of sixth-order 

 

In this subsection some kinds of quasi-linear sixth-order 

FODEs have been introduced. 

 

2.1.1 Kind of quasi-linear FODEs of sixth-order 

The general kinds of quasi-linear FODEs of sixth-order 

enable written as for solving: 

 

𝐷6⍺ỿ( 𝑡) = Ƒ(𝑡, ỿ(𝑡), ỿ′(𝑡), ỿ′′(𝑡), ỿ(3)(𝑡), ỿ(4)(𝑡), ỿ(5)(𝑡)), 

0 < 𝛼 ≤ 1, 𝑡 ≥ 𝑡0, 
 

with the initial conditions: 

 

𝐷i⍺ ỿ(0) = 𝛽i.          i = 0,1,2, 3,4,5.                            (∗) 

 

Kind-One of Quasi-Linear FODEs of Sixth-Order. Consider 

the kind-one of quasi-linear FODEs sixth-order as follows: 

 

𝐷6⍺ỿ( 𝑡) = Ƒ (𝑡, ỿ(𝑡), ỿ′(𝑡), ỿ′′(𝑡), ỿ(3)(𝑡), ỿ(4)(𝑡)) ,
  

0 < 𝛼 ≤ 1, 𝑡 ≥ 𝑡0, 
 

when the initial conditions in Equation (*). 

Kind-Two of Quasi-Linear FODEs of Sixth-Order. 

Consider the kind-two of quasi-linear FODEs of sixth -order 

as follows: 

 

𝐷6⍺ỿ( 𝑡) = Ƒ(𝑡, ỿ(𝑡), ỿ′(𝑡), ỿ′′(𝑡), ỿ(3)(𝑡)),
 

0 < 𝛼 ≤ 1, 𝑡 ≥ 𝑡0, 
 

when the initial conditions in Equation (*). 

Kind-Three of Quasi-Linear FODEs of Sixth-Order. 

Consider the kind-three of quasi-linear FODEs of sixth -order 

as follows: 

 

𝐷6⍺ỿ( 𝑡) = Ƒ(𝑡, ỿ(𝑡), ỿ′(𝑡), ỿ′′(𝑡)),
 

0 < 𝛼 ≤ 1, 𝑡 ≥ 𝑡0, 
 

when the initial conditions in Equation (*). 

Kind-Four of Quasi-Linear FODEs of Sixth-Order. 

Consider the class-four of quasi-linear FODEs of sixth -order 

as follows: 

 

𝐷6⍺ỿ( 𝑡) = Ƒ(𝑡, ỿ(𝑡), ỿ′(𝑡)),
 

0 < 𝛼 ≤ 1, 𝑡 ≥ 𝑡0, 
 

when the initial conditions in Equation (*). 

Kind-Five of Quasi-Linear FODEs of Sixth-Order. 

Consider the kind-five of quasi-linear FODEs of sixth -order 

as follows: 

 

𝐷6⍺ỿ( 𝑡) = Ƒ( 𝑡, ỿ( 𝑡)), 𝑡 > 0, 0 < ⍺ ≤ 1, 

0 < 𝛼 ≤ 1, 𝑡 ≥ 𝑡0, 
(1) 

 

when the initial conditions: 

 

𝐷i⍺ ỿ(0) = 𝛽i. i = 0,1,2, 3,4,5. (2) 

 

2.2 RKM method for solving 6th – order ODEs 

 

To solve the class of 6th - order ODEs in Eq. (1) with the 

initial conditions in Eq. (2), the RKM technique with a s-stage 

can be written as [18]: 

 

𝑢 𝑛+ =  𝑢 𝑛 + ℎ 𝑢 𝑛
′ +

ℎ2

2
 𝑢 𝑛

′′ +
ℎ3

6
 𝑢 𝑛

(3)
+

ℎ4

24
 𝑢 𝑛

(4)
+

ℎ5

120
 𝑢 𝑛

(5)
+ ℎ6 ∑  𝑠

𝑖=1 ᶀ𝑖
(0)

Ҡ𝑖 ,  
(3) 

 

𝑢 𝑛+
′ =  𝑢 𝑛

′ + ℎ 𝑢 𝑛
′′ +

ℎ2

2
 𝑢 𝑛

(3)
+

ℎ3

6
 𝑢 𝑛

(4)
+

ℎ4

24
 𝑢 𝑛

(5)
+

ℎ5 ∑  𝑠
𝑖=1 ᶀ𝑖

(1)
Ҡ𝑖 ,  

(4) 

 

𝑢 𝑛+
′′ =  𝑢 𝑛

′′ + ℎ 𝑢 𝑛
(3)

+
ℎ2

2
 𝑢 𝑛

(4)
+

ℎ3

6
 𝑢 𝑛

(5)
+

ℎ4 ∑  𝑠
𝑖=1  ᶀ𝑖

(2)
Ҡ𝑖 ,  

(5) 

 

𝑢 𝑛+
(3)

=  𝑢 𝑛
(3)

+ ℎ 𝑢 𝑛
(4)

+
ℎ2

2
 𝑢 𝑛

(5)
+ ℎ3 ∑  𝑠

𝑖=1  ᶀ𝑖
(3)

Ҡ𝑖 ,  (6) 

 

𝑢 𝑛+
(4)

=  𝑢 𝑛
(4)

+ ℎ 𝑢 𝑛
(5)

+ ℎ2 ∑  𝑠
𝑖=1  ᶀ𝑖

(4)
Ҡ𝑖 ,  (7) 

 

and 

 

𝑢 𝑛+
(5)

=  𝑢 𝑛
(5)

+ ℎ ∑  𝑠
𝑖=1  ᶀ𝑖

(5)
Ҡ𝑖 .  (8) 

 

where, 

 

Ҡ1 = Ƒ( 𝑡 𝑛,  𝑢 𝑛), (9) 

 

and 

 

Ҡ𝑖 = Ƒ (𝑡ɳ + 𝑐𝑖ℎ,  𝑢𝑛 + ℎ𝑐𝑖𝑢𝑛
′ +

ℎ2

2
𝑐𝑖

2  𝑢𝑛
′′ +

ℎ3

6
𝑐𝑖

3𝑢𝑛
(3) 

  

+
ℎ4

24
𝑐𝑖

4 𝑢 𝑛
(4)

+
ℎ5

120
𝑐𝑖

5 𝑢 𝑛
(5)

+ℎ6 ∑  𝑖−1
𝑗=1  𝑎𝑖𝑗Ҡ𝑗).  

(10) 

 

The parameters of RKM integrator are 𝑎𝑖𝑗 , 𝑐𝑖 , ᶀ𝑖
(𝑖𝑖)

 for i, j=1, 

2, ..., s, ii=0, 1, ..., 5 and h is the size of subintervals RKM 

method. 

 

 

3. PROPOSED EULER - AND RKM-METHODs FOR 

SOLVING SIXTH-ORDER FDEs 

 

In this section, two numerical-methods for solving a quasi- 
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linear FODEs of fifth-order which belong to a class of quasi 

linear in Eq. (1) with the ICs in Eq. (2) have been constructed 

in addition to modify another two methods. 

 

3.1 Construction a generalized-Euler method 

 

Taylor expansion of the function u(t+h) can be written as 

follows: 

 

𝑢(𝑡 + ℎ) = 𝑢(𝑡) +
ℎ⍺

Г(⍺+1)
𝐷⍺𝑢(𝑡) +

ℎ2⍺

Г(2⍺+1)
𝐷2⍺𝑢(𝑡) +

ℎ3⍺

Г(3⍺+1)
𝐷3⍺𝑢(𝑡) +

ℎ4⍺

Г(4⍺+1)
𝐷4⍺𝑢(𝑡) +

ℎ5⍺

Г(5⍺+1)
𝐷5⍺𝑢(𝑡) +

ℎ6⍺

Г(6⍺+1)
𝐷6⍺𝑢(𝑡) +

ℎ7⍺

Г(7⍺+1)
𝐷7⍺𝑢(𝑡) + ⋯.  

(11) 

 

The higher terms involving 𝐷6⍺𝑢(𝑡) in Eq. (11) for the very 

small step-size h have been neglected. Substitute the value of 

𝐷6⍺𝑢(𝑡) from Eq. (11) to obtain the following formula: 

 

𝑢𝑛+1≈ 𝑢𝑛(𝑡) +
ℎ⍺

Г(⍺+1)
𝑢𝑛

⍺(𝑡) +
ℎ2⍺

Г(2⍺+1)
𝑢𝑛

2⍺(𝑡) +

ℎ3⍺

Г(3⍺+1)
𝑢𝑛

3⍺(𝑡) +
ℎ4⍺

Г(4⍺+1)
𝑢𝑛

4⍺(𝑡)  

+
ℎ5⍺

Г(5⍺+1)
𝑢𝑛

5⍺(𝑡) +
ℎ6⍺

Г(6⍺+1)
 Փ(𝑡𝑛, 𝑢𝑛 (𝑡)).  

(12) 

 

By taking a derivative to two sides of Eq. (12) five times to 

obtain the following equations: 
 

𝑢𝑛+1
⍺ = 𝑢𝑛

⍺(𝑡) +
ℎ⍺

Г(⍺+1)
𝑢𝑛

2⍺ +
ℎ2⍺

Г(2⍺+1)
𝑢𝑛

3⍺(𝑡) +

ℎ3⍺

Г(3⍺+1)
𝑢𝑛

4⍺(𝑡) +
ℎ4⍺

Г(4⍺+1)
𝑢𝑛

5⍺(𝑡) +

ℎ5⍺

Г(5⍺+1)
 Փ(𝑡𝑛, 𝑢𝑛 (𝑡)),  

(13) 

 

𝑢𝑛+1
2⍺ = 𝑢𝑛

2⍺(𝑡) +
   ℎ⍺

Г(⍺+1)
𝑢𝑛

3⍺ +
ℎ2⍺

Г(2⍺+1)
𝑢𝑛

4⍺ +

ℎ3⍺

Г(3⍺+1)
 𝑢𝑛

5⍺(𝑡) +
ℎ3⍺

Г(3⍺+1)
 Փ(𝑡𝑛, 𝑢𝑛 (𝑡)),  

(14) 

 

𝑢𝑛+1
3⍺ = 𝑢𝑛

3⍺ +
ℎ⍺

Г(⍺+1)
𝑢𝑛

4⍺ +
ℎ2⍺

Г(2⍺+1)
𝑢𝑛

5⍺(𝑡) +

 
ℎ3⍺

Г(3⍺+1)
Փ(𝑡𝑛, 𝑢𝑛 (𝑡)),  

(15) 

 

𝑢𝑛+1
4⍺ = 𝑢𝑛

4⍺ +
ℎ⍺

Г(⍺+1)
𝑢𝑛

5⍺ +  
ℎ2⍺

Г(2⍺+1)
Փ(𝑡𝑛, 𝑢𝑛 (𝑡)),  (16) 

 
and 

 

𝑢𝑛+1
5⍺ = 𝑢𝑛

5⍺ +  
ℎ⍺

Г(⍺+1)
Փ(𝑡𝑛, 𝑢𝑛 (𝑡)).  (17) 

 

The formulas in Eqs. (12)-(17) used to generate a 

convergent- sequence of solutions for solving the FDEs in Eq. 

(1) with the ICs in Eq. (2). 

 

3.2 Derivation of developed RKM-method of two-stages 

 

To derive RKM-method, we used the chain rule to obtain 

the following formula: 

 

D7⍺𝑢(t) = D⍺(D6⍺𝑢(t)) = D⍺ (Փ(t, 𝑢(t))) =

D⍺(Փ(t, 𝑢(t)) + Փ(t, 𝑢(t))D𝑢
⍺ Փ(t, 𝑢(t)).  

(18) 

The higher terms which involve D7⍺𝑢(t) in Eq. (18) for the 

very small step-size have been neglected. Substitute the value 

of D7⍺𝑢(t) from Eq. (12) to obtain the following formula: 

 

𝑢𝑛+1 =  𝑢𝑛(t) +
h⍺

Г(⍺+1)
𝑢𝑛

⍺(t) +
h2⍺

Г(2⍺+1)
𝑢𝑛

2⍺(t) +

h3⍺

Г(3⍺+1)
𝑢𝑛

3⍺(t) +
h4⍺

Г(4⍺+1)
𝑢𝑛

4⍺(t) +
h5⍺

Г(5⍺+1)
𝑢𝑛

5⍺(t) +

h6⍺

Г(6⍺+1)
Փ(t𝑛 , 𝑢𝑛(𝑡𝑛)) +

h7⍺

Г(7⍺+1)
(D⍺(Փ(𝑡𝑛, 𝑢(𝑡𝑛)) +

Փ(𝑡𝑛, 𝑢(𝑡𝑛))D𝑢
⍺ Փ(𝑡𝑛, 𝑢(𝑡𝑛)) = 

 𝑢𝑛(t) +
h⍺

Г(⍺+1)
𝑢𝑛

⍺(t) +
h2⍺

Г(2⍺+1)
𝑢𝑛

2⍺(t) +

h3⍺

Г(3⍺+1)
𝑢𝑛

3⍺(t) +
h4⍺

Г(4⍺+1)
𝑢𝑛

4⍺(t) +
h5⍺

Г(5⍺+1)
𝑢𝑛

5⍺(t) +

h6⍺

2Г(6⍺+1)
Փ(t𝑛, 𝑢𝑛(𝑡𝑛)) +

h6⍺

2Г(6⍺+1)
Փ (t +

2h6⍺Г(6⍺+1)

Г(7⍺+1)
, 𝑢(t) + 

2h6⍺Г(6⍺+1)

Г(7⍺+1)
Փ(t𝑛 , 𝑢𝑛(t𝑛))).  

(19) 

 

By making the derivations to FDE in Eq. (19) once and 

twice to obtain the following: 

 

𝑢𝑛+1
⍺ = 𝑢n

⍺(t) +
h⍺

Г(⍺+1)
𝑢𝑛

2⍺(t) +
h2⍺

Г(2⍺+1)
𝑢𝑛

3⍺(t) +

h3⍺

Г(3⍺+1)
𝑢𝑛

4⍺(t) +
h4⍺

Г(4⍺+1)
𝑢𝑛

5⍺(t) +

h5⍺

Г(5⍺+1)
Փ(t𝑛 , 𝑢𝑛(t)).  

(20) 

 

However, using the formulas in Eqs. (15)-(20) give a 

convergent sequence for solving Eq. (1) with the initial 

conditions in Eq. (2).   

 

3.3 Developed RKM method for solving 6th–order FDEs 

 

To develop the formulas in Eqs. (3)-(9) for solving 6th order 

ODEs to be appropriate for solving 6th  order FDEs, we 

presume the following formula to approximate the numerical 

solutions of Eq. (1) with initial conditions in Eq. (2)   

 

𝑢 𝑛+1( 𝑡 𝑛) =  𝑢 𝑛( 𝑡 𝑛) +
ℎ⍺

Г(⍺+1)
𝐷⍺ 𝑢 𝑛( 𝑡 𝑛) +

ℎ2⍺

Г(2⍺+1)
𝐷2⍺ 𝑢 𝑛( 𝑡 𝑛) +

ℎ3⍺

Г(3⍺+1)
𝐷3⍺ 𝑢 𝑛( 𝑡 𝑛) +

ℎ4⍺

Г(4⍺+1)
𝐷4⍺ 𝑢 𝑛( 𝑡 𝑛) +

ℎ5⍺

Г(5⍺+1)
𝐷5⍺ 𝑢 𝑛( 𝑡 𝑛) +

ℎ6⍺ ∑  𝑠
𝑖=1 ᶀ𝑖

(0)
Ҡ1,  

(21) 

 

𝑢 𝑛+1
⍺ ( 𝑡 𝑛) = 𝐷⍺ 𝑢 𝑛( 𝑡 𝑛) +

ℎ⍺

Г(⍺+1)
𝐷2⍺ 𝑢 𝑛( 𝑡 𝑛) +

ℎ2⍺

Г(2⍺+1)
𝐷3⍺ 𝑢 𝑛( 𝑡 𝑛) +

ℎ3⍺

Г(3⍺+1)
𝐷4⍺ 𝑢 𝑛( 𝑡 𝑛) +

ℎ4⍺

Г(4⍺+1)
𝐷5⍺ 𝑢 𝑛( 𝑡 𝑛) + ℎ5⍺ ∑  𝑠

𝑖=1 ᶀ𝑖
(1)

Ҡ𝑖 ,  

(22) 

 

𝑢 𝑛+1
2⍺ ( 𝑡 𝑛) = 𝐷2⍺ 𝑢 𝑛( 𝑡 𝑛) +

ℎ⍺

Г(⍺ + 1)
𝐷3⍺ 𝑢 𝑛( 𝑡 𝑛) 

+
ℎ2⍺

Г(2⍺ + 1)
𝐷4⍺ 𝑢 𝑛( 𝑡 𝑛) +

ℎ3⍺

Г(3⍺ + 1)
𝐷5⍺ 𝑢 𝑛( 𝑡 𝑛) 

+ℎ4⍺ ∑  𝑠
𝑖=1 ᶀ𝑖

(2)
Ҡ𝑖 ,  

(23) 

 

𝑢 𝑛+1
3⍺ ( 𝑡 𝑛) = 𝐷3⍺ 𝑢 𝑛( 𝑡 𝑛) +

ℎ⍺

Г(⍺ + 1)
𝐷4⍺ 𝑢 𝑛( 𝑡 𝑛) 

+
ℎ2⍺

Г(2⍺+1)
𝐷5⍺ 𝑢 𝑛( 𝑡 𝑛)  + ℎ3⍺ ∑  𝑠

𝑖=1 ᶀ𝑖
(3)

Ҡ𝑖 ,  
(24) 
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𝑢 𝑛+1
4⍺ ( 𝑡 𝑛) = 𝐷4⍺ 𝑢 𝑛( 𝑡 𝑛) +

ℎ⍺

Г(⍺ + 1)
𝐷5⍺ 𝑢 𝑛( 𝑡 𝑛) 

+ℎ2⍺ ∑  𝑠
𝑖=1 ᶀ𝑖

(4)
Ҡ𝑖 ,  

(25) 

 

and 

 

𝑢 𝑛+1
5⍺ ( 𝑡 𝑛) = 𝐷5⍺ 𝑢 𝑛( 𝑡 𝑛) + ℎ⍺ ∑  𝑠

𝑖=1 ᶀ𝑖
(5)

Ҡ𝑖 ,  (26) 

 

where, 

 

Ҡ1 = Ƒ( 𝑡 𝑛,  𝑢 𝑛( 𝑡 𝑛)), (27) 

 

and 

 

Ҡ𝑖 = Ƒ ( 𝑡 𝑛 + 𝑐𝑖ℎ,  𝑢 𝑛 + ℎ𝑐𝑖  𝑢 𝑛
′ +

ℎ2

2
𝑐𝑖

2 𝑢 𝑛
′′ +

ℎ3

6
𝑐𝑖

3 𝑢 𝑛
(3)

+

 

 

ℎ4

24
𝑐𝑖

4 𝑢 𝑛
(4)

+
ℎ5

120
𝑐𝑖

5 𝑢 𝑛
(5)

+ ℎ6 ∑  𝑖−1
𝑗=1  𝑎𝑖𝑗Ҡ𝑗).  

(28) 

 

The parameters of RKM integrator are 𝑎𝑖𝑗 , 𝑐𝑖 , ᶀ𝑖
(𝑖𝑖)

 for 𝑖, 𝑗 =

1,2, . . , 𝑠, 𝑖𝑖 = 0,1, . . ,5 are assumed to be real. If 𝑎𝑖𝑗 = 0 for 

𝑖 ≤ 𝑗 , it is an explicit method and implicit otherwise. In 

Butcher tables of coefficients, the RKM methods which can be 

expressed in the Table 1, Table 2 and Table 3. 

 

Table 1. Butcher Tableau RKM method 

 
C Α 

 ᶀƬ 

ᶀ′Ƭ  
ᶀ′′Ƭ 

ᶀ(3)Ƭ 

ᶀ(4)Ƭ 

ᶀ(5)Ƭ 

 

Table 2. The Butcher Tableau RKM5 method 

 

0 
1

2
+

√15

10
 

1

2
                                           0                                 0 

1

2
−

√15

10
 

1

2
                                      −

1

2
                               0 

1

2
 

11

17280
+

71√15 

432000
        

11

17280
−

71√15

432000
         

1

8640
 

 

 
31

8640
+

√15

1080
        

31

172808640
−

√15

1080
        

1

864
 

 

 
7

432
+

√15

240
           

7

432
−

√15

240
           

1

108
 

 

 
1

18
+

√15

72
            

1

18
−

√15

72
             

1

18
 

 

 
5

36
−

√15

36
           

5

36
−

√15

36
            

2

9
 

 

  
5

18
                

5

18
               

4

9
 

 

 

 

 

 

 

 

 

 

Table 3. The Butcher Tableau RKM6 method 

 

1

2
+

√15

10
      

1

2
−

√15

10
       −

2956321

50400
−

745387√15

50400
       0 

 

1

2
       −

2981521

50400
−

372689√5

25200
−

372689√15

25200
         0  

 

1

2
      

11835427

161280
+

15144271

806400
     −

10079

17920
−

33803√15

115200
     0 

 

 

 

 

11

17280
+

71√15

432000
          

1

2
+

√15

432000
          

11

17280
 

 

−
71√15

432000
           

1

8640
 

 

   
31

8640
+

√15

1080
          

31

172808640
−

√15

1080
 

 
1

864
                               0 

 

7

432
+

√15

240
                          

7

432
−

√15

240
 

 

 
1

108
              0 

 

1

18
+

√15

72
                     

1

18
−

√15

72
 

 
2

9
                            0 

 

 

 

 

 

 

 

 

 

 

4. IMPLEMENTATIONS 

 

In this part, we use numerical results of test examples to 

show the efficacy of the developed approach: 

 

Example 4.1 

 

Consider the 6th - order FODE in the following: 

 

𝐷6⍺ ỿ( 𝑡) = 𝑎6⍺ ỿ( 𝑡) ,           0 < ⍺ < 1, (29) 

 

with the initial conditions 

 

ỿ( 𝑡)| 𝑡=0 = 1, 𝐷 𝑛⍺ ỿ( 𝑡)| 𝑡=0 = 𝑎𝑛⍺, 𝑛 = 1,2,3,4,5. 

 

The exact solution is ỿ(t) = 𝑒𝑎 t. 
 

Example 4.2 

 

Consider the 6th - order FODE in the following: 

 

𝐷6⍺ ỿ( 𝑡) = 𝑎6⍺ cos(𝑎 𝑡 + 3𝜋⍺) ,  0 < ⍺ < 1, (30) 

 

with the initial conditions: 

 

ỿ(𝑡)| 𝑡=0 = 1 , 

𝐷⍺ ỿ(𝑡)| 𝑡=0 = 𝑎⍺ cos (
𝜋⍺

2
), 

𝐷2⍺ ỿ(𝑡)| 𝑡=0 = 𝑎2⍺ cos(𝜋⍺),  
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𝐷3⍺ ỿ( 𝑡)| 𝑡=0 = 𝑎3⍺ 𝑐𝑜𝑠 (
3𝜋⍺

2
), 

𝐷4⍺ ỿ( 𝑡)| 𝑡=0 = 𝑎4⍺ 𝑐𝑜𝑠(2𝜋⍺), 

𝐷5⍺ ỿ( 𝑡)| 𝑡=0 = 𝑎5⍺ 𝑐𝑜𝑠 (
5𝜋⍺

2
).  

 

The exact solution is ỿ(t) = cos(𝑎t). 
 

Example 4.3 

 

Consider the 6th - order FODE in the following: 

 

𝐷6⍺ ỿ( 𝑡) = 𝑎6⍺sin (𝑎 𝑡 + 3𝜋⍺),  0 < ⍺ < 1, (31) 

 

with the initial conditions: 

 

ỿ(𝑡)| 𝑡=0 = 0, 

𝐷⍺ ỿ(𝑡)| 𝑡=0 = 𝑎⍺ sin (
Π⍺

2
), 

𝐷2⍺ ỿ(𝑡)| 𝑡=0 = 𝑎2⍺ sin(𝜋⍺),  

𝐷3⍺ ỿ(𝑡)| 𝑡=0 = 𝑎3⍺ 𝑠𝑖𝑛 (
3𝜋⍺

2
), 

𝐷4⍺ ỿ(𝑡)| 𝑡=0 = 𝑎4⍺ 𝑠𝑖𝑛(2𝜋⍺), 

𝐷5⍺ ỿ(𝑡)| 𝑡=0 = 𝑎5⍺ 𝑠𝑖𝑛 (
5𝜋⍺

2
).  

 

The exact solution is ỿ(t) = sin (𝑎t). 

 

Example 4.4 

 

Consider the 6th - order FODE in the following: 

 

𝐷6⍺ỿ(𝑡) =  ỿ(𝑡) − 𝑡2−6α (
1−2⍺

Г(− 6α + 1)(11α − 36α2 + 36α3 − 1)
),  

1

6
< α & α ≠

1

2
 & α ≠

1

3
,  

 

with the initial conditions: 

 

𝐷(𝑛⍺)ỿ(𝑡)|
𝑡=0

= 0, ɳ = 0,1,2,3,4,5. 

 

The exact solution is ỿ(t) = t2.  

A comparison between the numerical solutions 

𝑢(t) evaluated by Generalized RKM method versus the exact 

solutions ỿ(t) for the above examples is shown in Figure 1. 

 

 

 
(a)                                                                                  (b) 

 
(c)                                                                                    (d) 
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(e) 

 

Figure 1. A comparison on approximated solutions versus analytical solutions for example: (a) 4.1, 𝑎 = −2.5, 𝛼 = 0.96; (b) 4.2, 

𝑎 = 1.2, 𝛼 = 0.93; (c) 4.2, 𝑎 = 1.2, 𝛼 = 0.97; (d) 4.3, 𝑎 = −1.5, 𝛼 = 0.96 and (e) 4.4, 𝛼 = 0.67 with N = 1000 

 

 

5. DISCUSSION AND CONCLUSION  

 

In this work, we developed the direct RKM numerical 

methods for solving ODEs of 6th - order, RKM methods have 

been modified to be consistent for solving FDEs. The 

effectiveness of the proposed techniques is shown via an 

assortment of examples of 6th - order FODEs. Compared with 

the exact solutions, the developed numerical methods 

demonstrated good agreement (see Figure 1). The novel 

methods have been effective and they produced excellent 

results. In this paper, we develop the direct methods with third- 

and fifth-stages explicit RKM techniques of constant step-

sizes for solving 6th - order FODEs. These numerical methods 

employ less function evaluations and demonstrate good 

agreement with the analytical solutions. Due to the modified 

RKM method being a direct method, it significantly reduces 

the amount of time spent on computations. When compared to 

the other techniques, this one requires less time and resources 

to compute. To verify the reliability of the method, the 

numerical solutions are compared to previously determined 

exact solutions. The technique's numerical findings confirm 

their applicability to FODEs. 
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