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This research article presents an innovative approach to address a LFPP under 

trapezoidal fuzzy environment. The suggested method considers all the objective 

function coefficients, resources, and technological coefficients as fuzzy trapezoidal 

numbers, taking into account their inherent uncertainty. To handle this ambiguity 

effectively, we apply the component-wise optimization method. The proposed method 

seeks an optimal solution for each fuzzy fractional objective function. The problem 

attains optimal solution, using the solution the given objective function is transformed 

from its fractional representation to its corresponding linear form. With the aid of fuzzy 

programming methodology, the component-wise optimization technique, solves the 

problem using the lingo software or other optimization software. Previous research 

studies have successfully addressed the issue of solving problems involving triangular 

fuzzy numbers by employing mathematical approach. In this study, we have taken a 

step further by extending our methodology to accommodate trapezoidal fuzzy numbers. 

This expansion allows us to tackle problems that involve a broader range of fuzzy data 

representations, thus enhancing the applicability and versatility of our approach. 
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1. INTRODUCTION

Fuzzy Linear Fractional Programming (FLFP) is like a 

useful tool in the world of math problem-solving. It comes in 

handy when we're dealing with complicated real-life problems 

that aren't straightforward because of uncertainty and 

confusion. FLFP helps us figure things out when we're not 

entirely sure about the details. 

Imagine you have to make decisions about how to use 

limited resources for a project or manage money when you're 

not sure about all the costs. FLFP steps in to help you make 

these decisions in a practical way. 

FLFP started back in the 1970s when smart folks combined 

two things: fuzzy logic (which deals with handling vague 

information) and linear fractional programming (a way to 

make allocation decisions). This mix created FLFP, a versatile 

tool for solving real-world problems. 

Many different fields focus on optimizing various ratios, 

such as production planning aiming to maximize output ratios. 

In healthcare and hospital planning, optimization involves 

ratios like nurses per patients or nurses per room. 

In the study, the method works not just for triangles but also 

for shapes that look like trapezoids.A FMP Approach for 

solving a MOLFPP that always yields an optimal solution was 

presented in Chakraborty and Gupta [1].A fuzzy set theoretic 

approach for solving MOLFPP was proposed in Dutta et al. 

[2].Initial approach to solving LFPP was introduced by 

Charnes and Cooper [3]. 

Deb and De [4] discussed fuzzy LFP problems converted 

into crisp problems to obtain the optimal solution. Dharmaraj 

and Appasamy [5] applied a modified Gauss elimination 

technique for separable fuzzy nonlinear programming. The 

researchers [6-9] solved Linear fractional programming 

problems under different methods. 

Ebrahimnejad and Tavana [10] came up with a new way to 

solve FLP problems, inspired by Pramy [11]. 

Ganesan and Veeramani [12] proposed a novel fuzzy 

arithmetic technique specifically designed for symmetric 

trapezoidal fuzzy numbers. These works collectively 

contribute to the advancement of fuzzy mathematical methods 

in solving various types of LP and FLP problems. 

Guzel's [13] research introduced a method to tackle LFPP 

by transforming them into LPP, optimizing the weighted sum 

of all the objective functions. Guzel and Sivri [14] proposed a 

method based on Taylor series, and Luhandjula [15] used a 

linguistic variable approach to solve MOLFPP. Hasan and 

Acharjee [16] devised a technique to address LFP problems by 

transforming them into LPP. Kumar et al. [17] came up with a 

clever technique for finding the best fuzzy solution for FLFP 

problems with equality constraints. Kannan et al. [18] 

addressed the Linear Diophantine Fuzzy Shortest Path 

Problem in Network Analysis. 

Maleki et al. [19] employed the Roubens approach to solve 

fuzzy LPP problems effectively. Prakash and Appasamy [20] 

worked on solving the Optimal Solution for Fully Spherical 

Fuzzy Linear Programming Problem. Ramík [21] introduced a 
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class of FLP problems and established the concepts of feasible 

and α-efficient solutions. 

Saberi Najafi and Edalatpanah [22] pointed out changes 

needed to improve the approach from [15]. Researchers found 

ways to solve problems with triangular fuzzy numbers using a 

mathematical approach in the past. Saraswathi [23] tried 

fuzzy-trapezoidal dematel approach method for solving 

decision making problems under uncertainty. 

Swarup [24] tackled LFPP using a solution method based 

on the simplex method. In many branches of science and 

engineering, LPP’s are essential. Veeramani and Sumathi [25] 

solved fuzzy LFP problems with coefficients are triangular 

fuzzy numbers using the Fuzzy mathematical approach. So, 

we extend the thoery to solving Fuzzy LFP Problems where 

the coefficients are TFN. Wan and Dong [26] worked with 

trapezoidal fuzzy numbers in a linear programming problem. 

Zadeh initially suggested the idea of a fuzzy set [27]. 

The remainder of this article is structured as follows: 

Section 2 contains some fundamental definitions and 

notations. The general form of the FFLP using the new 

technique is provided in Section 3.A summary of the algorithm 

in Section 4. Section 5 contains numerical example was 

resolved using the suggested methodology to produce the best 

result. The last section is when the conclusion is reached. 

 

 

2. PRELIMINARIES 

 

2.1 Definition [27] 

 

If X is a universal set and x∈X, then a fuzzy set 𝐴̃ defined 

as a collection of ordered pairs, 

 

𝐴̃ = {(𝑥, 𝜇𝐴(𝑥)), 𝑥 ∈ 𝑋} 

 

where, 𝜇𝐴 is called the membership function that maps X to 

the membership space M. 

 

2.2 Definition [10] 

 

A fuzzy number 𝐴̃=(a, b, c, d) is said to be a trapezoidal 

fuzzy number if its membership function is given as: 
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Figure 1. Trapezoidal fuzzy number 

 

The representation of the membership function given in the 

Figure 1. 

 

2.3 Definition [4] 

 

Let Ã=(a, b, c, d) and B̃=(e, f, g, h) be two non-negative 

trapezoidal fuzzy numbers then: 

i. Ã+B̃=(a, b, c, d)+(e, f, g, h)=(a+e, b+f, c+g, d+f). 

ii. Ã-B̃=(a, b, c, d)-(e, f, g, h)=(a-h, b-g, c-f, d-c). 

iii. Ã*B̃=(a, b, c, d)*(e, f, g, h)=(α, β, γ, δ). 

iv. Where α = min (ae,ah,de,dh), β = min (bf, bg, cf, cg). 

γ=max(bf, bg, cf, cg), δ=max(ae, ah, de, dh). 

v. 
𝐴

𝐵̃
=(ah, bg, cf, de). 

 

2.4 Definition [9] 

 

A ranking function is a function: F(R)→R which maps each 

fuzzy number into the real line, where a natural order exists. 

Let 𝐴̃=(a, b, c, d) is a trapezoidal fuzzy number then 𝐴̃ =
𝑎+𝑏+𝑐+𝑑

4
. 

To understand why these definitions are important, it's 

crucial to see how they form the basis of our study. These 

definitions create a shared language and structure for our 

analysis. As we move forward in the upcoming sections, you'll 

see how these specific definitions are fundamental to the 

theory behind our research, setting the stage for the methods, 

experiments, and results that will come next. 

 

 

3. LINEAR FRACTIONAL PROGRAMMING 

PROBLEM 

 

Linear fractional programming (LFP) is a valuable 

mathematical optimization tool utilized across numerous 

disciplines such as operations research, economics, 

engineering, and finance. It focuses on optimizing a ratio of 

two linear functions while adhering to a set of linear 

constraints, which makes it a linear objective function. LFP is 

particularly relevant in practical situations where balancing 

competing objectives is a critical part of the decision-making 

process. This type of optimization is frequently employed 

when decision-makers are faced with the need to navigate 

through trade-offs among various goals. 

One of the key motivations behind linear fractional 

programming is its ability to model and solve problems 

involving resource allocation, portfolio optimization, and 

efficiency maximization. By allowing decision-makers to 

express preferences and constraints in the form of ratios, linear 

fractional programming provides a flexible framework to 

address complex decision-making situations. 

In summary, linear fractional programming is a valuable 

tool for tackling real-world problems where decision-makers 

must navigate the delicate balance between competing 

objectives. Its relevance extends to diverse fields, making it an 

important topic in optimization theory and practice. In this 

context, understanding the general form of a linear fractional 

programming problem becomes crucial for both researchers 

and practitioners seeking to address multi-objective 

optimization challenges effectively. 

A general form of linear fractional programming problem 

defined as: 
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MaxZ(x) =
N(x)

D(x)
=

ctx + α

dtx + β
 

subject to 

x ∈ S = {x ∈ Rn: Ax ≤ b, x ≥ 0} 

(1) 

 

where, A ∈ Rm∗n , c, d ∈ Rn and α, β ∈  R ; For some values 

of x, D(x) may be zero; So, we consider {Ax≤b, x≥0, D(x)>0}. 

 

3.1 Theorem [3] 

 

Consider the following LFPP: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑁(𝑥)

𝐷(𝑥)
  

subject to Ax ≤ b 

x≥0 

(2) 

 

Then the problem given by Eq. (2) is equivalent to problem 

given by Eq. (3), 

where Eq. (3) is obtained from Eq. (2) by using the 

transformation t=
1

D(x)
, y=tx and the denominator of the 

objective function is restricted to be lesser than 1. 

 

Maximize tN(
y

t
)  

Subject to A 
y

t
 - b ≤ 0 (3)  

tD(
y

t
) ≤ 1  

y ≥ 0, t > 0. 

(3) 

 

3.2 Theorem [1] 

 

Let for some x∈S, N(x)>0 and if Eq. (2) reaches a maximum 

at x=x*, then Eq. (3) reaches a maximum at a point (t, y)=(t*, 

y*), where 
y∗

t∗
=x* and objective function at these points are 

equal [1]. 

 

3.3 Theorem [5] 

 

A solution z*=
N(x∗)

D(x∗)
 is said to be an optimal solution of Eq. 

(2) if it is a solution of F(z*, x*)=0, where F(z*, 

x*)=max{N(x)-z*D(x), x∈S}. 

 

 

4. FUZZY LINEAR FRACTIONAL PROGRAMMING 

PROBLEM 

 

This part of the text outlines an approach to tackle problems 

involving Multi-Objective Fuzzy Linear Fractional 

Programming (MOFLFP). Within this framework, crucial 

elements such as the costs in the objective functions, the 

resources at disposal, and the coefficients related to 

technology are depicted using trapezoidal fuzzy numbers. This 

depiction is used to address the MOFLFP challenge, where 

key parameters are enveloped in uncertainty. 

 

𝑀𝑎𝑥𝑧̃ =
∑ 𝑐̃𝑖𝑥̃𝑖 + 𝑝

∑ 𝑑̃𝑖𝑥̃𝑖 + 𝑞̃
 

Subject to 

∑𝑛
𝑖=1 𝑎̃𝑖𝑗𝑥̃𝑖 ≤ 𝑏̃𝑗  , j=1, 2, ..., m  

𝑥̃𝑖 ≥ 0, i= 1, 2, ..., n.  

(4) 

 

We assume that, 𝑐̃𝑖  , 𝑝, 𝑑̃𝑖 ,𝑞̃ ,𝑏̃𝑖 ,𝑎̃𝑖𝑗  are trapezoidal fuzzy 

numbers for each j=1, ..., m and i= 1, ..., n. Therefore, 

 

𝑀𝑎𝑥𝑧̃ =
∑ (𝑐𝑖

1, 𝑐𝑖
2, 𝑐𝑖

3, 𝑐𝑖
4)𝑥̃𝑖 + (𝑝1, 𝑝2, 𝑝3, 𝑝4)

∑ (𝑑𝑖
1, 𝑑𝑖

2, 𝑑𝑖
3, 𝑑𝑖

4)𝑥̃𝑖 + (𝑞1, 𝑞2, 𝑞3, 𝑞4)
 

Subject to 

∑ (𝑎̃𝑖𝑗
1 , 𝑎̃𝑖𝑗

2 , 𝑎̃𝑖𝑗
3 , 𝑎̃𝑖𝑗

4 )𝑥̃𝑖 ≤ (𝑏̃𝑗
1, 𝑏̃𝑗

2
, 𝑏̃𝑗

3
, 𝑏̃𝑗

4
) , j=1, 

2..., m  

𝑥̃𝑖 ≥ 0, i= 1, 2..., n. 

(5) 

 

Since component-wise optimization is a strategy for 

simplifying complex optimization problems by breaking them 

into independent components, each optimized separately. This 

approach allows for the use of different techniques for each 

component and is often used in fields like machine learning 

and engineering design. The key challenge is integrating the 

solutions of individual components to address the overall 

problem effectively. 

By using Component-wise optimization, the problem (5) 

reduce to an equivalent MOLP problem as follows: 

 

Max 𝑍1 = 
∑ 𝑐𝑖

1𝑥𝑖+𝑝1

∑ 𝑑𝑖
4𝑥𝑖+𝑞4 

Max 𝑍2 = 
∑ 𝑐𝑖

2𝑥𝑖+𝑝2

∑ 𝑑𝑖
3𝑥𝑖+𝑞3  

Max 𝑍3 = 
∑ 𝑐𝑖

3𝑥𝑖+𝑝3

∑ 𝑑𝑖
2𝑥𝑖+𝑞2  

Max 𝑍4 = 
∑ 𝑐𝑖

4𝑥𝑖+𝑝4

∑ 𝑑𝑖
1𝑥𝑖+𝑞1  

Subject to 

 ∑ 𝑎̃𝑖𝑗
1 𝑥̃𝑖 ≤ 𝑏̃𝑗

1  

∑ 𝑎̃𝑖𝑗
2 𝑥̃𝑖 ≤ 𝑏̃𝑗

2
  

∑ 𝑎̃𝑖𝑗
3 𝑥̃𝑖 ≤ 𝑏̃𝑗

3
  

∑ 𝑎̃𝑖𝑗
4 𝑥̃𝑖 ≤ 𝑏̃𝑗

4
  

𝑥̃𝑖 ≥ 0, i= 1, 2..., n.  

(6) 

 

which is a MOLFP problem. 

In summary, the Charnes and Cooper transformation is a 

valuable technique for converting LFP problems into standard 

LP problems, making them more amenable to solution using 

LP methods. This transformation simplifies the optimization 

process and allows you to find the optimal solution for LFP 

problems efficiently. 

Using Charnes and Cooper transformation we get: 

 
 Max 𝑍1 = ∑ 𝑐𝑖

1𝑦𝑖 + 𝑝1𝑡  

Max 𝑍2 = ∑ 𝑐𝑖
2𝑦𝑖 + 𝑝2𝑡  

Max 𝑍3 = ∑ 𝑐𝑖
3𝑦𝑖 + 𝑝3𝑡  

Max 𝑍4 = ∑ 𝑐𝑖
4𝑦𝑖 + 𝑝4𝑡  

Subject to 

 ∑ 𝑑𝑖
4𝑦𝑖 + 𝑞4𝑡 ≤ 1  

∑ 𝑑𝑖
3𝑦𝑖 + 𝑞3𝑡 ≤ 1  

∑ 𝑑𝑖
2𝑦𝑖 + 𝑞2𝑡 ≤ 1  

∑ 𝑑𝑖
1𝑦𝑖 + 𝑞1𝑡 ≤ 1  

∑ 𝑎̃𝑖𝑗
1 𝑦̃𝑖 − 𝑏̃𝑗

1 𝑡 ≤ 0  

∑ 𝑎̃𝑖𝑗
2 𝑦̃𝑖 − 𝑏̃𝑗

2
𝑡 ≤ 0  

∑ 𝑎̃𝑖𝑗
3 𝑦̃𝑖 − 𝑏̃𝑗

3
𝑡 ≤ 0  

∑ 𝑎̃𝑖𝑗
4 𝑦̃𝑖 − 𝑏̃𝑗

4
𝑡 ≤ 0 

 𝑧𝑗 , 𝑡 ≥ 0, i = 1, 2, ..., n, j = 1, 2, ..., m. 

(7) 
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Solving the transformed MOLPP for each objective 

function we get: 

 

 Max 𝜆  

∑ 𝑐𝑖
1𝑦𝑖 + 𝑝1𝑡 − 𝑧1

∗𝜆 ≥ 0  

∑ 𝑐𝑖
2𝑦𝑖 + 𝑝2𝑡 − 𝑧2

∗𝜆 ≥ 0  

∑ 𝑐𝑖
3𝑦𝑖 + 𝑝3𝑡 − 𝑧3

∗𝜆 ≥ 0  

∑ 𝑐𝑖
4𝑦𝑖 + 𝑝4𝑡 − 𝑧4

∗𝜆 ≥ 0  

∑ 𝑑𝑖
4𝑦𝑖 + 𝑞4𝑡 ≤ 1  

∑ 𝑑𝑖
3𝑦𝑖 + 𝑞3𝑡 ≤ 1  

∑ 𝑑𝑖
2𝑦𝑖 + 𝑞2𝑡 ≤ 1  

∑ 𝑑𝑖
1𝑦𝑖 + 𝑞1𝑡 ≤ 1 

∑ 𝑎̃𝑖𝑗
1 𝑦̃𝑖 − 𝑏̃𝑗

1 𝑡 ≤ 0  

∑ 𝑎̃𝑖𝑗
2 𝑦̃𝑖 − 𝑏̃𝑗

2
𝑡 ≤ 0  

∑ 𝑎̃𝑖𝑗
3 𝑦̃𝑖 − 𝑏̃𝑗

3
𝑡 ≤ 0  

∑ 𝑎̃𝑖𝑗
4 𝑦̃𝑖 − 𝑏̃𝑗

4
𝑡 ≤ 0  

𝑧𝑗 , 𝑡, 𝜆 ≥ 0, i = 1, 2, ..., n, j = 1, 2, ..., m. 

(8) 

 

Solving Eq. (8) we obtain yi, i=1, 2, …, n and t and using 

the transformation 𝑥𝑖 =
𝑦𝑖

𝑡
, we get the optimal value of ZS, s=1, 

2, ..., k. 

 

 

5. ALGORITHM 

 

This article introduces a structured approach designed to 

enhance the efficacy of finding optimal solutions in scenarios 

where traditional crisp optimization methods are not adequate. 

The presented algorithm applies the concepts of fuzzy 

mathematics to adeptly navigate the uncertainty and 

imprecision that typically characterize real-world decision-

making scenarios. In this paper, we explore the foundational 

concepts and procedural steps of this algorithm, showcasing 

its capability to adeptly resolve intricate FLFP (Fuzzy Linear 

Fractional Programming) challenges. 

Summarized below is the method proposed to address the 

FLFP problem: 

a) Frame the issue within the context of FLFP. 

b) Decompose the trapezoidal fuzzy linear fractional 

objectives into four distinct linear fractional objectives 

through a component-wise optimization process. In a 

parallel fashion, convert trapezoidal fuzzy constraints 

into four definitive constraints composed of exact 

coefficients. 

c) Apply the Charnes and Cooper technique to transform 

the Multi-Objective Linear Fractional Programming 

(MOLFP) problem into a Multi-Objective Linear 

Programming (MOLP) problem. 

d) Isolate and determine the optimal solution for each 

objective. 

e) Implement the fuzzy programming method detailed in 

Eq. (8) to ascertain the optimal resolution for Eq. (7). 

f) Utilize the derived values of 'y' and 't' to compute the 

vector 'x', enabling the calculation of the optimal values 

for each trapezoidal fuzzy objective. 

g) Convert the Multi-Objective Linear Fractional 

Programming Problem (MOLFPP) into a singular 

objective Linear Programming Problem (LPP) by 

maximizing P (Ni(x) - Zi*Di(x)), where each trapezoidal 

fuzzy objective's optimal solution is employed. 

h) Use component-wise optimization to simplify the LPP 

into a Multi-Objective Linear Programming Problem 

(MOLPP). 

i) Resolve each objective function on its own to procure 

the optimal solution, denoted as Qi for each, and collate 

these solutions into the optimal set S. 

j) Within the set S, identify the minimal possible value for 

each objective function. 

k) Employ a linear membership function to solve the 

derived crisp LPP, thereby securing an efficient solution. 

The linear membership function utilized is delineated as 

follows: 

 

𝜇𝐹(𝑥) = {

0, 𝐹 < 𝑃𝑖

𝐹 − 𝑃𝑖

𝑄𝑖 − 𝑃𝑖

,

1, 𝐹 > 𝑄𝑖

𝑃𝑖 < 𝐹 < 𝑄𝑖} 

 

The algorithm is shown in Figure 2 in the form of flow chart. 

The algorithm offers a valuable tool for tackling optimization 

challenges in situations where uncertainty and imprecision are 

present. By embracing the power of fuzzy mathematics and 

trapezoidal fuzzy numbers, this approach provides a 

systematic and practical way to address real-world decision-

making problems. It extends the applicability of optimization 

techniques to a wide range of domains, including finance, 

engineering, and logistics, where decisions often rely on 

incomplete or uncertain information. 

 

 
 

Figure 2. Flowchart of the method 
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Figure 2 illustrates the step-by-step process of the method 

explained. It provides a visual representation of how the 

method works and the sequence of actions involved. 

 

 

6. NUMERICAL EXAMPLE 

 

The numerical case study concerns the application of Linear 

Fractional Programming (LFP) in situations where trapezoidal 

fuzzy numbers are used to represent uncertainty and 

imprecision. The primary objective is to find an optimal 

solution while taking into account the inherent vagueness 

associated with these fuzzy numbers. The outcome of this 

optimization process is a solution characterized by fuzziness 

or uncertainty, known as a "fuzzy optimal solution." This 

approach is valuable for decision-making in scenarios where 

precise numerical data may be lacking or when dealing with 

problems influenced by uncertain factors. 

 

Max𝑍1=
(4,7,10,12)𝑥1+(8,10,14,15)𝑥2+(2.5,4,7.5,11.5)𝑥3+(2,3,4,6)

(10,14,20,22)𝑥1+(20,23.5,27.5,29)𝑥2+(18,20,25,28)𝑥3+(5,10,18,20)
 

Max 𝑍2=
(20,22,24,28)𝑥1+(18,21,25,30)𝑥2+(14,17,19,25)𝑥3+(1,3,6,10)

(14,16,19,23)𝑥1+(18,21,25,27)𝑥2+(15,20,25,30)𝑥3+(10,15,20,23)
 

Subject to the constraints 

(10,17,19,25)x1 + (14,16,22,24)x2 + (20,25,27,30)x3 ≤ (40,43,45,47) 

(0.03,0.06,0.07,0.09)x1 + (0.05,0.07,0.08,0.1)x2 + (0.02,0.05,0.06,0.07)x3 ≤ (0.7,0.8,0.9,1) 

(4,6,10,13)x1 + (0,5,10,15)x2 + (8,11,14,20)x3 ≤ (25,30,35,40) 

x1, x2, x3 ≥ 0. 

(9) 

Step 1: Here we consider first objective function and the 

constraints, 
 

Max 𝑧1 = 
4𝑥1+8𝑥2+2.5𝑥3+2

22𝑥1+29𝑥2+28𝑥3+20
 

Max 𝑧2 = 
7𝑥1+10𝑥2+4𝑥3+3

20𝑥1+27.5𝑥2+25𝑥3+18
 

Max 𝑧3 = 
10𝑥1+14𝑥2+7.5𝑥3+24

14𝑥1+23.5𝑥2+20𝑥3+10
 

Max 𝑧4 = 
12𝑥1+`15𝑥2+11.5𝑥3+6

10𝑥1+20𝑥2+18𝑥3+5
 

Subject to the constraints 

10x1 + 14x2 + 20x3 ≤ 40 

19x1 + 22x2 + 27x3 ≤ 45 

25x1 + 24x2 + 30x3 ≤ 47 

0.03x1 + 0.05x2 + 0.02x3 ≤ 0.7 

0.06x1 + 0.07x2 + 0.05x3 ≤ 0.8 

0.07x1 + 0.08x2 + 0.06x3 ≤ 0.9 

0.09x1 + 0.1x2 + 0.07x3 ≤ 1 

4x1 + 0x2 + 8x3 ≤ 25 

6x1 + 5x2 + 11x3 ≤ 30 

10x1 + 10x2 + 14x3 ≤ 35 

13x1 + 15x2 + 20x3 ≤ 40 

x1, x2, x3 ≥ 0. 

(10) 

 

Step 2: Use Charnes and Cooper transformation 
 

Max z1 = 4y1 + 8y2 + 2.5y3 + 2 

Max z2 = 7y1 + 10y2 + 4y3 + 3 

Max z3 = 10y1 + 14y2 + 7.5y3 + 24 

Max z4 = 12y1 + 15y2 + 11.5y3 + 6 

Subject to the constraints 

22y1 + 29y2 + 28y3 + 20t ≤ 1 

20y1 + 27.5y2 + 25y3 + 18t ≤ 1 

14y1 + 23.5y2 + 20y3 + 10t ≤ 1 

10y1 + 20y2 + 18y3 + 5t ≤ 1 

10y1 + 14y2 + 20y3 − 40t ≤ 0 

17y1 + 16y2 + 25y3 − 43t ≤ 0 

19y1 + 22y2 + 27y3 − 45t ≤ 0 

25y1 + 24y2 + 30y3 − 47t ≤ 0 

0.03y1 + 0.05y2 + 0.02y3 − 0.7t ≤ 0 

0.06y1 + 0.07y2 + 0.05y3 − 0.8t ≤ 0 

0.07y1 + 0.08y2 + 0.06y3 − 0.9t ≤ 0 

0.09y1 + 0.1y2 + 0.07y3 − t ≤ 0 

4y1 + 0y2 + 8y3 − 25t ≤ 0 

6y1 + 5y2 + 11y3 − 30t ≤ 0 

10y1 + 10y2 + 14y3 − 35t ≤ 0 

13y1 + 15y2 + 20y3 − 40t ≤ 0 

𝑦1, 𝑦2, 𝑦3 ≥ 0 and t > 0. 

(11) 

Step 3: when each objective is individually maximized 

using Lingo, the resulting solutions are as follows: 

 

z1 = 0.23 

z2 = 0.2940 

z3 = 0.4091 

z4 = 0.4654  

Maximize λ  

Subject to  

4y1 + 8y2 + 2.5y3 + 2t − 0.23λ ≥ 0  

7y1 + 10y2 + 4y3 + 3t − 0.2940λ ≥ 0  

10y1 + 14y2 + 7.5y3 + 24t − 0.4091λ ≥ 0  

12y1 + `15y2 + 11.5y3 + 6t − 0.4654λ ≥ 0  

22y1 + 29y2 + 28y3 + 20t ≤ 1  

20y1 + 27.5y2 + 25y3 + 18t ≤ 1  

14y1 + 23.5y2 + 20y3 + 10t ≤ 1  

10y1 + 20y2 + 18y3 + 5t ≤ 1  

10y1 + 14y2 + 20y3 − 40t ≤ 0 

17y1 + 16y2 + 25y3 − 43t ≤ 0 

19y1 + 22y2 + 27y3 − 45t ≤ 0 

25y1 + 24y2 + 30y3 − 47t ≤ 0 

0.03y1 + 0.05y2 + 0.02y3 − 0.7t ≤ 0 

0.06y1 + 0.07y2 + 0.05y3 − 0.8t ≤ 0 

0.07y1 + 0.08y2 + 0.06y3 − 0.9t ≤ 0 

0.09y1 + 0.1y2 + 0.07y3 − t ≤ 0 

4y1 + 0y2 + 8y3 − 25t ≤ 0 

6y1 + 5y2 + 11y3 − 30t ≤ 0 

10y1 + 10y2 + 14y3 − 35t ≤ 0 

13y1 + 15y2 + 20y3 − 40t ≤ 0 

y1, y2, y3 ≥ 0 and t > 0.  

(12) 

 

Solving we get: 

 

y1 = 0.000952, y2 = 0.02, y3 = 0, λ = 0.99, t =0.01 

 

Using the transformation y=t*x, we solve get: 

 

𝑥1 = 0.0952, 𝑥2 = 2, 𝑥3 = 0 

 

Therefore: 

 

Max 𝑍1 = (0.4,0.4057,0.4399,0.4637) 

 

Here we consider 2ND objective and the constraints: 
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Max Z2 = 
(20,22,24,28)x1+(18,21,25,30)x2+(14,17,19,25)x3+(1,3,6,10)

(14,16,19,23)x1+(18,21,25,27)x2+(15,20,25,30)x3+(10,15,20,23)
 

 Max z1 = 
20x1+18x2+14x3+1

23x1+27x2+30x3+23
  

Max z2 = 
22x1+21x2+17x3+3

19x1+25x2+25x3+20
  

Max z3 = 
24x1+25x2+19x3+6

16x1+21x2+20x3+15
  

Max z4 = 
28x1+30x2+25x3+10

14x1+18x2+15x3+10
 

Subject to the constraints 

10x1 + 14x2 + 20x3 ≤ 40 

17x1 + 16x2 + 25x3 ≤ 43 

19x1 + 22x2 + 27x3 ≤ 45 

25x1 + 24x2 + 30x3 ≤ 47 

0.03x1 + 0.05x2 + 0.02x3 ≤ 0.7 

0.06x1 + 0.07x2 + 0.05x3 ≤ 0.8 

0.07x1 + 0.08x2 + 0.06x3 ≤ 0.9 

0.09x1 + 0.1x2 + 0.07x3 ≤ 1 

4x1 + 0x2 + 8x3 ≤ 25 

6x1 + 5x2 + 11x3 ≤ 30 

10x1 + 10x2 + 14x3 ≤ 35 

13x1 + 15x2 + 20x3 ≤ 40, x1 , x2 , x3 ≥ 0.  

(13) 

 

Step 4: Use Charnes and Cooper transformation 
 

Max z1 = 20y1 + 18y2 + 14y3 + t  
Max z2 = 22y1 + 21y2 + 17y3 + 3t  
Max z3 = 24y1 + 25y2 + 19y3 + 6t  

Max z4 = 28y1 + 30y2 + 25y3 + 10t  
Subject to the constraints 

23y1 + 27y2 + 30y3 + 23t ≤ 1 

19y1 + 25y2 + 25y3 + 20t ≤ 1 

16y1 + 21y2 + 20y3 + 15t ≤ 1 

14y1 + 18y2 + 15y3 + 10t ≤ 1 

10y1 + 14y2 + 20y3 − 40t ≤ 0 

17y1 + 16y2 + 25y3 − 43t ≤ 0 

19y1 + 22y2 + 27y3 − 45t ≤ 0 

25y1 + 24y2 + 30y3 − 47t ≤ 0 

0.03y1 + 0.05y2 + 0.02y3 − 0.7t ≤ 0 

0.06y1 + 0.07y2 + 0.05y3 − 0.8t ≤ 0 

0.07y1 + 0.08y2 + 0.06y3 − 0.9t ≤ 0 

0.09y1 + 0.1y2 + 0.07y3 − t ≤ 0 

4y1 + 0y2 + 8y3 − 25t ≤ 0 

6y1 + 5y2 + 11y3 − 30t ≤ 0 

10y1 + 10y2 + 14y3 − 35t ≤ 0 

13y1 + 15y2 + 20y3 − 40t ≤ 0, y1, y2, y3 ≥ 0 and t > 0. 

(14) 

 

Step 5: Maximizing each objective separately using lingo, 

gives the following solutions: 
 

z1 = 0.58, z2 = 0.67, z3 = 0.77, z4 = 0.94  

Maximize λ  S.T. 

 20y1 + 18y2 + 14y3 + t − 0.58λ ≥ 0  

22y1 + 21y2 + 17y3 + 3t − 0.67λ ≥ 0  

24y1 + 25y2 + 19y3 + 6t − 0.77λ ≥ 0  

28y1 + `30y2 + 25y3 + 10t − 0.94λ ≥ 0  

23y1 + 27y2 + 30y3 + 23t ≤ 1  

19y1 + 25y2 + 25y3 + 20t ≤ 1  

16y1 + 21y2 + 20y3 + 15t ≤ 1  

14y1 + 18y2 + 15y3 + 10t ≤ 1  

10y1 + 14y2 + 20y3 − 40t ≤ 0 

17y1 + 16y2 + 25y3 − 43t ≤ 0 

19y1 + 22y2 + 27y3 − 45t ≤ 0 

25y1 + 24y2 + 30y3 − 47t ≤ 0 

0.03y1 + 0.05y2 + 0.02y3 − 0.7t ≤ 0 

0.06y1 + 0.07y2 + 0.05y3 − 0.8t ≤ 0 

0.07y1 + 0.08y2 + 0.06y3 − 0.9t ≤ 0 

0.09y1 + 0.1y2 + 0.07y3 − t ≤ 0 

4y1 + 0y2 + 8y3 − 25t ≤ 0 

6y1 + 5y2 + 11y3 − 30t ≤ 0 

10y1 + 10y2 + 14y3 − 35t ≤ 0 

13y1 + 15y2 + 20y3 − 40t ≤ 0 

y1, y2, y3 ≥ 0 and t > 0  

(15) 

Solving we get: 

 

𝑦1 = 0.028, 𝑦2 = 0, 𝑦3 = 0, 𝜆 = 0.99, t =0.015 

 

Using the transformation y=t*x, we solve get: 

 

x1 = 1.86,  x2 = 0,  x3 = 0 

 

Therefore: 

 

Max 𝑍2 = (0.58,1.15,1.5,2) 

 

Step 6: Now we convert MOLFPP into the single objective 

linear fractional programming problems using Maximize 

∑ (Ni(x) − Zi
∗Di(x))  subject to the constraints of given 

original problem. 

 
Maximize Z = (−32.2014, −8.298,9.9202,27.88)x1 +

(−41.4473, −18.5972,5.3161,26.56)x2 + 

(−56.4836, −27.4975, −4.614,20.8)x3

+ (−52.274, −31.9182, −11.307,8.2) 

Subject to: 

(10,17,19,25)x1 + (14,16,22,24)x2 + (20,25,27,30)x3 ≤ (40,43,45,47) 

(0.03,0.06,0.07,0.09)x1 + (0.05,0.07,0.08,0.1)x2

+ (0.02,0.05,0.06,0.07)x3 ≤ (0.7,0.8,0.9,1) 

(4,6,10,13)x1 + (0,5,10,15)x2 + (8,11,14,20)x3 ≤ (25,30,35,40) 

x1, x2, x3 ≥ 0. 

 

Step 7: Now we again use component wise optimization 

and convert LPP to MOLPP given by: 

 
Max Q1(x) = −32.2014x1 − 41.4473x2 − 56.4836x3 −

52.274 

Max Q2(x) = −8.298x1 − 18.5972x2 − 27.4975x3 − 31.9182 

Max Q3(x) = 9.9202x1 + 5.3161x2 − 4.614x3 − 11.307 

Max Q4(x) = 27.88x1 + 26.56x2 + 20.8x3 + 8.2 

 

subject to the constraints given in Eq. (7) 

 

Step 8: Solving each objective Qi, i=1,2,3,4 gives the 

optimal solution as: 

 

𝑄1 = −52.274, 𝑄2 = −31.9182, 𝑄3 = 7.3429, 𝑄4 = 60.6144. 

 

The set S of optimal points is (0,0,0), (1.88,0,0). 

 

Step 9: Using the set S, we find Pi, i=1, 2, 3, 4. So we obtain: 

 
P1 = −112.812, P2 = −47.518, P3 = 7.3429, P4 = 60.6144.  

 

Step 10: Now using linear membership function we 

obtained crisp LPP given by: 

 
Max Z=λ; 

 −0.5319 ∗ x1 − 0.6846 ∗ x2 − 0.93 ∗ x3+1- λ >= 0  

−0.5319 ∗ x1 − 1.192 ∗ x2 − 1.7626 ∗ x3 + 1- λ >= 0  

0.5319 ∗ x1 + 0.285 ∗ x2 − 0.2474 ∗ x3 - λ >= 0  

0.5319 ∗ x1 + 0.5067 ∗ x2 + 0.3968 ∗ x3 -λ >= 0  

10x1 + 14x2 + 20x3 ≤ 40 

17x1 + 16x2 + 25x3 ≤ 43 

19x1 + 22x2 + 27x3 ≤ 45 

25x1 + 24x2 + 30x3 ≤ 47 

0.03x1 + 0.05x2 + 0.02x3 ≤ 0.7 

0.06x1 + 0.07x2 + 0.05x3 ≤ 0.8 

0.07x1 + 0.08x2 + 0.06x3 ≤ 0.9 

0.09x1 + 0.1x2 + 0.07x3 ≤ 1 

4x1 + 0x2 + 8x3 ≤ 25 

6x1 + 5x2 + 11x3 ≤ 30 

10x1 + 10x2 + 14x3 ≤ 35 

13x1 + 15x2 + 20x3 ≤ 40, x1, x2, x3 , λ ≥ 0.  
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Solving we get: 

 

 𝑥1 = 0.94,  𝑥2 = 0, 𝑥3 = 0, 𝜆 = 0.5  

 

Therefore, we get: 

 

Max Z1= (0.1415,0.2603,0.578,1.2)  

Max Z2= (0.4539,0.6254,0.9507,1.5682).  

 

Here we obtained the optimal solution for the multi 

objective function without converting to the crisp model. So 

here we have reduced the vagueness compared to the Pramy’s 

Method [10]. The comparison graph discussed below we 

obtained the better results for the objective value. 

Using the definition 2.5 applying ranking we get: 

Max Z=0.54>0.44=Max Z=Pramy’s Method the 

comparison shown in the Figure 3 below: 

 

 
 

Figure 3. Graphical representation for comparison of 

proposed method 

 

 

7. CONCLUSIONS 

 

In this research study, we addressed a linear fractional 

programming problem by incorporating trapezoidal fuzzy 

numbers. Our approach involved transforming the problem 

into four distinct multi-objective optimization problems 

through component-wise optimization. Subsequently, we 

further converted the LFPP into a LPP by employing the 

Charnes and Cooper transformation. Through the application 

of fuzzy mathematical techniques, we were able to derive an 

optimal solution for the problem at hand. 

This is impressive achievement, as fuzzy optimization 

problems often involve dealing with imprecise or vague data 

and preferences, and different methods can lead to varying 

levels of vagueness reduction and optimization results. This 

approach underscores the originality and effectiveness of your 

approach in addressing these challenges. 

The algorithm's computational complexity can significantly 

increase for large-scale problems and high-dimensional fuzzy 

variables, leading to longer execution times and resource-

intensive computations, which may limit its practicality. Like 

many optimization algorithms, the algorithm's performance 

relies on parameter selection, such as fuzzification levels and 

convergence criteria, which can be challenging to determine 

and require extensive experimentation. The assumption of 

independence between fuzzy variables and constraints may not 

hold in real-world scenarios, where interdependencies and 

correlations among variables are common, potentially limiting 

its applicability. The research primarily uses trapezoidal fuzzy 

numbers to handle data uncertainty but does not explore 

alternative fuzzy number representations or discuss the 

implications of different modeling choices, reducing its 

versatility. The algorithm's efficiency in solving large-scale 

problems with numerous constraints and variables, 

particularly regarding memory usage and scalability, requires 

further investigation. 

Recognizing these limitations is crucial for researchers and 

practitioners considering the algorithm's application. Future 

research should focus on addressing these issues to extend its 

usability in practical problems involving fuzzy data and 

uncertainty. Furthermore, our proposed methodology holds 

promise for potential extensions to tackle Intuitionistic Fuzzy 

Linear Programming Problems utilizing trapezoidal 

Intuitionistic Fuzzy numbers. Intuitionistic fuzzy sets 

introduce an additional degree of freedom compared to 

classical fuzzy sets. By incorporating IFLPP, our methodology 

could better capture and model the uncertainty, hesitancy, and 

ambiguity present in many real-world decision-making 

scenarios. This extension would render our approach even 

more applicable to a broader range of practical problems. This 

future application would allow us to broaden the scope and 

utility of the proposed approach in solving more complex real 

life problems. 
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