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Human-computer interaction (HCI) focuses on improving the user’s interaction with 

the computer. HCI enhances user experience in a wide range of applications, such as 

medical, security, autonomous vehicles, and wearable smart devices. While several 

systems have already developed tongue-based HCI that aim to be used as an input 

device, the majority require tongue piercing, dental retainers, and multiple electrodes 

on the chin, in the mouth or ears. These approaches are generally unhygienic, intrusive, 

and unsuitable to use in public areas esthetically. In this study, we designed Ululate, a 

hygienic, unobtrusive, and non-intrusive tongue gesture detection system that detects 

tongue movement by measuring vibration on the neck. The proposed system uses a 

sensing unit (accelerometer) that can be positioned below the lower jaw on the 

Genioglossus muscle. Hence, it does not require any in-mouth installation. 

Classification is conducted using four types of supervised machine learning algorithms, 

namely K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Decision Tree, 

and Random Forest, then the accuracy of each algorithm using five different accuracy 

matrices is compared. The initial result of tongue gestures demonstrates that random 

forest shows the highest accuracy (97%). The overall designed system is lightweight, 

low profile, and low cost, which makes it efficient for everyday use. 
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1. INTRODUCTION

Human-computer interaction is the study of the interface 

between humans and computers. The HCI system integrates 

various fields of study, such as computer science, human 

factors, psychology, and ergonomics. Furthermore, HCI deals 

with questions of human perception, intelligence, decision-

making, and interactive techniques of visualization, so it 

centers mainly on supervised methods. 

With the improvement and exploitation of the sensor 

technology, it is important to improve micro-interaction with 

wearable devices because its applications may affect the user 

experience, whether it is enabling computers to be accessed by 

individuals with quadriplegia or just being used on a regular 

basis. 

Due to modern technology, a growing interest in human-

computer interaction has been observed in the last few years. 

HCI is attracting significant interest due to its importance in 

improving the user experience in a wide range of domains. 

HCI applications can vary from medical applications to 

wearable devices, security, and automatic vehicles. In medical 

applications, using an advanced HCI system as an input device 

is vital for a wide range of users, including quadriplegic 

patients and those with mutism making it easier for them to 

engage with smart devices. Furthermore, stress detection, 

where HCI systems show an improvement in detecting human 

stress levels using ECG signals, may appear to be a 

challenging task. Still, with the development of wearable 

devices and the improvement in sensor technology, it is now 

possible to detect stress levels using ECG signals where the 

sensors are located on the wrist that can be detected, identified, 

and diagnosed. In addition to measuring stress, those systems 

can also detect fatigue of construction workers, drivers and 

measure glucose levels in the blood of patients with Diabetes 

[1-12]. Understanding human-computer interaction is critical 

for creating positive user experiences. Mental health 

specialists from all disciplines are increasingly creating and 

implementing Internet-based therapies for persons suffering 

from a variety of mental illnesses. Technology-enabled 

therapies for a variety of mental health conditions have several 

therapeutic and economic benefits. Despite that, the influence 

of HCI and associated design aspects on patient safety, 

efficacy, and treatment adherence for computer users who 

engage in e-mental health therapies still need to be discovered 

[13]. 

While most electronic courseware enables users to progress 

at their own rate, courseware designers frequently make two 

assumptions. Initially, all users are presumed to be able to 

synthesize graphical material with their existing experience 

and knowledge to facilitate learning without considering 

diverse cognitive types. Recognizing student characteristics 

becomes crucial in broadening access to electronic 

information. Secondly, learning is taken for granted rather 

than validated. Therefore, HCI systems employ data analysis 
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techniques to differentiate between what individuals 

comprehend and what they do not. E-Learning websites could 

utilize the HCI system to improve the learning experience by 

collecting and analyzing user data when they use learning 

websites [14-17]. The security research community 

acknowledges user behavior as a significant factor in various 

security vulnerabilities. Characterizing people as the "weakest 

link in the security chain" has gained popularity. Designers 

must identify and tackle the root causes of undesired user 

behavior to develop effective security systems. Researchers 

can draw upon knowledge and techniques from human-

computer interaction to proactively address and resolve these 

issues [18-22]. 

Hands are required in today’s interface, which causes 

limitations when running or walking. Voice- based HCI might 

solve these problems, but it creates other issues. For example, 

using voice- based HCI in crowded areas is inappropriate for 

privacy reasons. Furthermore, voice-based HCI is inefficient 

in noisy places due to cross-talk and background noise. 

Autonomous systems powered by artificial intelligence (AI) 

are progressively infiltrating people’s daily lives and work. 

Autonomous cars are a prominent category. In the last few 

years, researchers have shown much interest in researching 

smart cars. Integrating visual human- computer interactions 

(VHCIs) into intelligent vehicle systems is critical for closing 

the gap between autonomous and man-machine control 

systems. Concerned about autonomous systems’ safety, 

researchers have emphasized that HCI systems for automatic 

cars must prioritize human factors in design for this new 

technology class. They suggest that society is undergoing 

considerable transformation due to the emergence of AI-based 

autonomous systems that differ from traditional automation. 

There needs to be more clarity between automation and AI-

based autonomy, which may lead to unrealistic expectations 

and the misuse of technology [21-23].  

The daily maintenance and repair of a specific type of 

equipment are often hampered by long fault diagnosis times 

and untimely repairs. By using HCI systems, analog electronic 

circuits and equipment can be diagnosed and identified for 

faults, preventing accidents from occurring [24, 25]. 

The main principle of creating an HCI system is to create a 

functioning system that considers various HCI system design 

concerns and solves them in a way that does not impair system 

efficiency while improving user experience. We may divide 

HCI system design limitations into usability and user 

experience, with usability constraints being any component 

that influences system function, such as efficiency, safety, and 

utility. On the other hand, user experience limitations relate to 

how users interact with the HCI system, so increasing system 

complexity might negatively impact the user experience. 

The interest in HCI is focused on solving issues in various 

design aspects. The design of an HCI system must consider 

multiple factors that improve the user experience, such as 

privacy, aesthetics, hygiene, and system complexity. 

Bulky gadgets on the hand or head are unsightly and 

obstruct daily activities. In addition, obtrusive HCI devices 

can be unattractive, especially in public places. As a result, 

while building an HCI system, we must consider numerous 

aesthetic factors like device size, weight, positioning, and 

employing origin to control the device. 

Voice assistants are digital helpers that can understand and 

respond to human speech using computer-generated voices. 

The most popular voice assistants are Apple’s Siri, Amazon’s 

Alexa, Microsoft’s Cortana, and Google’s Assistant, which 

can be found on smartphones or smart speakers. Users can 

speak to their assistants to ask questions, control home 

automation devices and media playback, and manage tasks 

like email, to-do lists, and calendars. 

Voice assistants are handy tools but also have significant 

security risks. One of the most critical challenges is ensuring 

the security of the personal information stored on these devices. 

Since voice-activated devices can read calendar events, emails, 

and other personal information, anyone with access to them 

can quickly access this sensitive data. Additionally, voice 

assistants are vulnerable to different types of attacks. 

Researchers have shown that voice assistants can respond to 

inaudible commands delivered at ultrasonic frequencies. 

Attackers can use this technique to gain control of the device, 

and this type of attack could be broadcast over the airwaves in 

the future [26, 27]. Therefore, voice-based HCI in crowded 

areas is not recommended for privacy considerations. 

Furthermore, voice-based HCI is inefficient in loud 

environments due to cross-talk and background noise. 

Human-Computer Interaction has been rapidly growing and 

has introduced a new area of research known as tongue-based 

HCI systems. These systems offer a potential input method for 

individuals who have limited or no mobility in their limbs. 

However, creating and deploying such systems has significant 

challenges that must be carefully addressed. 

Choosing suitable sensors and location is crucial for 

accurately detecting tongue gestures in HCI systems. Many 

proposed input devices require invasive procedures like 

tongue piercing or multiple electrodes, which could be 

unsuitable for public use due to hygiene and aesthetic concerns. 

Moreover, deploying in-mouth devices, such as magnetic 

implants, poses significant concerns regarding oral hygiene. In 

this context, a wearable sensor device on the Genioglossus 

muscle has been devised to address these issues. This 

innovative approach eliminates the need for regular cleaning 

and minimizes the requirement for additional assistance during 

implantation. 

In response to these limitations, we have developed 

"Ululate," an advanced hands-free HCI system designed as an 

alternative input method. The name "Ululate" draws 

inspiration from the Arabic term "Ululation," which signifies 

a long, wavering vocal sound produced by rapid tongue 

movements. This term is often associated with celebratory 

expressions of joy in African and Middle Eastern cultures, 

typically observed during communal ritual events, such as 

weddings. The name "Ululate" conveys the resemblance of 

tongue movement without implying the accompanying vocal 

sound. 

In this section, we briefly introduced most of the aspects of 

HCI design. The following sections are organized as Literature 

Review, Methodology, Results and Discussion, and 

Conclusions. 

 

 

2. LITERATURE REVIEW  

 

Previous studies have explored various modes of human-

computer interaction through wearable technology. HCI 

systems can be categorized according to the body parts 

involved. In this study, focus will be placed on gestures using 

the tongue and teeth and facial gestures.  

Cheng et al. [28] investigated a non-invasive tongue gesture 

input device using an array of textile pressure sensors mounted 

to the user’s cheek. Using magnetic tongue piercing and 
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tapping on the teeth, Kim et al. [29] created an HCI tongue-

based system for tetraplegic individuals. Goel et al. [30] have 

built wireless, non-intrusive tongue gesture recognition using 

X- band Doppler. The interplay between the tongue and teeth 

is the foundation of a unique system that Nguyen et al. [31] 

have created. EEG/EMG sensors enable users to tap on their 

teeth and recognize various movements. A device designed by 

Vega Gálvez et al. [32] uses an accelerometer and gyroscope 

placed on the lower mastoid and mandibular condyle to detect 

the clicking of four different tooth groups. Based on physical 

deformations in the ear canal caused by facial muscle 

movements, Amesaka et al. explored it as a new HCI input 

method [33]. Matthies et al. [34] studied the same concept and 

compared the performance level of several electric sensing 

technologies, i.e., EMG, CS, EFS, EAR FS. and applied noise 

cancellation to detect only low frequency of ear canal 

deformation. 

While previous research has introduced numerous 

techniques for wearable HCI systems as input devices for daily 

use, most of these solutions rely on devices worn inside or 

outside the mouth, leading to several issues. Intrusive designs 

involving tongue piercing and dental retainers raise concerns 

about hygiene and discomfort. Conversely, external mouth 

devices may be obtrusive and challenging to wear in public 

settings due to their visibility. Additionally, these devices are 

often uncomfortable, making them impractical for everyday 

use. 

Given these limitations, our study presents Ululate. This 

system utilizes accelerometer data to recognize tongue 

movement and categorize it as gestures for subtle, non-

intrusive, non-invasive, and hand-free HCI system. 

 

 

3. METHODOLOGY 

 

One of the primary goals when developing the Ululate 

system was to make it acceptable for everyday use. As a result, 

when creating Ululate, we examined each approach in terms 

of non-intrusive, unobtrusive, non-invasive, and other design 

aspects.  

Selecting the best sensing unit is one of the most significant 

aspects since it imposes constraints on the system. When 

selecting sensors for the Ululate, we investigated many sensors 

and methodologies for tongue detection, including textile 

pressure, X-band Doppler, and EEG/EMG sensors. 

Furthermore, due to its size, weight, accuracy, and low cost, 

we determined that an accelerometer sensor was the best 

match for the system. 

Examining the optimum position for the sensing unit is one 

of the most critical and challenging aspects of the design 

process since it is a trade-off between what the user prefers and 

what is optimal for the sensing position. As a result, the 

sensors were placed on the Genioglossus muscle for maximum 

accuracy.  

The gesture is a form of body language communication that 

may be described with or without spoken words. The primary 

goal of gesture interaction in HCI is to develop systems that 

can recognize specific human gestures and utilize them to 

communicate information or control devices [35, 36]. As a 

result, while choosing the best tongue gestures, we assessed 

numerous factors, including the intricacy of the gestures, 

whether they were short and direct, and if they were better if 

fewer organs were employed. Furthermore, we employed 

several tongue movements gestures to investigate the concepts 

of tongue movement as an input device and determine which 

gestures would be best suitable for consumers. As a result, four 

distinct tongue gestures are proposed. 

As a result, a sensing device equipped with an 

accelerometer was designed in order to construct an HCI 

system based on tongue gesture recognition. The sensor unit 

was then placed on one test participant’s lower jaw on the 

Genioglossus muscle, and we performed several tongue 

movements gestures to evaluate the concepts of tongue 

movement as an input device and discover which gestures 

would be most appropriate for users. As a consequence, four 

distinct tongue motions are proposed. Finally, measurements 

are collected, evaluated, and fed into supervised machine-

learning algorithms to classify gestures. Furthermore, we 

computed and compared system accuracy with four different 

machine-learning classifiers and accuracy matrices. 

 

3.1 Ululate system design  

 

Ululate system comprises a compact sensing unit connected 

via USB to the computer. The sensing unit includes a 29×58 

mm ESP32 micro controller and a 3×5 mm ADXL345 

accelerometer sensor positioned below the lower jaw on the 

Genioglossus muscle, as shown in Figure 1. The accelerometer 

data were collected and saved on the computer.  

As the accelerometer chip in Figure 2 has a modest profile 

(less than 1 cm2), it could be effortlessly included in a scarf or 

shirt collar since the proposed solution must be undetectable. 

 

 
 

Figure 1. Sensing unit positioned on Genioglossus muscle 

 

 
 

Figure 2. Accelerometer chip 
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3.2 Gesture selection 

 

To design an intuitive HCI system, it’s essential to 

understand users’ preferences for these gestures, especially the 

if the study aims to create an everyday HCI system. Chen et al. 

[28] offered taxonomies to delineate the formation and 

application of micro-mouth gestures. They introduced a 

practical collection of 20 mouth micro-gestures, selected 

based on user preference, suitable for performing tasks in 

common software applications [35-37]. 

As the tongue-based HCI system is an unfamiliar mode of 

interaction, taking into consideration user preferences, the 

selected gestures should be short, direct, and batter if fewer 

organs are used. Furthermore, natural mouth and tongue 

gestures cannot be considered since their resemblance to 

everyday behavior may make them poor selections for 

gestures. Therefore, we propose four different gestures. The 

selected gestures are suitable for various users under different 

conditions since they are not complex and need just one 

moving organ, and because tongue movements work while the 

mouth is closed, they are more user-friendly. 

Consequently, four tongue gestures were chosen: the first 

two are fast and slow vertical Ululate. During these two 

gestures, the tongue travels up and down, contacting the upper 

and lower jaws while the mouth is closed. The other two 

gestures are fast and slow Ululate, wherein these two gestures, 

the tongue moves left and right, contacting the inner side of 

the gums, as shown in Figure 3. Notice that the gestures do not 

require movement of the jaws or mouth opening, which is 

essential to make the proposed HCI system unobtrusive. 

 

 
(a) Vertical ululate up and down 

 
(b) Horizontal ululate left and right 

 

Figure 3. Ululate gestures 

 

3.3 Conducting experiments and feature selection 

 

The experiment used data from one participant. The sensing 

unit was attached to the participant's Genioglossus muscle 

below the lower jaw using double-sided tape. 

The sensing device was connected to the computer through 

a USB connection, and the experiment was conducted sitting, 

with participants requested to execute the specified gesture 

followed by no tongue movement.  

In the experiment, a single test subject, a 23-year-old female, 

participated in the test phase. Prior to commencing the data 

collection, all gestures were thoroughly explained to the 

subject through both visual aids and in-person descriptions. 

The test subject was then instructed to practice the selected 

gestures during the initial phase of data collection. 

Subsequently, the experimental process commenced, and 

each trial lasted for 80 seconds. Throughout the experiment, 

the sensor recorded 100 data points per second, resulting in 

approximately 8000 data records for each class of gestures. 

In the feature selection process, we utilized raw coordinate 

data obtained from the sensor and further extracted additional 

properties, including mean, standard deviation, minimum, and 

maximum values. A time frame of ten consecutive data points 

was employed to capture temporal information to derive new 

characteristics. The resulting feature set comprises 12 distinct 

features with a corresponding label. 

The chosen features are considered relevant for the time 

series classification process for several reasons. Firstly, 

extracting statistical properties such as mean, standard 

deviation, minimum, and maximum allows us to capture 

essential information about the distribution and variability of 

tongue movements, which could indicate different gestures. 

Secondly, the incorporation of temporal information by using 

a time frame of ten data points enables the model to consider 

the sequential patterns and dynamics in the tongue gestures, 

which can be crucial for accurate classification. 

By including these specific features in our dataset, we aim 

to enhance the discriminatory power of the machine learning 

and deep learning models when differentiating between 

tongue-based HCI gestures. The relevance of these features 

lies in their ability to encapsulate essential characteristics of 

tongue movements, contributing to a more robust and accurate 

classification process. 

 

3.4 Data classification 

 

Classification is an essential step in putting the HCI Ululate 

system into action. Classification determines a new data class 

based on a training data set with known class membership. In 

this study, offline classification was done using four 

supervised machine learning algorithms, i.e., SVM, KNN, 

random forest, and Decision tree. Due to their proven 

effectiveness in previous studies, these machine-learning 

models have shown remarkable classification accuracy when 

utilized for the classification of tongue-based HCI systems. 

Next, we compared each algorithm's accuracy using five 

different accuracy matrices. 

KNN is a supervised machine learning algorithm, i.e., it 

relies on labeled input data to learn a function and produces 

output according to the new unlabelled data. That is an 

instance-based learning method. It has been considered one of 

the simplest of all machine learning algorithms. The nearest 

Neighbour classification relies on two parameters, i.e., nearest 

distance metric (Euclidean Distance) and neighbors' number 

(k variable). Algorithm 1 shows the KNN classification 

pseudocode [38]. 

In a supervised machine learning algorithm, SVM is one of 

the most straightforward ways to classify data. Simply put, the 

main idea of classifying the data using SVM is to separate the 

two data sets with a hyperplane and maximize the margin 

between the two data classes.  Algorithm 2 shows the SVM 

classification pseudocode [38]. 
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Algorithm 1. KNN Algorithm 
Step 1. Input: 

Utilize a training dataset containing features X_train and 

corresponding labels y_train 

Employ a test dataset with features X_test 

Specify a value for K (number of neighbors to consider) 

Step 2. For every test instance X_test_i in X_test: 

Iterate over each training instance X_train_j in X_train: 

Determine the distance between X_test_i and X_train_j using the 

Euclidean distance 

Assign the computed distance to the training instance X_train_j 

Step 3. Organize the training instances based on their distances in 

ascending order 

Step 4. Choose the K nearest neighbors from the sorted training 

instances for each test instance X_test_i 

Step 5. Tabulate the occurrences of each class label among the K 

nearest neighbors 

Step 6. Designate the class label with the highest count as the 

predicted label for each test instance X_test_i 

Step 7. Generate the predicted labels for the test instances 
 

Algorithm 2. SVM algorithm 
Step 1. Input: 

   - Include a training dataset with features X_train and 

corresponding labels y_train 

   - Incorporate a regularization parameter C 

   - Integrate a kernel parameter gamma 

    

Step 2. Compute the kernel matrix K based on the training data: 

   - For each pair of training instances (X_train_i, X_train_j): 

     - Calculate the Gaussian (RBF) kernel value K(X_train_i, 

X_train_j) = exp(-gamma × ||X_train_i - X_train_j||^2) 

    

Step 3. Formulate the SVM optimization problem: 

   - Initialize the weight vector w and bias b 

   - Define the hinge loss function L(w, b) according to the SVM 

formulation 

   - Define the regularization term R(w) in line with the SVM 

formulation 

   - Define the objective function J(w, b) = L(w, b) + C × R(w) 

    

Step 4. Solve the optimization problem to determine the optimal 

weight vector w and bias b: 

   - Utilize an optimization algorithm (e.g., quadratic programming) 

to minimize J(w, b) 

   - Iteratively update w and b until convergence 

    

Step 5. Acquire the decision boundary and classify new instances: 

   - For each test instance X_test: 

     - Compute the decision function f(X_test) = sum(alpha_i × 

y_train_i × K(X_train_i, X_test)) + b 

     - Assign the class label based on the sign of f(X_test) 

       - If f(X_test) ≥ 0, allocate the positive class label 

       - If f(X_test) < 0, allocate the negative class label 

        

Step 6. Generate the predicted labels for the test instances 

 

Algorithm 3. Random forest algorithm 
Step 1. Input: 

   - Include a training dataset comprising features X_train and 

corresponding labels y_train 

   - Specify the maximum depth of the decision tree as max_depth 

    

Step 2. Establish a function for constructing a decision tree: 

   - If the termination criteria are met: 

     - Generate a leaf node and designate it the most frequent class 

label in the current subset of training instances 

     - Alternatively: 

     - Identify the optimal attribute for data split based on a criterion 

like information gain or Gini index 

     - Create a new decision node for the selected attribute 

     - Partition the training instances into subsets according to 

attribute values 

     - Recursively invoke the function to construct a decision tree for 

each subset 

     - Assign the decision nodes as children of the current node 

      

Step 3. Assemble the decision tree using the training dataset and 

adhere to the maximum depth constraint: 

   - Invoke the function outlined in step 2 to build the decision tree 

    

Step 4. Formulate a function to classify new instances using the 

decision tree: 

   - For each test instance X_test: 

     - Commence at the root node of the decision tree 

     - Traverse down the tree by assessing attribute conditions until 

reaching a leaf node 

     - Designate the class label of the leaf node as the predicted label 

for the test instance 

      

Step 5. Classify new instances using the decision tree constructed 

in step 3: 

   - Utilize the function described in step 4 to classify new instances 

    

Step 6. Produce the predicted labels for the test instances 
 

Algorithm 4. Decision tree algorithm 
Step 1. Input: 

   - Incorporate a training dataset featuring features X_train and 

corresponding labels y_train 

   - Specify the maximum depth of the decision tree, denoted as 

max_depth 

Step 2. Establish a function for constructing a decision tree: 

   - If the termination criteria are satisfied: 

     - Formulate a leaf node and designate it the most frequent class 

label in the existing subset of training instances 

     - Alternatively: 

     - Identify the optimal attribute for splitting the data, based on a 

criterion such as information gain or Gini index 

     - Generate a new decision node for the selected attribute 

     - Partition the training instances into subsets based on the 

attribute values 

     - Recursively invoke the function to construct a decision tree for 

each subset 

     - Assign the decision nodes as children of the current node 

Step 3. Assemble the decision tree using the training dataset and 

adhere to the maximum depth constraint: 

   - Invoke the function outlined in step 2 to construct the decision 

tree 

Step 4. Formulate a function to classify new instances using the 

decision tree: 

   - For each test instance X_test: 

     - Initiate at the root node of the decision tree 

     - Traverse down the tree by assessing the attribute conditions 

until reaching a leaf node 

     - Designate the class label of the leaf node as the predicted label 

for the test instance 

Step 5. Employ the decision tree built in step 3 to classify new 

instances: 

   - Utilize the function described in step 4 to classify new instances 

Step 6. Produce the predicted labels for the test instances 

 

Random forest is a supervised learning algorithm. It can be 

used for classification and is the most flexible and easy-to-use 

algorithm. Random forests build decision trees on randomly 

chosen data samples, obtaining predictions from each tree and 

selecting the optimal solution through voting. The process 

267



 

involves selecting random samples from a provided dataset 

and constructing a decision tree for each sampled subset. 

Then, use each decision tree to generate a prediction result. 

Finally, choose the prediction result that receives the highest 

number of votes as the final prediction. 

RF is composed of many binary decision trees and is used 

for diverse purposes such as regression, classification, and 

other applications via generating a large number of decision 

trees during the time of training [8]. Algorithm 3 [38] 

demonstrates the Random Forest classification pseudocode. 

A Decision Tree is a supervised learning technique used for 

data categorization, and it has two nodes. Decision nodes are 

employed for decision-making, featuring multiple branches, 

while leaf nodes represent the outcomes of those decisions and 

lack additional branches. Algorithm 4 shows the Decision Tree 

classification pseudocode [38]. 

This research has analyzed different machine learning 

algorithms and their advantages and limitations. For instance, 

the K-Nearest Neighbors (KNN) algorithm works well in 

multi-class classification scenarios but needs help with 

datasets with many features due to dimensional complexity. 

On the other hand, Support Vector Machines (SVM) are 

proficient in handling linear and non-linear feature-to-target 

relationships using various kernel functions. However, 

selecting the proper kernel and fine-tuning the model 

parameters is complex. Decision trees are good at identifying 

non-linear patterns, but they can become unstable due to minor 

changes in the input data, resulting in significantly different 

tree structures. Conversely, Random Forests prevent 

overfitting issues by utilizing the power of multiple decision 

trees, but they can be biased towards dominant classes in 

unbalanced datasets. According to the results and discussion, 

the Random Forest algorithm has performed better in 

classification accuracy than other algorithms analyzed in this 

research. 

 

 

4. RESULTS AND DISCUSSION 

 

This section presents the results in two parts. First, Plot X 

coordinates in the time domain for each gesture to show the 

difference between gestures. Furthermore, we are showcasing 

the performed classification of the extracted features. 

 

4.1 Time domain results 

 
To clarify the difference between the gestures in the case of 

sitting, we can utilize the time domain analysis to identify the 

difference between the movements. Only one axis, the X-axis, 

was chosen to facilitate the procedure. Figure 4 shows the 

response difference in the time domain for different gestures, 

where we can distinguish between when the tongue moves and 

when it doesn't, as well as the distinction between each tongue 

gesture.  

 

4.2 Classification 

 

This section presents four distinct classification techniques 

for distinguishing tongue gestures. First, using a ten-value 

rolling window, we extracted four characteristics from each 

coordinate (mean, standard deviation (STD), minimum, and 

maximum). The newly retrieved characteristics were then 

utilized for training and evaluating four classification systems. 

The confusion matrix for the training, validation, and test 

phases employing the four classification methods, SVM, KNN, 

Decision Tree, and Random Forest, is shown in detail in 

Figure 5.  

The results clearly illustrate each classification technique's 

successful discrimination of the four distinct gestures. 

However, a deeper analysis of the accuracy matrices and the 

performance of the different classification algorithms sheds 

light on their relative effectiveness and implications for this 

study. 

Tables 1 to 4 present the accuracy rates achieved by each 

classification method, demonstrating that the Random Forest 

algorithm outperformed the other methods with an impressive 

accuracy of 97%. This high accuracy suggests that Random 

Forest excels in capturing complex patterns and relationships 

within the feature space, enabling it to make more accurate 

predictions than other classifiers. 

On the other hand, while K-Nearest Neighbors (KNN), 

Support Vector Machines (SVM), and Decision Trees showed 

respectable accuracy rates, they did not match the performance 

of Random Forest. The observed differences in accuracy 

among these classifiers can be attributed to their respective 

strengths and weaknesses. 

 

Table 1. Accuracy matrices for the KNN classification 

algorithm 

 
Class Precision Recall F1 score 

Fast horizontal Ululate 0.95 0.94 0.94 

Slow horizontal Ululate 0.96 0.97 0.97 

Fast vatical Ululate 0.94 0.94 0.94 

Slow vertical Ululate 0.94 0.93 0.94 

Accuracy   0.95 

Weighted Avg. 0.95 0.95 0.95 

 

Table 2. Accuracy matrices for the SVM classification 

algorithm 
 

Class Precision Recall F1 score 

Fast horizontal Ululate 0.96 0.66 0.78 

Slow horizontal Ululate 0.93 0.86 0.89 

Fast vatical Ululate 0.79 0.85 0.82 

Slow vertical Ululate 0.69 0.89 0.78 

Accuracy   0.82 

Weighted Avg 0.84 0.82 0.82 
 

Table 3. Accuracy matrices for the Decision Tree 

classification algorithm 
 

Class Precision Recall F1 score 

Fast horizontal Ululate 0.93 0.93 0.93 

Slow horizontal Ululate 0.95 0.95 0.95 

Fast vatical Ululate 0.92 0.91 0.91 

Slow vertical Ululate 0.91 0.92 0.92 

Accuracy   0.93 

Weighted Avg. 0.93 0.93 0.93 
 

Table 4. Accuracy matrices for the Random Forest 

classification algorithm 
 

Class Precision Recall F1 score 

Fast horizontal Ululate 0.98 0.97 0.97 

Slow horizontal Ululate 0.98 0.98 0.98 

Fast vatical Ululate 0.96 0.96 0.96 

Slow vertical Ululate 0.96 0.97 0.96 

Accuracy   0.97 

Weighted Avg. 0.97 0.97 0.97 
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(a) Fast horizontal Ululate 

 
(b) Slow horizontal Ululate 

 
(c) Fast vatical Ululate 

 
(d) Slow vertical Ululate 

 

Figure 4. X coordinate time response for sensing unit 

 

K-Nearest Neighbors is known for its simplicity and ease of 

implementation, but it can be sensitive to noisy data and 

struggles with high-dimensional feature spaces. With its 

ability to handle linear and non-linear relationships through 

kernel functions, SVM is more flexible than KNN. However, 

selecting the appropriate kernel and tuning hyperparameters 

can significantly impact its performance. Decision Trees are 

proficient at capturing non-linear relationships. They are less 

sensitive to data noise but may create divergent tree structures 

when subjected to minor variations in the training data. 

In contrast, Random Forest employs ensemble learning, 

aggregating multiple decision trees to reduce overfitting and 

enhance prediction accuracy. The robustness of this approach, 

coupled with its ability to handle diverse data characteristics, 

explains its superior performance in our study. 

These findings have important implications for the 

development of tongue-based HCI systems. While Random 

Forest exhibited remarkable accuracy, its computational 

complexity should be considered for real-time applications. 

KNN and Decision Trees may be viable alternatives for 

scenarios where computational efficiency is crucial. 

Additionally, the choice of classifier may also depend on the 

specific requirements and constraints of the HCI system. 

In conclusion, the results highlight the potential of different 

classification algorithms for tongue-based HCI systems. The 

superiority of Random Forest suggests its suitability for 

accurate gesture recognition. At the same time, the 

comparative analysis of other classifiers provides valuable 

insights for choosing appropriate models based on specific 

application scenarios. Further research can explore the 

combination of classifiers or hybrid approaches to achieve 

optimal performance and efficiency in real-world HCI 

implementations. 

Algorithm 5 shows the Full feature extraction and data 

classification pseudocode. 
 

Algorithm 5. Feature extraction and classification process 
Input: Input Raw Dataset 

Output: Four different accuracy matrices 

Step 1: Input raw Dataset 

Step 2: Time window feature extraction where T = 10 to create 12 

new features from the original Dataset.   

Step 3: Split Dataset into Training Dataset and Test Dataset. 

Step 4: Use the Training Dataset to train each machine learning 

algorithm in Algorithms 1 to 4. 

Step 5: Feed the Trained data and Test data to four different 

accuracy matrices. 
 

To understand the difference between accuracy matrices, 

we first need to understand the concept of the confusion matrix. 

The confusion matrix is a table that demonstrates how well the 

classification model predicts instances from different classes. 

The confusion matrix has two axes: one for the expected label 

and one for the actual label. When comparing multiple models, 

we could use the confusion matrix to see how well they 

predicted a true positive (TP) and true negative (TN). If one 

model predicts a TP and TN better than another, we use that 

model as our base model. There are four parameters in the 

confusion matrix: true positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN). The accuracy is 

calculated as the Eqs. (1)-(4). A comparison can be made 

between the proposed system and existing work in different 

categories, including sensor location and type, methodology 

used, system application, classification technique, and the 

level of intrusiveness, invasiveness, and obtrusiveness. The 

comparison is presented in Table 5. 
 

Accuracy =
TP + T𝑁

TP + TN + FP + FN
 (1) 

 

Precision =
TP

TP + FP
 (2) 

 

Recall =
TP

TP + FN
 (3) 
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F1score =
2 ∗ Precision ∗ Recall

Precision + Recall
 (4) 

 

 
(a) K-Nearest Neighbor confusion matrix 

 
(b) Support Vector Machine (SVM) confusion matrix 

 
(c) Decision Tree confusion matrix 

 
(d) Random Forest confusion, matrix 

 

Figure 5. Training, validation, and test confusion matrices 

 

 

Table 5. Comparison between the performance of the proposed system and the performance of the previous works 
 

Author Year Used Sensor Sensor Location Method 
Used Machine 

Learning 
Intrusive Invasive Obtrusive Accuracy 

Cheng et al. 
[28] 

2014 
array of textile 

pressure sensors 
attached to the user’s 

cheek 
Controlled 

through tongue 
KNN No No Yes 98% 

Kim et al. 

[29] 
2015 

magnetic 

tongue piercing 

magnetic tongue 

piercing 

Controlled 

through tongue 
KNN No No Yes 95% 

Goel et al. 

[30] 
2015 

X- band 

Doppler 

Headset mounted on 

the ears attached to 

three Ex Doblar 
sensors 

Facial gesture 

detection 
SVM No No Yes 94.30% 

Matthies et 

al. [34] 
2017 

electric field 

sensing 
the ear canal 

Physical 

deformations in 
the ear canal 

caused by facial 

muscle 
movements 

SVM No No No 90.00% 

Nguyen et 
al. [31] 

2018 EEG/EMG the back of the ear 
Tap on their 

teeth 
SVM No No Yes 88.61% 

Vega 

Gálvez et 

al. [32] 

2019 
accelerometer 
and gyroscope 

on the lower mastoid 

touching constantly 
the mandibular 

condyle 

Teeth-clicking KNN No No Yes 89%. 

Amesaka et 

al. [33] 
2019 

electric field 

sensing 
the ear canal 

Physical 
deformations in 

the ear canal 

caused by facial 
muscle 

movements 

Random Forest No No No 90% 

The 
proposed 

system 

(Ululate) 

2023 
An 

accelerometer 

below the lower jaw 

on the Genioglossus 
muscle 

Detects tongue 
movement by 

measuring 

vibration 

Random Forest No No No 97% 
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5. CONCLUSIONS 

 

In this paper, we envision a future of hands-free computer 

interaction, where users can seamlessly interact with smart 

devices using a non-intrusive and non-invasive wearable 

system, facilitating everyday usage. Our study takes the first 

step in realizing this vision by developing the Ululate system, 

which is comfortably attached to the user's lower jaw on the 

Genioglossus muscle. 

The design of Ululate prioritizes user comfort, minimizing 

obtrusiveness and social awkwardness. Ululate showcases its 

potential as a robust and reliable input device by successfully 

detecting four distinct, basic tongue gestures with an 

impressive 97% accuracy rate in our testing on one subject. 

Moreover, the versatility of the Ululate system makes it 

accessible to various user groups, offering potential benefits to 

populations such as quadriplegic patients and individuals with 

mutism. Ululate can empower users with enhanced control and 

communication capabilities in settings where conventional 

devices may pose limitations, such as crowded and noisy 

environments. 

Future work can address the limitations of our current study, 

such as testing only one subject and expanding the study to 

include a diverse group of subjects. Additionally, it is 

important to highlight that the information utilized for this 

research was collected in a supervised laboratory setup. In 

upcoming studies, it would be beneficial to tackle potential 

obstacles in real-life situations, such as disturbances caused by 

moving users. 
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