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With the growing prominence of environmental protection and energy efficiency issues, 

the improvement of energy efficiency and optimization of comfort in thermal systems have 

emerged as key research directions. Current studies often overlook the impact of multiple 

disturbance factors and employ oversimplified comfort modeling methods, along with 

inflexible automated control approaches. Addressing these challenges, this research delves 

into three critical aspects. Firstly, an energy efficiency analysis model for thermal systems 

is constructed, taking into account various disturbance scenarios, thereby enhancing the 

accuracy of system efficiency analysis. Secondly, a heat comfort modeling method driven 

by thermal data is proposed, better catering to user requirements. Lastly, an automated 

control method for thermal systems based on Fuzzy-PID control is implemented, elevating 

the precision and convenience of system control. These research outcomes hold significant 

theoretical and practical value in advancing the efficient operation and optimized control 

of thermal systems. 
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1. INTRODUCTION

As societal focus intensifies on environmental protection 

and energy efficiency, the significant challenge of 

substantially enhancing the energy efficiency of thermal 

systems, while providing comfortable living and working 

environments, has emerged as a pivotal research topic [1-5]. 

Additionally, the complexity of the operational environment 

of thermal systems, influenced by multiple disturbance factors, 

presents a problem that necessitates efficient and stable 

operation [6, 7]. Thus, an in-depth study and optimization of 

automated control methods for thermal systems from a 

scientific and technological perspective are required [8, 9]. 

This research holds significant practical value in advancing 

the efficiency of thermal systems. Firstly, the development of 

an energy efficiency analysis model, incorporating various 

disturbance factors, facilitates a more precise evaluation of 

system operational efficiency. This approach lays a scientific 

foundation for system optimization [10-13]. Secondly, the 

adoption of a user heat comfort model, driven by thermal data, 

aligns more closely with user needs, thereby improving service 

quality [14-18]. Lastly, the application of automated control 

within thermal systems, utilizing Fuzzy-PID control, enhances 

the system's intelligence, enabling more accurate and user-

friendly control mechanisms. However, existing methods for 

automated control of thermal systems often exhibit 

deficiencies and limitations. For instance, current energy 

efficiency analysis models tend to overlook the impact of 

multiple disturbance factors, leading to biased assessment 

results [19-22]. Similarly, existing methods for modeling 

thermal comfort are often oversimplified, failing to accurately 

reflect actual user needs [23-25]. Moreover, current automated 

control methods lack flexibility, struggling to effectively 

respond to complex and changing work environments. 

Addressing these issues, this paper primarily focuses on 

three aspects. Firstly, an energy efficiency analysis model for 

thermal systems that considers multiple disturbance scenarios 

is constructed, enhancing the accuracy of system efficiency 

analysis. Secondly, a user heat comfort modeling method 

driven by thermal data is developed, increasing the satisfaction 

of user comfort. Lastly, an automated control method for 

thermal systems based on Fuzzy-PID control is implemented, 

improving the precision and convenience of system control. 

These research outcomes are of significant theoretical and 

practical value in advancing the efficient operation and 

optimized control of thermal systems. 

2. ENERGY EFFICIENCY ANALYSIS MODEL FOR

THERMAL SYSTEMS

The cycle thermal efficiency of generator sets is a key 

indicator for measuring their energy conversion efficiency, 

directly impacting the economic and environmental aspects of 

the generator sets. In practical operation, the cycle thermal 

efficiency of generator sets is influenced by various factors, 

including equipment condition, operational parameters, 

environmental conditions, and human operation. Changes in 

these factors can cause relative variations in the cycle thermal 

efficiency of the generator sets, thereby affecting their energy 

efficiency. Therefore, for the optimization and control of the 

energy efficiency of generator sets, an in-depth theoretical and 
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technical study of these influencing factors is required. The 

development and optimization of automated control methods 

for thermal systems aimed at energy efficiency are designed to 

address this issue. By constructing an energy efficiency 

analysis model for thermal systems that considers multiple 

disturbance scenarios, a more accurate analysis and evaluation 

of the cycle thermal efficiency of generator sets can be 

achieved, allowing for the timely identification and adjustment 

of factors affecting energy efficiency, thereby enhancing the 

energy efficiency of the generator sets. 

In the practical conditions of automated control of thermal 

systems, considering the system's complexity and dynamic 

nature, more refined and dynamic measurement indicators are 

needed. The cycle thermal efficiency and the relative change 

in cycle thermal efficiency are defined based on these 

requirements. In this paper, the cycle thermal efficiency is 

defined as the ratio of the effective work produced by the 

thermal system using the input heat energy to the total heat 

energy consumed over a certain period. This indicator reflects 

the energy conversion efficiency of the thermal system under 

actual working conditions and is an important parameter for 

measuring system energy efficiency. The relative change in 

cycle thermal efficiency is defined as the relative difference 

between the actual value of the cycle thermal efficiency over 

a certain period and its theoretical value under standard 

conditions, and it is an important parameter for measuring 

changes in the energy efficiency of the thermal system. 

Let the cycle thermal efficiency be represented by λy=B/W, 

where B denotes the internal power of the generator set, and W 

denotes the cycle heat absorption of the unit. Taking the 

natural logarithm of both sides of the cycle thermal efficiency 

and then differentiating, the definition of the relative change 

in cycle thermal efficiency can be obtained: 
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Figure 1. Automation control system of a 300MW thermal 

power system 

 

Figure 1 presents the automation control system of a 

300MW thermal power system. In actual thermal system 

automation control, the operational conditions of the system 

are influenced by various factors, which may include 

environmental conditions, equipment status, and operational 

methods. These changing factors can impact the energy 

efficiency of the system, leading to variability and uncertainty 

in both the system's operational conditions and its energy 

efficiency. Therefore, to more accurately describe and analyze 

the changes in the energy efficiency of the thermal system, it 

is necessary to introduce an indicator that reflects the impact 

of these disturbance factors, namely the intensity coefficient. 

The intensity coefficient is an indicator characterizing the 

effect of disturbance factors on the rate of change per physical 

unit of the system. By incorporating the intensity coefficient, 

the impact of various disturbance factors can be quantified, 

thereby more directly reflecting the extent of these factors' 

influence on system energy efficiency. Combining other 

equipment internal power differential formulas and cycle heat 

dissipation differential formulas, the above equation can be 

organized as follows: 
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By replacing S with S' and π with π' in the above formula, it 

can be used for energy efficiency analysis of thermal systems 

where the system structure has changed. In practical 

automated control of thermal systems, to achieve efficient 

operation, an ideal operational condition is often set as the 

target. This ideal condition is the target operational state of the 

unit. At this target state, the system's operational parameters 

(such as temperature, pressure, etc.) are set to their optimum 

levels to achieve the highest energy efficiency. As can be 

inferred from the formula, the intensity coefficient, an 

indicator reflecting the impact of disturbance factors on the 

rate of change per physical unit of the system, is determined 

only by the conditions prior to the disturbance. This is because 

the system parameters under ideal conditions are fixed, and the 

calculation of the intensity coefficient is based on these 

parameters. Therefore, when the system is at its ideal state, the 

variation pattern of the intensity coefficient also has a certain 

predictability, meaning its variation pattern is consistent with 
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the change pattern of the ideal state. Thus, if the condition 

before the disturbance is chosen as the ideal operational state 

of the unit, then the intensity coefficient under this condition 

can be considered an inherent attribute of the unit. 

Traditional energy efficiency analysis models often 

consider only a single disturbance factor, failing to accurately 

reflect the changes in energy efficiency under actual 

operational conditions. A unified model can consider the 

complexity of multiple disturbances, more accurately 

reflecting the changes in energy efficiency under actual 

conditions, thereby enhancing the accuracy of the energy 

efficiency analysis. Furthermore, through the unified model, 

the complex problem of multiple disturbances can be 

transformed into the task of calculating and analyzing the 

intensity coefficient, simplifying the process of energy 

efficiency analysis and improving its efficiency. Therefore, 

this paper further introduces the concepts of absolute intensity 

coefficient and relative intensity coefficient, constructing the 

most generalized unified model for the analysis of multi-

disturbance energy efficiency in thermal systems of generator 

sets. 

Let J=jG+jF+jW, then Eq. (2) can be written as: 
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where, J=[J1,J2,...,Jw], each element Ju(u=1~w) corresponds to 

elements dZu(u=1~w) in the disturbance matrix dZ, In this 

paper, it is defined as the intensity coefficient of Zu on dλy/λy. 

The absolute intensity coefficient introduced here focuses on 

the impact of disturbance factors on the entire system and thus 

needs to be dimensioned. In this paper, it is assumed that each 

element Zu of the disturbance matrix Z is dimensioned, 

meaning the intensity coefficient Ju with dimensions is defined 

as the absolute intensity coefficient. The absolute intensity 

coefficient indicates the degree of impact of disturbance 

factors on the overall energy efficiency change of the thermal 

system. It reflects the ratio between the rate of change in 

system energy efficiency and the rate of change in disturbance 

factors under the influence of these factors. 

The relative intensity coefficient, on the other hand, 

indicates the degree of impact of disturbance factors on the 

energy efficiency change of a particular part or process within 

the thermal system. It reflects the ratio between the rate of 

change in energy efficiency of that part or process and the 

overall system energy efficiency rate under the influence of 

the disturbance factors. This means that the element ju(u=1~w) 

of j is the intensity coefficient that reflects the impact on dλy/λy 

when the disturbance factor is the relative quantity zu(u=1~w), 

and it characterizes the change in dλy/λy for every 1% change 

in the disturbance factor zu. If dZu is replaced by dzu=dZu/Zu 

and let dz= [dz1 dz2... dzw], and if Ju is replaced by ju=JuJu and 

let j=[j1 j2... jw], then the equation can be expressed as: 
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By incorporating both absolute and relative intensity 

coefficients into the energy efficiency analysis model, a 

unified model that considers the impact of multiple 

disturbances is formed. In this model, the absolute and relative 

intensity coefficients represent the degree of impact of each 

disturbance factor on the system's overall energy efficiency 

and the energy efficiency of a specific part or process, 

respectively. The larger their values, the greater the impact of 

the disturbance factor on energy efficiency. Assuming that the 

change in auxiliary steam water flow is represented by dZu, 

then replacing dZu with fz0
u=fZu/F0 and defining dz0=[dz0 

1dz0
2...dz0

w], and replacing Ju with j0
u=JuF0 and defining 

j0=[j0
1j0

2 ... j0
w], Eq. (9) can further be converted to: 
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The element j0
u(u=1~w) of j0 is defined as the intensity 

coefficient reflecting the impact on dλy/λy when the 

disturbance factor is the relative quantity z0
u(u=1~w), which is 

the relative F0 intensity coefficient. It is used to characterize 

the change in dλy/λy for every 1% change in z0
u. 

Through the unified model, a comprehensive and accurate 

analysis of energy efficiency changes under actual operational 

conditions can be conducted. Firstly, based on the actual 

operational conditions and the changes in disturbance factors, 

the absolute and relative intensity coefficients for each 

disturbance factor can be calculated. Further, based on these 

intensity coefficients, the degree of impact of each disturbance 

factor on the system's overall energy efficiency and the energy 

efficiency of a specific part or process can be analyzed, 

identifying the primary factors influencing energy efficiency 

changes. Finally, based on the analysis, the main disturbance 

factors affecting system energy efficiency and the extent of 

their impact can be determined. With this information, the 

thermal system can be optimized and adjusted to achieve 

optimal energy efficiency. These optimization and adjustment 

measures specifically include changing operational settings, 

adjusting control strategies, and optimizing equipment 

configuration. 
 

 

3. HEAT DATA-DRIVEN USER THERMAL COMFORT 

MODELING 

 

Thermal comfort refers to people's comfort perception of 

environmental temperature, directly influencing their work 

efficiency and quality of life. In many scenarios, such as in 

offices, residential buildings, and shopping malls, people's 

comfort perception of environmental temperature is 

particularly important. As thermal systems are the primary 

means of regulating the temperature in these places, improving 

thermal comfort through the enhancement of automated 

control methods in thermal systems is a problem of significant 

practical importance. 

An important factor to be considered in the automated 

control of thermal systems is the user's thermal comfort. In 

practice, this often involves adjusting various environmental 

parameters (such as indoor temperature and humidity) to meet 

users' comfort requirements. However, each user's perception 

of thermal comfort may vary, necessitating individualized 

modeling of each user's thermal comfort perception. Based on 

actual user feedback data, this paper models users' thermal 

comfort through a data-driven approach, aiming to derive each 

user's probability distribution curve of thermal comfort at 

different indoor environmental temperatures. The key to this 

modeling method lies in abstracting users' thermal comfort 

perception into a quantifiable probability distribution model 

and determining the model's parameters by fitting actual user 

data. Specifically, users' thermal comfort perception is 
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categorized into three types: too cold, too hot, and comfortable. 

Then, a multi-class logistic regression model, namely the 

softmax regression model, is used to model the probability 

distribution of these three types of thermal comfort 

perceptions under different environmental temperatures. The 

softmax regression model is a multi-class model that extends 

the binary logistic regression model. For each environmental 

temperature, the model outputs a probability distribution 

representing the probabilities of the three types of thermal 

comfort perceptions at that temperature. The model's 

parameters are estimated by maximizing the log-likelihood of 

the training data, meaning the model strives to fit the actual 

feedback data of users, making the predicted probability 

distribution of thermal comfort perceptions as consistent with 

the actual data as possible. 

The binary logistic regression model is a statistical model 

widely used in binary classification problems. In this paper, 

this model is utilized to predict whether users will feel 

comfortable at a given indoor environmental temperature. The 

basic assumption of this model is that users' comfort 

perception can be predicted through a set of influencing factors, 

and this prediction process can be described by a logistic 

function. 

User feedback data on comfort levels at different indoor 

environmental temperatures, along with other factors that may 

affect comfort, are collected. Suppose the training sample 

consists of b labeled data points, denoted as {(zb,tb)}. Here, the 

input feature zu∈Eb, and the class label tu∈ {0,1}. The 

following expression provides the conditional probability 

distribution that the binary logistic regression model needs to 

satisfy: 
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Parameter estimation is a crucial step in the establishment 

of the binary logistic regression model. This paper estimates 

the model's parameters by maximizing the log-likelihood 

function of the data. Let: 
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Combining the above two equations yields: 
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Considering l independently distributed training samples, 

the likelihood function expression can be obtained as shown 

in the following equation: 
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To simplify calculations, this paper opts for the log-

likelihood function shown in the following equation: 
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This paper addresses a three-category problem of feeling 

too cold, too hot, and comfortable. Therefore, for the training 

set {(z1,t1),(z2,t2),...,(zb,tb)}, there is tu∈ [1,2,3]. Thus, the 

probability distribution of different thermal comfort 

perceptions of users under different thermal conditions 

O(Ayg|Yub) can be calculated through the following equation: 

 

( )

( )( )
( )( )
( )( )

( )

( )

( )

( )

10 11

20 21

0 1

30 31

3

1

1| ;

| 2 | ;

3 | ;

1

k k ub

u

yg ub

u

yg ub yg ub

u

yg ub

Yub

Yub

Y

Yubk

o A Y

O A Y o A Y

o A Y

e

e
e

e

 

 

 

 







+

+

+

+=

 =
 
 

= =
 
 

=  

 
 

=  
 
  



 (19) 

 

Assuming that a vector φ is subtracted from the parameter 

vector ϕk of the softmax regression model, the above equation 

can be adjusted as: 
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In the automated control of thermal systems, particularly in 

real-time control environments, computational efficiency is a 

critical factor. Complex models may require longer 

computation times, affecting the response speed of the control 

system. By transforming the model, the structure can be 

simplified, reducing the number of parameters or changing the 

form of parameters to reduce or eliminate issues of multiple 

solutions. This enhances the robustness and predictive 

accuracy of the model. It also reduces computational burden, 

improving the system's response speed and efficiency, which 

is particularly important for real-time control. When φ=ϕ2, this 

paper substitutes ϕ2 with ϕ2-φ=0⟶, resulting in the following 

transformed equation: 
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4. IMPLEMENTATION OF AUTOMATED CONTROL 

IN THERMAL SYSTEMS BASED ON FUZZY-PID 

CONTROL  

 

In the field of automated control for thermal systems, 

Fuzzy-PID controllers amalgamate the benefits of fuzzy logic 

control and traditional PID control, adapting to complex and 

variable operational conditions. Such controllers are 

particularly apt for handling systems that are challenging to 

accurately describe with traditional mathematical models. 

Figure 2 illustrates the process flow of the thermal system 

automated control method proposed in this paper. Based on the 

multi-disturbance scenario energy efficiency analysis model 

for thermal systems and the heat data-driven user thermal 

comfort model, the specific principles and steps of Fuzzy-PID 

control implementation are as follows: 

Firstly, deploy high-precision sensors, such as temperature, 

humidity, flow meters, and pressure sensors, at key locations 

to capture the system's comprehensive state in real-time. 

Utilize a data collection system to ensure accurate and timely 

data reception from all sensors, completing real-time data 

stream processing. Implement real-time data monitoring to 

rapidly identify and respond to any abnormal behavior in the 

system, enabling threshold alert setting and automatic 

diagnosis of system issues. Consider various methods for 

determining initial PID parameters, including empirical 

formulas, system identification methods, or data analysis 

based on previous cases. Conduct pre-adjustment trials before 

the system operation, using laboratory tests or simulations to 

determine the optimal initial parameter settings. 

Furthermore, when designing fuzzy rules, it's essential to 

consider the specific needs and characteristics of the system. 

For thermal systems requiring high-speed responses, more 

proactive adjustment strategies may be needed. In formulating 

rules, consider users' thermal comfort and changes in 

environmental conditions, such as seasonal variations and 

room usage. Define precise membership functions for each 

input and output variable. These functions describe how to 

convert actual values into fuzzy values, such as "temperature 

too high," "temperature moderate," and "temperature too low." 

Conduct sensitivity analysis to determine the impact of 

different membership functions on system performance. 

Consider dynamically adjusting the membership functions 

over time and with changing system conditions to maintain the 

flexibility and adaptability of the controller. 

Then, convert the fuzzy inference results into precise PID 

parameter adjustment values. Implement a real-time 

adjustment mechanism to quickly modify PID parameters 

based on the output of the fuzzy logic controller. This means 

that the controller can respond in real-time to system 

performance, optimizing control effects. Set upper and lower 

limits for PID parameter adjustments to prevent excessive 

regulation that could destabilize the system. This includes 

setting upper and lower limits for the proportional, integral, 

and differential gains. Through appropriate adjustment 

strategies, avoid system oscillation and overshooting. This 

may require fine-tuning of the fuzzy rules to ensure smooth 

system transitions. Figure 3 presents the structure diagram of 

the Fuzzy-PID controller, while Figure 4 shows the control 

program flowchart for the automated control system of the 

thermal system. 

 

 
 

Figure 2. The process flow of the proposed automated control method for thermal systems 

 

 
 

Figure 3. Structure diagram of the Fuzzy-PID controller 
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Assuming the system deviation, cumulative deviation, and 

rate of change of deviation are represented by r(j), Σj
k=0r(k), 

rv(j) respectively, the proportional coefficient is represented 

by Jo, the integral coefficient by Ju=JoY/Yu, and the differential 

coefficient by Jf=JoY/Yf. The following equation provides the 

positional formula description for the conventional PID 

controller: 
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The Fuzzy-PID controller can be regarded as performing real-

time online tuning of the three correction parameters ΔJo, ΔJu, 

ΔJf of the PID controller in the above formula, based on the 

pre-set PID parameters and utilizing fuzzy rules. At the same 

time, the parameters J'o+ΔJo, J'u+ΔJo, J'f+ΔJf are used as the 

real-time parameters ΔJo, ΔJf, ΔJu of the controller. The 

adjusted PID parameters are then converted into specific 

control commands, such as adjusting valve openings or 

modifying heater power. It is crucial to ensure that control 

commands are rapidly and accurately conveyed to each 

actuator, such as valves, pumps, fans, etc. Considering the 

physical characteristics and response times of the actuators, 

ensure that the implementation of control commands is not 

hindered by the limitations of the actuators. 

 

 
 

Figure 4. Control program flowchart for the automated control system of the thermal system 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

This paper constructs an energy efficiency analysis model 

for thermal systems that considers multiple disturbance 

scenarios, thereby enhancing the accuracy of system energy 

efficiency analysis. By introducing intensity coefficients, the 

impact of various disturbance factors is quantified, more 

vividly reflecting the degree of their influence on system 

energy efficiency. From Table 1, it is evident that for different 

disturbance parameter items in the thermal system, including 

input/output temperature, pressure, and humidity, the 

calculated values using the method presented in this paper 

show relative errors of less than 1% compared to manufacturer 

data. Notably, the relative error for input/output temperature is 

the smallest, at only 0.0851%. This indicates that the model 

developed in this study can yield highly accurate results in 

energy efficiency analysis under these disturbance conditions. 

This high degree of accuracy is attributed to the introduction 

of intensity coefficients to quantify the impact of various 

disturbance factors. Such quantification allows for a more 

intuitive assessment and comparison of the impact of each 

disturbance factor on system energy efficiency. This not only 

aids in more accurately understanding and predicting the 

system's energy efficiency but also provides an important basis 

for optimizing control strategies. 

 

 

Table 1. Impact of various disturbance parameter changes on the energy efficiency of the thermal system 

 
 Parameter 

Change 

Manufacturer 

Data 

Calculated Value by the Proposed 

Method 

Relative 

Error % 

Input/Output Temperature -11 -0.002789 -0.002784 0.0851 

Pressure 0.82 0.00354518 0.00323682 0.4215 

Humidity -5 -0.001236487 -0.001236 0.56892 

 

Table 2. Absolute intensity coefficients for different disturbance parameter changes in the thermal system 

 
Load Input/Output Temperature Pressure Humidity 

100% 0.004258 0.0002745 0.000224 

75% 0.00512 0.000214 0.000235 

50% 0.00735 0.000125 0.000327 
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Figure 5. Absolute disturbance intensity spectrum of 

different disturbance parameters in the thermal system 

 

Table 2 displays the absolute intensity coefficients for 

changes in the input/output temperature, pressure, and 

humidity parameters under different load conditions in the 

thermal system. A larger intensity coefficient indicates a 

greater impact of that parameter on the system's energy 

efficiency. From the table, it is evident that at all load levels, 

the absolute intensity coefficient for input/output temperature 

is the highest, signifying that input/output temperature is the 

primary factor affecting the energy efficiency of the thermal 

system. In contrast, the impact of pressure and humidity is 

relatively smaller. Additionally, it is observed that as the 

system load decreases, the absolute intensity coefficient for 

input/output temperature gradually increases, indicating that 

under conditions of lower load, the impact of input/output 

temperature on system energy efficiency is more pronounced. 

Conversely, the absolute intensity coefficients for pressure and 

humidity decrease as the system load decreases, suggesting 

that at higher loads, pressure and humidity have a more 

significant impact on system energy efficiency. These 

conclusions are derived from calculations using the model 

constructed in this study, demonstrating the model's 

effectiveness and practicality. Utilizing this model not only 

enables accurate analysis of the impact strength of each 

parameter on system energy efficiency but also facilitates 

further exploration of how to adjust these parameters under 

different loads to optimize system energy efficiency. 

Via analyzing the absolute disturbance intensity spectrum 

of different disturbance parameters in the thermal system as 

shown in Figure 5, the following conclusions can be drawn. 

Among all the disturbance parameters, the absolute intensity 

coefficient of input/output temperature is the highest, 

indicating that input/output temperature is the most critical 

factor affecting the energy efficiency of the thermal system. 

Whether at 100%, 75%, or 50% thermal load, the impact of 

input/output temperature on system energy efficiency is more 

significant than that of pressure and humidity. As the thermal 

load decreases (from 100% to 50%), the absolute intensity 

coefficient of input/output temperature gradually increases, 

suggesting that temperature has a more sensitive impact on 

system energy efficiency at lower loads. This might be 

because the system's operating point moves further away from 

the designed operating point at lower loads, making 

temperature changes more impactful on system efficiency. For 

pressure and humidity, it’s observed that as the load decreases, 

the absolute intensity coefficient of pressure tends to decline, 

while that of humidity shows an increasing trend. This might 

reflect the different impact effects of various disturbance 

parameters on system energy efficiency at different loads. The 

length variations of the blue, red, and green bars in the figure 

also demonstrate the difference in the impact weight of 

disturbance parameters under different load conditions, 

providing valuable guidance for the optimization and 

adjustment of the thermal system. These analytical results 

highlight the effectiveness of the model constructed in this 

paper, demonstrating that the model can identify key control 

parameters in the thermal system and clearly present their 

specific impacts on system energy efficiency. This provides an 

important basis for further system optimization and the 

formulation of control strategies. 

By analyzing the trend graph of the absolute intensity 

coefficients for disturbance parameters in the thermal system 

as shown in Figure 6, the following conclusions can be drawn: 

In terms of input/output temperature, the blue line indicates 

that the absolute intensity coefficient of input/output 

temperature significantly increases as the load decreases. This 

means that under lower load conditions, fluctuations in 

temperature have a more significant impact on system energy 

efficiency. This could be due to the system being more 

sensitive to temperature changes at lower loads, making the 

control of input/output temperature particularly crucial for 

maintaining energy efficiency in system operations. In terms 

of pressure, the red line shows that the absolute intensity 

coefficient of pressure slightly decreases with the reduction in 

load, suggesting that the impact of pressure on system energy 

efficiency does not vary greatly under different load 

conditions. Nevertheless, it can still be observed that the 

impact of pressure on system energy efficiency slightly 

diminishes as the load decreases. In terms of humidity, the 

green line indicates that the absolute intensity coefficient of 

humidity increases as the load decreases, similar to the trend 

observed for input/output temperature. This may imply that the 

impact of humidity on system energy efficiency becomes more 

pronounced under low load conditions. These trends 

demonstrate that the impact of different disturbance 

parameters on the energy efficiency of thermal systems varies 

significantly under different load conditions. The energy 

efficiency analysis model for thermal systems developed in 

this paper can accurately reflect this variation, demonstrating 

its effectiveness. This is crucial for the operation and control 

of thermal systems, as this information can be used to optimize 

operational parameters, ensuring efficient operation of the 

thermal system under various conditions. 

In Table 3, data is provided showing the minimum and 

maximum temperatures different users find thermally 

comfortable. Thermal comfort is defined within the range [-

0.5, 0.5], likely representing a standardized rating, where 0 

indicates complete comfort, negative numbers may denote 

feeling too cold, and positive numbers feeling too warm. The 

temperature ranges accepted by users indicate that each 

person’s comfort temperature band varies. Analyzing the data 

in the table, it's observable that different users have varying 

tolerances for the lowest and highest temperatures regarding 

thermal comfort. For instance, User 9 can tolerate a lower 

temperature range (23.10℃ - 25.10℃), while User 8 and User 

10 can tolerate higher temperature ranges (User 8: 25.70℃ - 

27.10℃, User 10: 24.10℃ - 27.10℃). This variation reflects 

the personalized nature of user thermal comfort. The diversity 

of data in the table suggests that using a standard, non-
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personalized control strategy (such as setting a fixed 

temperature range to satisfy all users) might not meet the needs 

of some users. Therefore, the effectiveness of the method 

proposed in this study lies in its ability to intelligently adjust 

system settings to meet each individual's unique needs by 

analyzing and modeling different users' thermal comfort data, 

thereby enhancing the overall level of comfort. Through this 

approach, thermal systems can not only improve user 

satisfaction but also increase energy efficiency. 

 

 
 

Figure 6. Absolute intensity coefficient trend for different 

disturbance parameters in the thermal system when disturbed 

 

 
 

Figure 7. Step response curves of fuzzy-PID control vs. 

conventional PID control 

 

Table 3. User thermal comfort temperature data information 

 

User 

Number 

Thermal 

Comfort Range 

Minimum 

Temperature 

Maximum 

Temperature 

1 [-0.5,0.5] 25.10 27.10 

2 [-0.5,0.5] 24.60 26.60 

3 [-0.5,0.5] 25.20 26.60 

4 [-0.5,0.5] 25.10 26.60 

5 [-0.5,0.5] 24.40 26.60 

6 [-0.5,0.5] 25.20 26.10 

7 [-0.5,0.5] 25.10 27.40 

8 [-0.5,0.5] 25.70 27.10 

9 [-0.5,0.5] 23.10 25.10 

10 [-0.5,0.5] 24.10 27.10 

 
 

Figure 8. Room comfort comparison under different control 

methods 

 

Analyzing the step response curves provided in Figure 7, a 

distinct difference can be observed in the dynamic responses 

of the system under Fuzzy-PID control (blue line) and 

conventional PID control (red line). The rise time for the 

Fuzzy-PID control appears shorter than that of conventional 

PID control, indicating that with Fuzzy-PID, the system 

reaches the desired output level more quickly. The overshoot 

of the Fuzzy-PID control is less than that of the conventional 

PID control, suggesting better stability of the system output 

under Fuzzy-PID control, with a quicker recovery to a stable 

state after overshooting. Additionally, the settling time for the 

system under Fuzzy-PID control is shorter than with 

conventional PID control, meaning the system reaches and 

maintains the steady-state value in less time. Both control 

methods eventually reach the same steady-state value, 

exhibiting minimal steady-state error, and their performances 

in terms of steady-state error appear similar. The comparative 

analysis of the curves demonstrates the superior performance 

of Fuzzy-PID control in the automated control of thermal 

systems, especially in terms of speeding up the stabilization 

process and reducing overshoot. This validates the 

effectiveness of the Fuzzy-PID control method proposed in 

this study. The inclusion of fuzzy logic control, capable of 

handling uncertainties and non-linear characteristics, allows 

for real-time adjustment of PID controller parameters, 

adapting to the dynamic changes in thermal systems. This 

improvement is particularly beneficial for thermal systems 

requiring fast response and high stability, effectively 

enhancing the precision and convenience of system control. 

In the room comfort comparison chart shown in Figure 8, 

the thermal comfort index at different time points under 

Fuzzy-PID control aimed at enhancing energy efficiency and 

comfort (blue line) and conventional PID control aimed at 

enhancing comfort (red line) is observed. The following 

conclusions can be drawn: 

The trend of the Fuzzy-PID control (blue line) generally 

remains near the central line around "0," indicating that users 

feel more comfortable most of the time. This suggests that the 

Fuzzy-PID control method is relatively better at maintaining 

an ideal level of comfort. In contrast, the trend of conventional 

PID control (red line) shows more fluctuations over time and 

deviates further from the "0" comfort center line at certain 

points, potentially indicating more discomfort due to 

temperature variations for the users. 
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Compared to conventional PID control, the Fuzzy-PID 

control method exhibits smaller fluctuations and faster 

response times. Particularly in situations where the system 

faces external disturbances or requires quick adjustments, it 

can recover to comfortable levels more swiftly. Based on these 

observations, it can be concluded that the Fuzzy-PID control 

method proposed in this study is more effective in maintaining 

room comfort compared to the conventional PID control 

method. Due to its inherent fuzzy logic component, the Fuzzy-

PID control can flexibly adjust control strategies when dealing 

with nonlinear, complex, or uncertain system behaviors, thus 

providing a more stable and comfortable environment. 

Therefore, this method is significant in enhancing the 

precision and convenience of automated control in thermal 

systems. 

 

 

6. CONCLUSION 

 

This paper successfully constructs an energy efficiency 

analysis model for thermal systems that considers multiple 

disturbance factors, incorporating both absolute and relative 

intensity coefficients to quantify the impact of various 

disturbances. This model demonstrates higher predictive and 

analytical accuracy compared to traditional methods under 

different operational conditions and disturbances, thereby 

proving its effectiveness. This aids in identifying key 

parameters affecting system energy efficiency and provides a 

robust tool for optimizing control of thermal systems. 

The heat data-driven user thermal comfort modeling 

method developed in this paper effectively captures users' 

comfort perceptions in different indoor temperature 

environments. Through data analysis, the model can be 

tailored to match each user's thermal comfort needs, 

significantly enhancing user comfort satisfaction. This 

approach meets the demand for personalized comfort control 

and exhibits superior performance compared to generalized 

settings. 

The automated control method for thermal systems based 

on Fuzzy-PID control, as proposed in the paper, shows better 

performance than conventional PID control, particularly in 

terms of rapid response, accuracy, and system stability. Fuzzy-

PID control, with real-time adjustment of control parameters 

through fuzzy logic, responds more quickly and adjusts better 

to system disturbances, enhancing the precision of system 

control and simplifying the control process. 

In summary, this research contributes three main 

advancements to the field of automated control for thermal 

systems: an energy efficiency analysis model considering the 

impact of multiple disturbances, a personalized modeling 

method based on user thermal comfort data, and an improved 

Fuzzy-PID control strategy. Combined, these three areas of 

research not only enhance thermal system energy efficiency 

and user comfort but also improve the overall performance of 

system control, demonstrating clear practicality and 

innovation. 
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