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The precise diagnosis of neurodegenerative disorders, notably Parkinson's disease (PD) and 

Alzheimer's disease (AD), presents a formidable challenge, often necessitating several years 

for definitive determination. Given the increasing prevalence of PD and AD in aging 

populations of affluent nations, there is an urgent need for advanced technology and more 

precise diagnostic methodologies, particularly for early disease stages. In recent years, 

segmentation has seen a surge in application for processing Magnetic Resonance (MR) brain 

data, emerging as a valuable and indispensable tool. To capture comprehensive images of 

the brain for the diagnosis and classification of these neurodegenerative disorders, Magnetic 

Resonance Imaging (MRI) is employed. However, early detection and classification of PD 

and AD utilizing MRI datasets pose significant complexities. Owing to the inherent 

subjectivity of human observation, automated segmentation of MRI images has become a 

crucial asset for healthcare professionals. The primary focus of this study is to devise an 

effective image segmentation approach and classification techniques for the detection and 

categorization of AD and PD. Initially, Hierarchical Spatial Feature-CNN is employed to 

segment abnormal traces of PD and AD in MRIs. Subsequently, the Gradient-weighted 

Class Activation Mapping (Grad-CAM) method is used for disease classification. In Grad-

CAM, each neuron is assigned prioritization weights based on their contribution to the 

classification of interest, using gradient information flowing into the final convolutional 

layer of the Convolutional Neural Network (CNN). Thus, the combination of Grad-CAM 

with CNN is applied to address the classification challenges inherent in PD and AD. 

Extensive experiments were conducted on the proposed model, resulting in a classification 

accuracy exceeding 98.17%. In addition, the proposed integration of Grad-CAM with CNN 

outperformed existing state-of-the-art approaches across all performance measures. This 

study underscores the potential of the proposed model in enhancing the diagnostic process 

for neurodegenerative disorders, offering promise for more efficient and accurate detection 

and classification of PD and AD. 
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1. INTRODUCTION

Globally, countless individuals are grappling with 

neurodegenerative disorders, notably Parkinson's disease (PD) 

and Alzheimer's disease (AD). AD is marked by an insidious 

cognitive decline, encompassing learning difficulties [1], 

compromised cognition, memory deficits, and impaired 

executive thinking [2]. Furthermore, non-motor symptoms 

such as disorientation, anxiety, and parasympathetic 

dysfunctions may also manifest [3]. PD, on the other hand, is 

characterized by a deterioration in cognitive abilities, a loss of 

muscle control, and the eventual induction of apoptosis. Both 

PD and AD exhibit a similar pattern of gradual symptom onset, 

leading to severe brain damage over the extended prodromal 

phase. The challenge lies in discerning whether the brain 

damage is attributable to Alzheimer's disease or Parkinson's 

disease, which complicates the process of accurately 

pinpointing the disease condition during the diagnosis. 

Image segmentation enables the separation of the 

foreground in medical scans (ranging from MRIs to CT scans) 

from the pixel intensities representing structures and 

abnormalities [4]. Image segmentation [5] refers to the process 

of partitioning a digital image into smaller segments based on 

shared visual characteristics such as brightness, structure, 

texture, or color. This procedure simplifies the task of 

extracting features like structure, color, and shape from digital 

images [6] by grouping pixels into clusters based on the 

similarity of pixel intensity levels in the original image. 

Consequently, images are divided into clusters of pixels 

sharing common characteristics. It is imperative that these 

groups do not overlap and that the neighboring subgroups are 

diverse and distinct [7]. Image segmentation functions by 
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classifying all pixels such that adjacent pixels share common 

labeling [8].  

In the diagnosis and treatment of these debilitating diseases, 

clinical visual segmentation has proven to be an indispensable 

tool. A variety of imaging techniques, including MRI, PET, 

thermography, CT, X-ray-CT, OCT, US, TI, among others, are 

utilized to collect clinical data. The MRI technique, a non-

invasive diagnostic modality, is capable of capturing highly 

detailed three-dimensional anatomical images [9-11]. 

Magnetic Resonance Imaging facilitates the precise analysis 

of neurodegenerative disorders, making MRI-based image 

feeds the focus of this proposed research endeavor. 

Volumetric assessment of structural scans has risen to 

prominence as the principal screening indicator in large-scale 

prospective studies and the testing of treatments for sporadic 

symptomatic dementia, as endorsed by Western medicine 

standards [12,13]. This approach is also used in the case of pre-

symptomatic biological brain disorders [14]. Prognosis for AD 

sufferers ranges from 8-15 years from the onset of symptoms. 

Figure 1(a) provides a visual representation of the prevalence 

of AD. 

 

 
 

Figure 1. (a) Prevalence of AD (b) Prevalence of PD 

 

Following AD, Parkinson's Disease (PD) stands as perhaps 

the most prevalent form of neurodegeneration. Diagnostically, 

PD is characterized by the gradual apoptosis of neurons in the 

substantia nigra region and other areas, coupled with the 

presence of ubiquitinated grey matter within the neurons. 

Moreover, individuals with PD frequently struggle with 

emotional management, particularly anxiety and depression. 

Figure 1(b) offers a visual representation of the prevalence of 

PD. 

While the impacts of these diseases are readily 

distinguishable, the task of isolating the affected area from 

various neuroimaging techniques, particularly MRIs, presents 

a significant challenge. The segmentation process has 

increasingly become complex and demanding. Primary causes 

of categorization issues include fixed magnetic permeability, 

RF penetration, and subjects' motion during image acquisition 

[15, 16]. This study, therefore, zeroes in on the specific 

challenges posed by the segmentation and categorization of 

these diseases using standard brain MRI datasets. 

Numerous scholarly investigations have delved into the 

practice of image segmentation in brain MRIs. As such, this 

section presents a thorough research analysis of the diverse 

methods proposed for accurately segmenting brain MRI. The 

Multiple Atlas-based visual Segmentation method, which 

involves the creation of numerous atlases [17], has been found 

to yield the best segmentation outcomes. The effectiveness of 

these techniques hinges on an accurate template-to-image 

spatial analysis [18]. 

A group-wise registration utilizing a tree-based approach is 

proposed to match both the atlas and the target image 

simultaneously. In the intermediate step of the multi-group 

segmentation technique, each image's atlas is combined with 

the most consistently segmented target images [19]. 

Occasionally, multiple branches are taken from the root of the 

tree. Employing Kruskal's method, researchers have calculated 

the minimal tree structure to identify the smallest possible set 

of connected nodes. To minimize labeling inaccuracies, a 

fusion of label fusion with multi-atlas segmentation 

techniques has been implemented using a voting system. The 

joint probability of multiple atlases is used to precisely 

characterize the mapping [20]. 

Unsupervised methods, unlike those used in cluster-based 

segmentation approaches, do not require a data source to learn 

from. The BCFCM method addresses the estimation and 

restoration in brain MRI for approximating, segmenting, and 

classifying in a single step [21]. The FCM method is made 

more effective by incorporating regional context. Variations 

include bilateral BCFCM, BCFCM, adaptive non-local FCM, 

multi-scale, and multi-block FCM [22], rough-set FCM, 

simplified rough-set FCM [23], improved FCM [24], 

simplified kernel FCM, and others. 

In the structure-based model used in the SOM-based 

segmentation approach, descriptors (features) were developed 

to categorize preferred pixel regions in brain MRIs. To prevent 

any single feature representation from becoming overly 

dominant, position and aspect invariants were extracted from 

the MRI's 2D sequencing and then normalized before being 

used to construct the feature vector [25]. When selecting the 

best-matching units, loss metrics are considered for the quality 

of fit. An Expanding Hierarchical-SOM framework was 

developed by researchers for image classification using 

calculated selected features [26]. 

The fundamental premise of the contour-based 

segmentation approach is that distinct tissues can be 

differentiated by tracing their perimeters. Segmentation 

techniques that rely on deformable models are widely used to 

dissect medical imagery [27]. Benefits of deformable 

approaches include the ability to generate localized curves and 

surfaces from images and the ease of incorporating smoothing 

constraints; these models also exhibit resilience to noise and 

deceptive features. However, the deformable approach also 

carries the downside of subpar fitting to concave boundaries. 

The variational thresholding method has been employed to 

establish a framework for region-based Active Contour 

Models (ACM). The contour is set into motion by summing all 

energy values [28]. Now, diverse sections of the MRI can be 

segmented using multi-phase thresholding techniques. Active 

generative models for multi-object detection in images have 

also been developed [29]. The effectiveness of a segmentation 

process is significantly influenced by its initialization. The 

sparse representation speed function and the localized region-

based ACM can be utilized to examine areas with blind spots 

and incorrect margins [30]. Researchers propose multi-phase 

ACM to pinpoint distinct regions using a Generalized Convex 

2-phase piece-wise stable energy minimization approach. 

Regular images can be precisely segmented using the 

reliable graph-cut technique. The MRI series has been 

depicted akin to a balanced undirected network [31]. The 

graph-cut leaking problem is mitigated by employing the RFC 

method in conjunction with the technique [32]. 
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Supervised techniques, which can learn from instances, 

form the basis for classification-based approaches. Local as 

well as cooperative Markov Random Field (MRF) methods are 

used for cellular and tissue-level segmentation in brain MRIs. 

The Bayesian inference technique used by the Hidden MRF 

approach involves representing a specific set of data points in 

a 3D pattern and then categorizing each pixel into one of 

several predefined groups based on the hidden identifiers and 

observed intensities [33]. Segmentation is based on this 

assessment. The random variables are dependent on the 

Probability Density Function (PDF) of a random variable 

realized by a random subset with the highest Bayesian 

approximation set on a limited number of parameters. 

Under intensities, the functional form for each tissue type 

typically employs a Gaussian Distribution Function (GDF) for 

the input dataset. Simultaneously, the regularization 

component considers the spatial relationships between 

different pixels and voxels [34]. The Expectation 

Maximization (EM) method is commonly used for log-

likelihood maximization, using a recorded and updated 

approximation. To accurately segment the disorders from the 

available brain MRIs, suitable hypotheses and compositions 

must be generated to quantify the distortion sector. 

The threshold grouping approach relies on the fuzzy 

clustering algorithm to form initial clusters, given the 

profound influence of initialization on the overall performance 

of the method [35]. As part of the enrollment process in the 

longitudinally oriented thresholding approach for concerned 

tissue segmentation in newborns, the linked thresholding 

method integrates local depth input with morphometric 

limitations and positional constraints to generate a single-

thresholding set [36]. 

An exhaustive and detailed literature review [37] was 

undertaken to uncover the latest advancements in the field of 

study. This comprehensive review reveals that many 

approaches overlook essential spatial information, which is 

crucial for segmenting regions of interest in brain MRIs and 

for classifying Parkinson's Disease (PD) and Alzheimer's 

Disease (AD). As a result, we now have a clearer 

understanding of the vast array of potential actions to take and 

features to exploit. The proposed strategy, which will be 

discussed in detail in the following sections, enhances the 

results. 

The unique contribution of this research lies in its approach 

to segmenting brain MRIs for the diagnosis and categorization 

of PD and AD. The objectives of this research are: 

 

▪ To segment the Region of Interest (RoI) as either normal 

or abnormal in the context of Alzheimer's or Parkinson's 

disease. 

▪ To identify whether a specific disease-affected area 

shows signs of either Parkinson's or Alzheimer's. 

▪ To establish a definitive diagnosis by integrating the 

Gradient-weighted Class Activation Mapping (grad-

CAM) model with the proposed segmentation approach. 

 

The overall structure of this research article is organized as 

follows: Section 2 outlines the integration of relevant datasets 

and preprocessing techniques with the proposed segmentation 

model and the classification strategy of this research work. 

Section 3 delves into the exploration and evaluations of the 

observed results from various perspectives. Section 4 offers a 

summary of the work, highlighting the key points achieved 

through experimental execution and pointing towards future 

work. 

 

 

2. MATERIALS AND METHODS 
 

2.1 Datasets 
 

We employed the ADNI (ADNI | ACCESS DATA, n.d.) 

and PPMI (Data Dashboard | Parkinson’s Progression Markers 

Initiative, n.d.) datasets (including FLAIR, T1, and T2) for our 

research and assessment. The PPMI is an interpretive research 

trial that aims to uncover analytes of PD progression by 

thoroughly evaluating classes of serious importance using 

cutting-edge MRIs through clinical and behavioral evaluations 

with biological sampling. ADNI, on the other hand, is 

prospective multimodal research with the intent of developing 

therapeutic, neuroimaging, biological, and metabolic 

indicators for diagnosing and monitoring AD at its earliest 

stages. Table 1 shows detailed, vital information about the 

participants in both datasets. 

 

Table 1. General characteristics of available datasets 

 
Cohorts PPMI ADNI 

Age PD ProdPD HC AD MCI HC 

30-40 24 01 10 32 5 3 

41-50 78 19 21 63 24 34 

51-60 213 168 65 189 154 5 

61-70 335 250 85 45 287 78 

71-80 179 89 40 132 90 33 

81-90 11 14 08 226 23 21 

91+ 61 76 08 55 87 32 

Total cohorts 1755 1678 

Image data T1, T2, and Flair MRI data 

Dimension (X,Y,Z) 121×145×121 

Resolution (mm3/vowel) 1.5×1.5×1.5 
Note: ProdPD-Prodromic PD, HC-Healthy Controls 

 

2.2 Preprocessing 

 

Noise produces undesirable characteristics in a diagnostic 

display, like distorted artifacts, illogical edges, borders, 

corners, and glitches; it also strongly disrupts the backdrop. As 

a result of noise and distortions, incorrect diagnoses are often 

rendered. This emphasizes the significance of denoising and 

contrast enhancement in allowing for rapid and precise 

diagnosis and subsequent intervention. 

 

2.2.1 Denoising 

A Wiener filter (WF) [38] is used for the denoising process. 

The significant merit of WF is its capability to cope with noise 

and degradation factors. Reducing the average square 

deviation across the input feed and the inferred imagery builds 

optimal estimates of the actual visual. WF is sensitive to the 

level of noise (differences in noise levels in a distorted image). 

Figure 2 represents the diagrammatic depiction of the image 

degradation model. 

 

 
 

Figure 2. Image degradation model 
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In this context, the MRIs of subjects' medical records are 

represented as µ(x,y,z), the degradation/deterioration 

component is indicated as ξ(x,y,z), the inference (additive) 

noise as A(x,y,z), the deteriorated visual features as d(x,y,z), 

and the guesstimated outputting depiction as η(x,y,z). 

To achieve optimal performance of the Wiener filter 

WF(x,y,z), it is necessary to minimize the average square error 

е= 𝜇(𝑥, 𝑦, 𝑧) − 𝜂(𝑥, 𝑦, 𝑧)2, where e[ ] denotes the expected 

value. 

In the Fourier domain, the optimum wiener filter is 

expressed as: 

 

WF(x,y,z) = [𝑑𝑓
∗ (x,y,z)/(

𝜗𝑁

𝜗𝑑(𝑥,𝑦,𝑧)
+ |𝑑𝑓(𝑥,𝑦,𝑧) |

2
) ] (1) 

 

where, d*
f (x,y,z) indicates the Intricate Conjugate in 

degradation function, df(x,y,z) represents the degradation 

function, ϑ𝑁 noise spectral density, ϑd(x,y,z) non-degraded image 

spectral density. The SNR is interpreted through the reciprocal 

of 
𝜗𝑁

𝜗𝑑(𝑥,𝑦,𝑧)

. The WF simplifies to inverse filtering whenever 

noise is ignored which can be expressed as in Eq. (2). If the 

noise is not taken into consideration, the wiener filter reduces 

to an inverse filter. i.e., 

 
𝜗𝑁

𝜗𝑑(𝑥,𝑦,𝑧)

= 0 (2) 

 

𝑊𝐹(𝑥, 𝑦, 𝑧) = [
1

𝑑𝑓(𝑥,𝑦,𝑧)
] (3) 

 

While the WF can accurately estimate the optimal result by 

reducing the distortion, doing so needs insight into the µ(x, y, 

z) power spectrum. Considering WF's low-computation 

requirements and high-quality noise impact, it's no surprise 

that it has gained widespread usage. 

 

2.2.2 Contrast enhancements 

The difference in intensity among neighboring sections 

creates contrast in an MRI visual. Increasing the contrast of 

images is often necessary to enhance the visibility of important 

tissue details, structures, borders, and contours the band of 

grayscale values in a visual is broadened to increase contrast. 

In actuality, Histogram Equalisation (HE) is employed more 

often than any other improvement method. Input images with 

low contrast are ideal for the conventional histogram-based 

technique; in all other cases, the output visual quality of any 

images declines [39]. 

The standard histogram procedure has been modified to 

improve its effectiveness. Each pixel in the visual MRI is 

extracted and placed into a separate block, and then a weighted 

histogram is calculated on every block to determine its optimal 

density ratio. This allows for simultaneous ROI improvement 

across a wide range of grayscale pixel intensities. Thus, in this 

research, the Adaptive Histogram Equalization (AHE) 

technique is employed, which performs and attains pixel-by-

pixel parity by relying on the histograms of nearby pixels in 

the RoI. In support of the contrast increase, the CEF (α) has 

been introduced based upon the ratio of contrast enhancement 

and denoised filtered MRI, which is expressed in Eq. (4). 

 

𝜶(𝒙,𝒚,𝒛)= [
𝝁(𝒙,𝒚,𝒛)

𝑾𝑭(𝒙, 𝒚, 𝒛)
 ] (4) 

where, the contrast enhancement in an RoI of a specific MRI 

is denoted as 𝜇 (́𝑥,𝑦,𝑧). 

 

2.3 Image segmentation: HSF-CNN 

 

The formal procedure for the proposed HSF-CNN is laid out 

in this section. Several existing practices need manual 

intervention from the operator to set their baseline parameters, 

reducing their precision and making them further slower. This 

study uses an HSF-CNN to carry out the segmentation process 

using dilated convolution procedures. Figure 3 depicts the 

overall process of the proposed HSF-CNN model. 

 

 
 

Figure 3. HSF-CNN segmentation 

 

The HSF-CNN works in a hierarchical manner wherein 

multiple layers are performed to segment the investigative RoI 

for AD and PD classification. When classifying cases of AD 

and PD, the HSF-CNN uses a multi-layer approach to segment 

the region of interest (RoI). The SB begins by using the usual 

convolution techniques to extract spatial features in a pixel-to-

sub-pixel manner from the MRIs; therefore, it enables in-depth 

extraction of the spatial data. Each SB has three distinct 

extraction trails (δ1, δ2, and δ3). A (1 x 1) convolution 

procedure is used in three feature extraction trails to begin 

retrieving useful spatial characteristics. Three feature map 

trails, m1, m2, and m3, are generated by convolving an 

incoming feed with a (1 x 1) K, 'w', and 'e' as described through 

Eqs. (5) to (8). 

 

𝒎𝟏 = 𝒇(𝒙𝒊 ,𝒚𝒊,𝒛𝒊) × 𝒘𝒊 ± 𝒆𝒊 (5) 

 

𝒎𝟐 = 𝒇(𝒙𝒋,𝒚𝒋,𝒛𝒋) × 𝒘𝒋 ± 𝒆𝒋 (6) 

 

 𝒎𝟑 = 𝒇(𝒙𝒌 ,𝒚𝒌,𝒛𝒌) × 𝒘𝒌 ± 𝒆𝒌 (7) 
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𝑭𝑴 = ∑(𝒎𝟏, 𝒎𝟐, 𝒎𝟑) (8) 

 

All the MRI scans in the records are down-sampled to 

retrieve spatial information effectively. In down-sampling 

procedures, hierarchies of SB blocks, as well as max-pooling, 

are used to create a smaller sample size. First, every input is 

fed into the initial SB block, where spatial information is 

extracted using a hierarchy of convolutions. Then, to lessen 

the operational burden on the system, the recovered features 

are conveyed to the max-pooling tier for image compression 

via dimensionality reduction. In the HSF-CNN model, the 

outcomes of the down-sampling tier are fed into the 

subsequent up-sampling tier, which is responsible for isolating 

the potentially suspect areas in the b-MRI scans for the 

segmentation of AD or PD. 

After features are captured using down-sampling, they are 

sent to the up-sampling tier to be handled to decode/boost the 

dimensions of the vital feature. This method boosts the spatial 

aspect by performing un-pooling techniques on the result 

produced from the down-sampling tier. To retrieve various 

spatial information using hierarchical convolutions, they are 

sent into the final SB block for processing. Ultimately, the up-

sampling tiers' final features are extracted with the help of the 

SB-blocks' output, which is then passed into an un-pooling tier 

to boost the dimensions of the crucial features. To acquire MRI 

interpretations, both sampling tiers provide several granularity 

options. To estimate the likelihood of the target class in the 

input image, a sigmoid function is added to the result of the 

final up-sampling tier. Figure 4 highlights the effectiveness 

and significance of the proposed model via some sample 

segmented images. 

 

 
 

Figure 4. Sample segmented images using HSF-CNN 

 

2.4 Grad-CAM classification 

 

Much research has postulated that CNN's more profound 

interpretations can capture the finest high-level structures. In 

addition, CNN automatically retrains a few essential spatial 

data points that were dropped off in the fully-connected 

networks so that researchers may prioritize the ideal tradeoff 

among distinct spatial features and high-level interpretations 

in the final convolution operation. 

Thus, to overcome such issues we incorporated Grad-CAM 

in the proposed model to classify the disorders. In contrast to 

CAM, Grad-CAM analyses each convolutional neuron 

towards a decision using the gradient data passing into the 

CNN's final layer (convoluted). To acquire the category-

oriented discriminatory localized mapping with dimensions of 

ѱ and h for objective class c, it is essential to compute the 

gradient score for any c, relevant feature mapping of a 

convolutional layer. The 'W' assigned to neurons in the class 

label is derived from a global average pooling of the gradients 

riposting from those neurons. 

The 'ƥw' assigned to each neuron is determined by taking a 

multilateral aggregate of the gradients that are streaming back 

along the ѱ and h dimensions. All the computation processes 

are referred from [40] and integrated the computation into the 

proposed model. 

 

ƥ 𝒌
𝒄 =  ( 

𝟏

𝑷
 ) ∑ 𝒊 ∑ 𝒋 [ 𝝏𝒔𝒄 𝝏𝔸𝒊𝒋

𝒌⁄  ] (9) 

 

where, ƥ 𝒌
𝒄  also referred to as partial linearization, ‘P’ denotes 

the pixel of the processing MRI, 𝔸k represents the feature map 

activation in 𝝏𝒔𝒄 𝝏𝔸𝒊𝒋
𝒌⁄ , k denotes the feature maps, and SC 

refers to the score of c (before softmax). 

During the process of computing ƥ 𝒌
𝒄  for c, when back-

propagating gradients are conditioned to 𝔸k, the exact 

calculation corresponds to consecutive vector combinations of 

the connection weights as well as the gradient to the actual 

convolution operation from which the variations are being 

propagated. This continues until the gradients reach their 

ultimate destination using the ultimate convolution operation.  

Following the determination of ƥ 𝒌
𝒄  for the c, a final class 

discriminative map is generated by a weighted mixture of 𝔸k 

and ReLU, as shown by the expression in Eq. (10): 

 

𝔽𝒈𝒓𝒂𝒅𝑪𝑨𝑴
𝒄 = 𝑹𝒆𝑳𝑼 [ ∑(ƥ 𝒌

𝒄 ) ⋅ (𝔸𝒌) ] (10) 

 

 
 

Figure 5. Workflow of Grad-CAM 
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Grad-CAM generates a heat-map representation of the "c" 

for a specified classification. Such a heat map may be used by 

researchers or practitioners to compositionally confirm the 

region of the disorders on which CNN is focusing. The grad-

CAM method is reflected as algorithms in Table 2. Figure 5 

provides a visual representation of the workflow required to 

perform all deep-learning tasks. 

 

Table 2. Algorithm of Grad-CAM process 

 

Step 1: Compute 𝑠𝑐 conditioned to 𝔸k in [ 𝝏𝒔𝒄 𝝏𝔸𝒊𝒋
𝒌⁄  ] 

Step 2: Equate global average pooling to retrieve, ƥ 𝒌
𝒄  

ƥ 𝒌
𝒄 =  ( 

𝟏

𝑷
 ) ∑ 𝒊 ∑ 𝒋 [ 𝝏𝒔𝒄 𝝏𝔸𝒊𝒋

𝒌⁄  ] 

Step 3: Compute the ultimate Grad-CAM discriminative map of 

‘c 

𝔽𝒈𝒓𝒂𝒅𝑪𝑨𝑴
𝒄 = 𝑹𝒆𝑳𝑼 [ ∑(ƥ 𝒌

𝒄 ) ⋅ (𝔸𝒌) ] 

 

Note: The ReLU procedure is used to zero out all the non-positive signs and 

highlight only positive ones. 

 

 

3. PERFORMANCE ANALYSIS 

 

The CNN classifier's training allows it to create CAMs from 

either typical or aberrant ROIs through the Grad-CAM 

technique. These CAMs serve as masking, revealing only the 

relevant features for categorization purposes. 

Contrasting other interpretation methods like BCFCM, 

SOM-based approach, and area-based ACM, the Grad-CAM-

based procedures are fully model interoperable. Figure 6 and 

Figure 7 display the generated heat maps, which are classified 

according to the three stages of AD (presymptomatic, minor 

psychomotor impairment, and dementia) and the two major 

stages of PD (primary and secondary symptomatic stages), 

respectively. A close examination of the maps reveals that the 

suggested HSF-CNN significantly aided in the categorization 

of AD and PD. Furthermore, due to the utilization of diverse 

areas for sensitivity assessment, the heat maps are consistent 

and reliable. As a whole, the HSF-CNN segmentation 

approach accurately finds discriminative areas and supports 

Grad-CAM in classifying the disease at different phases based 

on the available b-MRIs. Figures 6 and 7 depict some of the 

significant heat-map images of both AD and PD to showcase 

the effectiveness of Grad-CAM. 

Of particular significance are the best GRAD-CAM-trained 

CNN networks for producing heat maps to analyze the effect 

of MRI characteristics from each given layer on categorization. 

There is a close connection between retrieved characteristics 

from RoI and disorder pathogenesis, as seen by the distinctive 

patterns in AD and PD heat maps. Based on our findings, we 

conclude that there were significant differences in the heatmap 

trends across the categories. We validated our patient data set 

right away and regulated it based on their characteristics and 

clinical similarities. Consequently, it is realistic to predict the 

identification of structural variations across different cohorts. 

Furthermore, it was unknown exactly where and to what 

extent the variances would exist within a given domain. An 

innovative way to investigate this problem is to use heatmap 

approaches inside a CNN. According to the findings of our 

leading HSF-CNN models and Grad-CAM, the main 

discriminative regions of MRI have a significantly wider range 

of influence than previously thought. In addition, the 

quantifiable Grad-CAM analysis revealed higher 90th 

percentile scores, which the heat map interprets as indicating 

more widespread abnormalities. 

 

 
 

Figure 6. Categorized samples of ADs in CAM filtered 

MRIs using Grad-CAM algorithm 

 

 
 

Figure 7. Categorized samples of PDs in CAM filtered MRIs 

using Grad-CAM algorithm 

(RoI: Substantia Nigra) 

 

Specificity, sensitivity, and precision are three metrics often 

used to assess the efficacy of diagnostic image analysis 

strategies. Thus, they have been applied in our study to assess 

whether the suggested unique HSF-CNN segmentation 

approach works in tandem with the Grad-CAM classification 

methodology. Any methodology's sensitivity can be calculated 

by dividing the number of correct results by the combined 

number of correct and incorrect results. In other words, this is 

the proportion of actual positives that can be reliably detected 

using the recommended approach. Nonetheless, specificity is 

defined as the proportion of actual negative results relative to 

the combined true positive and actual negative results. 

Specificity and sensitivity are determined by employing the 

appropriate formulas, which are referred from study [41]. 

On the other hand, the precise completeness of the 

segmented outcomes is evaluated to assess how accurate the 

suggested approach is. It's a finding that considers both how 

sensitive and specific a test is. Thus, the specificity outcome 

from Figure 8 reveals that the proposed model has a high 
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capacity to detect the disorder from the MRIs. High specificity 

values, close to one, indicate a strong ability to distinguish the 

background from the RoI, as a large number of voxels are 

correctly identified as background. 

 

 
 

Figure 8. Analysis of (a) Specificity (b) Sensitivity (c) 

Classification accuracy 

 

HSF-CNN is used for segmentation to enhance the Grad-

CAM classification technique. The HSF-CNN+Grad-CAM-

based classifier uses the concept of reducing the limitations on 

the inaccuracy created by the classification algorithm over the 

testing dataset that wasn't utilized throughout learning, 

allowing it to successfully classify visuals that were not part 

of the training phase. In the suggested technique, we use HSF 

segmentation to extract detailed spatial characteristics for 

classifying data. CNN-based classification and Grad-CAM 

analysis are the two main components of the classification 

phase. The input consists of the visual aspects and their 

associated labeled output. The generated outcome from Figure 

8 exhibits a strategy that uses such characteristics to estimate 

the associated label. After using HSF-CNN, we found that our 

classifier's performance correctness increased from 92.13% to 

98.17%. Consequently, the findings of this research signify the 

relevance and importance of the suggested model to the Grad-

CAM-assisted classification model. Figure 9 demonstrates the 

effectiveness of the proposed model via the segmentation 

effect. 

 

 
 

Figure 9. Analysis of segmentation effect on classification 

accuracy 

Furthermore, the acquired MRIs are examined with their 

test dataset visuals to evaluate the effectiveness of the 

suggested approach for PD and AD classification. To measure 

how well a model works, statisticians use the MCC, which is 

derived from the contingency table. MCC is employed to 

assess the accuracy of binary categorization. From the 

contingency table, the MCC may be determined by the 

formula provided by the study [42]. It gives a number ranging 

from -1 (an erroneous classification) to +1 (a proper 

classification). Table 3 shows that the suggested model 

performs well for many different b- MRI types (T1, T2, and 

Flair). 

 

Table 3. MCC metric results of different approaches 

 

MRI 

HSF-

CNN+Grad-

CAM 

SOM-

Based 

Area-

Based 
BAFCM 

T1 0.92±0.13 
0.89± 

0.21 

0.82±0.

32 
0.86±0.21 

T2 0.98±0.25 
0.87± 

0.57 

0.79±0.

41 
0.87±0.34 

Flair 0.95±0.37 
0.91± 

0.44 

0.83±0.

23 
0.84±0.11 

 

Figure 10 shows ROC curves for four distinct approaches 

used to classify ROIs in b- MRI scans. AUC values of 0.872 

for BCFCM, 0.811 for the SOM-based approach, 0.792 for the 

area-based approach, and 0.943 for the suggested HSF-

CNN+Grad-CAM show that the present approaches yield 

comparatively poor classification results. The suggested 

model performs categorization utilizing the appropriate 

outputting principle features, which improves classification 

accuracy by incorporating all of the aforementioned MRI 

characteristics. 

 

 
 

Figure 10. ROC curves for AD and PD classification using 

various MRIs (a) T1 (b) T2 (c) FLAIR 

 

This study is limited in some aspects including 

▪ Only MRI images are used to classify the diseases. 

▪ Data preprocessing techniques discussed above are 

mandatory for better results. Without these, Roi 

segmentation may produce inaccurate results as it 

extracts spatial features. 
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4. CONCLUSIONS AND FUTURE ENHANCEMENT 

 

In this research, we create a novel method using HSF-CNN 

for segmentation and Grad-CAM for classifying PD and AD 

from existing b-MRIs. To verify the effectiveness of the new 

model, it is compared to a limited number of existing methods. 

Each method provides insights into the improvement of the 

categorization process. Yet they are limited in a multitude of 

aspects. The core concern of this research is to develop and 

analyze a feasible b-MRI segmentation strategy and 

classification method for the early diagnosis of PD and AD 

with high accuracy. HSF-CNN is a segmentation method that 

enhances the Grad-CAM classification technique. The HSF-

CNN divides the researchable RoI for Alzheimer's and 

Parkinson's disease hierarchically. In Grad-CAM, the last 

convolutional layer of a CNN is fed gradient information, 

which is then used to assign prioritization weights to each 

neuron depending on its impact on the preference of concern. 

Therefore, the classification issues arising from PD and AD 

are addressed using the Grad-CAM with CNN. Extensive 

studies showed that the proposed model outperforms other 

current models in terms of classification accuracy, with our 

best results reaching over 98.17%. The study's findings can be 

applied to segmenting a wide variety of medical imagery 

visuals for diagnosing any disorders. Further this study should 

be analyzed using multi-modal datasets for extracting more 

informative features to enhance the performance of 

classification of these diseases. We intend to build an 

automated smart communication system to support all of the 

domain's stakeholders in the future. 

 

 

REFERENCES: 

 

[1] Mahesh, T.R., Vinoth Kumar, V., Vivek, V., Karthick 

Raghunath, K.M., Sindhu Madhuri, G. (2022). Early 

predictive model for breast cancer classification using 

blended ensemble learning. International Journal of 

System Assurance Engineering and Management. 

https://doi.org/10.1007/s13198-022-01696-0  

[2] Jiang, T., Sun, Q., Chen, S. (2016). Oxidative stress: A 

major pathogenesis and potential therapeutic target of 

antioxidative agents in Parkinson’s disease and 

Alzheimer’s disease.Progress in Neurobiology, 147: 1-

19. https://doi.org/10.1016/j.pneurobio.2016.07.005 

[3] Kalia, L.V., Lang, A.E. (2015). Parkinson’s disease. The 

Lancet, 386(9996): 896-912. 

https://doi.org/10.1016/s0140-6736(14)61393-3 

[4] Hesamian, M.H., Jia, W., He, X., Kennedy, P. (2019). 

Deep Learning Techniques for Medical Image 

Segmentation: Achievements and Challenges. Journal of 

Digital Imaging, 32(4): 582-596. 

https://doi.org/10.1007/s10278-019-00227 

[5] Umamaheswaran S., John, R., Nagarajan S., Karthick 

Raghunath K.M., Arvind K.S. (2022). Predictive 

Assessment of Fetus Features Using Scanned Image 

Segmentation Techniques and Deep Learning Strategy. 

International Journal of E- Collaboration, 18(3): 1-13. 

https://doi.org/10.4018/ijec.307130 

[6] Xia, M., Yan, W., Huang, Y., Guo, Y., Zhou, G., Wang, 

Y. (2019). IVUS Image Segmentation Using Superpixel-

Wise Fuzzy Clustering and Level Set Evolution. Applied 

Sciences, 9(22): 4967. 

https://doi.org/10.3390/app9224967 

[7] Jayaraman, S, Esakkirajan, S., Veerakumar, T. (2013), 

Digital Image Processing. McGraw Hill Education Pvt 

Limited. 

[8] Priyadarshi, N., Bhoi, A.K., Padmanaban, S., 

Balamurugan, S., Holm-Nielsen, J.B. (2022). Intelligent 

renewable energy systems: integrating artificial 

intelligence techniques and optimization algorithms. 

Wiley-Scrivener. 

https://doi.org/10.1002/9781119786306 

[9] Umbaugh, S.E., Wei, Y.S. Zuke, M. (1997). Feature 

extraction in image analysis. A program for facilitating 

data reduction in medical image classification. IEEE 

Engineering in Medicine and Biology Magazine, 16(4): 

62-73. https://doi.org/10.1109/51.603650 

[10] Suganya, A., Aarthy, S.L. (2022). Alzheimer's And 

Parkinson's Disease Classification Using Deep Learning 

Based On MRI: A Review. International Journal of 

Communication Networks and Information Security, 

14(1s): 9-21. 

https://doi.org/10.17762/ijcnis.v14i1s.5588  

[11] Kaplan, E., Altunisik, E., Firat, Y.E., Barua, P.D., Dogan, 

S., Baygin, M., Acharya, U.R. (2022). Novel nested 

patch-based feature extraction model for automated 

Parkinson's Disease symptom classification using MRI 

images. Computer Methods and Programs in 

Biomedicine, 224: 107030. 
https://doi.org/10.1016/j.cmpb.2022.107030 

[12] Broich, K. (2009). Committee for Medicinal Products for 

Human Use (CHMP) assessment on efficacy of 

antidepressants. European Neuropsychopharmacology, 

19(5): 305-308. 

https://doi.org/10.1016/j.euroneuro.2009.01.012 

[13] Tishchenko, I., Riveros, C., Moscato, P. (2016). 

Alzheimer’s disease patient groups derived from a 

multivariate analysis of cognitive test outcomes in the 

Coalition Against Major Diseases dataset. Future 

Science OA, 2(3): FSO140. https://doi.org/10.4155/fsoa-

2016-0041 

[14] Rohrer, J.D., Nicholas, J.M., Cash, D.M., van Swieten, J., 

Dopper, E., Jiskoot, L., van Minkelen, R., Rombouts, 

S.A., Cardoso, M.J., Clegg, S., Espak, M., Mead, S., 

Thomas, D.L., De Vita, E., Masellis, M., Black, S.E., 

Freedman, M., Keren, R., MacIntosh, B.J., Rogaeva, E. 

(2015). Presymptomatic cognitive and neuroanatomical 

changes in genetic frontotemporal dementia in the 

Genetic Frontotemporal dementia Initiative (GENFI) 

study: a cross-sectional analysis. The Lancet Neurology, 

14(3): 253-262. https://doi.org/10.1016/s1474-

4422(14)70324-2 

[15] Vovk, U., Pernuš, F., Likar, B. (2006). Intensity 

inhomogeneity correction of multispectral MR images. 

NeuroImage, 32(1): 54-61. 

https://doi.org/10.1016/j.neuroimage.2006.03.020 

[16] Belaroussi, B., Milles, J., Carme, S., Zhu, Y.M., Benoit-

Cattin, H. (2006). Intensity non- uniformity correction in 

MRI: Existing methods and their validation. Medical 

Image Analysis, 10(2): 234-246. 

https://doi.org/10.1016/j.media.2005.09.004 

[17] Lötjönen, J. MP., Wolz, R., Koikkalainen, J. R., Thurfjell, 

L., Waldemar, G., Soininen, H., Rueckert, D. (2010). 

Fast and robust multi-atlas segmentation of brain 

magnetic Resonance images. NeuroImage, 49(3): 2352-

2365. https://doi.org/10.1016/j.neuroimage.2009.10.026 

[18] Artaechevarria, X., Munoz-Barrutia, A., Ortiz-de-

2776

https://doi.org/10.1016/s0140-6736(14)61393-3
https://doi.org/10.1007/s10278-019-00227
https://doi.org/10.4018/ijec.307130
https://doi.org/10.3390/app9224967
https://doi.org/10.1109/51.603650
https://doi.org/10.17762/ijcnis.v14i1s.5588
https://doi.org/10.4155/fsoa-2016-0041
https://doi.org/10.4155/fsoa-2016-0041
https://doi.org/10.1016/s1474-4422(14)70324-2
https://doi.org/10.1016/s1474-4422(14)70324-2
https://doi.org/10.1016/j.neuroimage.2006.03.020
https://doi.org/10.1016/j.media.2005.09.004
https://doi.org/10.1016/j.neuroimage.2009.10.026


 

Solorzano, C. (2009). Combination Strategies in Multi-

Atlas Image Segmentation: Application to Brain MR 

Data. IEEE Transactions on Medical Imaging, 28(8): 

1266-1277. https://doi.org/10.1109/tmi.2009.2014372 

[19] Jia, H., Yap, P.T., Shen, D. (2012). Iterative multi-atlas-

based multi-image segmentation with tree-based 

registration. NeuroImage, 59(1): 422-430. 

https://doi.org/10.1016/j.neuroimage.2011.07.036 

[20]  Wang, H., Yushkevich, P.A. (2013). Multi-atlas 

segmentation with joint label fusion and corrective 

learning—an open source implementation. Frontiers in 

Neuroinformatics, 7. 

https://doi.org/10.3389/fninf.2013.00027 

[21] Yan, B., Xie, M., Gao, J.J., Zhao, W. (2010). A fuzzy C-

means-based algorithm for bias field estimation and 

segmentation of MR images. The 2010 International 

Conference on Apperceiving Computing and 

Intelligence Analysis Proceeding. 

https://doi.org/10.1109/icacia.2010.5709907 

[22] Yang, X., Fei, B. (2011). A multiscale and multiblock 

fuzzy C-means classification method for brain MR 

images. Medical Physics, 38(6Part1): 2879-2891. 

https://doi.org/10.1118/1.3584199 

[23] Ji, Z., Sun, Q., Xia, Y., Chen, Q., Xia, D., Feng, D. (2012). 

Generalized rough fuzzy c- means algorithm for brain 

MR image segmentation. Computer Methods and 

Programs in Biomedicine, 108(2): 644-655. 

https://doi.org/10.1016/j.cmpb.2011.10.010 

[24] Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, 

A.A., Moriarty, T. (2002). A modified fuzzy c-means 

algorithm for bias field estimation and segmentation of 

MRI data. IEEE Transactions on Medical Imaging, 21(3): 

193-199. https://doi.org/10.1109/42.996338 

[25] Demirhan, A., Güler, İ. (2011). Combining stationary 

wavelet transform and self-organizing maps for brain 

MR image segmentation. Engineering Applications of 

Artificial Intelligence, 24(2): 358-367. 

https://doi.org/10.1016/j.engappai.2010.09.008 

[26] Ortiz, A., Górriz, J.M., Ramirez, J., Salas-Gonzalez, D. 

(2011). MR brain image segmentation by growing 

hierarchical SOM and probability clustering. Electronics 

Letters, 47(10): 585-586. 

https://doi.org/10.1049/el.2011.0322 

[27] McIntosh, C., Hamarneh, G. (2017). Medical image 

segmentation: Energy minimization and deformable 

models. Medical Imaging, 661-692. 

https://doi.org/10.1201/b15511- 23 

[28] Wang, L., Li, C., Sun, Q., Xia, D., Kao, C.Y. (2009). 

Active contours driven by local and global intensity 

fitting energy with application to brain MR image 

segmentation. Computerized Medical Imaging and 

Graphics, 33(7): 520-531. 

https://doi.org/10.1016/j.compmedimag.2009.04.010 

[29] Moreno, J.C., Surya Prasath, V.B., Proença, H., 

Palaniappan, K. (2014). Fast and globally convex 

multiphase active contours for brain MRI segmentation. 

Computer Vision and Image Understanding, 125: 237-

250. https://doi.org/10.1016/j.cviu.2014.04.010 

[30] Zheng, Q., Dong, E., Cao, Z., Sun, W., Li, Z. (2014). 

Active contour model driven by linear speed function for 

local segmentation with robust initialization and 

applications in MR brain images. Signal Processing, 97: 

117-133. https://doi.org/10.1016/j.sigpro.2013.10.008 

[31] Rudra, A.K., Sen, M., Chowdhury, A.S., Elnakib, A., El-

Baz, A. (2011). 3D Graph cut with new edge weights for 

cerebral white matter segmentation. Pattern Recognition 

Letters, 32(7): 941-947. 

https://doi.org/10.1016/j.patrec.2010.12.013 

[32] Ciesielski, K.C., Miranda, P.A.V., Falcão, A.X., Udupa, 

J.K. (2013). Joint graph cut and relative fuzzy 

connectedness image segmentation algorithm. Medical 

Image Analysis, 17(8), 1046-1057. 

https://doi.org/10.1016/j.media.2013.06.006 

[33] Scherrer, B., Forbes, F., Garbay, C., Dojat, M. (2009). 

Distributed Local MRF Models for Tissue and Structure 

Brain Segmentation. IEEE Transactions on Medical 

Imaging, 28(8): 1278-1295. 

https://doi.org/10.1109/tmi.2009.2014459 

[34] Lowry, N., Mangoubi, R., Desai, M., Marzouk, Y., 

Sammak, P. (2011). A unified approach to expectation-

maximization and level set segmentation applied to stem 

cell and brain MRI images. 2011 IEEE International 

Symposium on Biomedical Imaging: From Nano to 

Macro. https://doi.org/10.1109/isbi.2011.5872672 

[35] Kumar, S., Ray, S.K., Tewari, P. (2012). A hybrid 

approach for image segmentation using fuzzy clustering 

and level set method. International Journal of Image, 

Graphics and Signal Processing, 4(6): 1-7. 

https://doi.org/10.5815/ijigsp.2012.06.01 

[36] Wang, L., Shi, F., Yap, P.T., Lin, W., Gilmore, J.H., Shen, 

D. (2013). Longitudinally guided level sets for consistent 

tissue segmentation of neonates. Human Brain Mapping, 

34(7): 1747-1747. https://doi.org/10.1002/hbm.22325 

[37] Suganya, A., Aarthy, S.L. (2023). Application of deep 

learning in the diagnosis of alzheimer's and parkinson's 

disease-a review. Current Medical Imaging. 

https://doi.org/10.2174/1573405620666230328113721  

[38] Jadwa, S.K. (2018). Wiener filter based medical image 

de-noising. International Journal of Science and 

Engineering Applications, 7(9): 318-323. 

https://doi.org/10.7753/ijsea0709.1014 

[39] Padmavathy, V., Priya, D. (2018). Image contrast 

enhancement techniques-a survey. International Journal 

of Engineering & Technology, 7(3.3): 466. 

https://doi.org/10.14419/ijet.v7i2.33.14811 

[40] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., 

Parikh, D., Batra, D. (2020). Grad- CAM: Visual 

explanations from deep networks via gradient-based 

localization. International Journal of Computer Vision, 

128(2): 336-359. https://doi.org/10.1007/s11263-019-

01228-7 

[41] Müller, D., Soto-Rey, I., Kramer, F. (2022). Towards a 

guideline for evaluation metrics in medical image 

segmentation. BMC Research Notes, 15(1). 

https://doi.org/10.1186/s13104-022-06096-y 

[42] Subbanna, N., Wilms, M., Tuladhar, A., Forkert, N.D. 

(2021). An analysis of the vulnerability of two common 

deep learning-based medical image segmentation 

techniques to model inversion attacks. Sensors, 21(11): 

3874. https://doi.org/10.3390/s21113874 

 

 

NOMENCLATURE 

 

2D Two-Dimensional 
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ACM Active Contour Model 
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AHE Adaptive Histogram Equalization 

AUC Area Under Curve 

BCFCM Bias Corrected Fuzzy C-Means 

b-MRI Brain-MRI 

CAM Class Activation Mapping 

CNN Convolutional Neural Network 

CT Computerized Tomography 

EM Expectation-Maximization 

ET Emission Tomography 

FCM Fuzzy C-Means 

FLAIR Fluid Attenuated Inversion Recovery 

FM Feature Map of the ith pixel 

Grad-

CAM 

Gradient-weighted Class Activation 

Mapping 

GDF Gaussian Density Function 

HE Histogram Equalization 

HSF Hierarchical Spatial Features 

INU Intensity Non-Uniformity 

K Kernel 

K-L Kullback-Leibler 

MAP Maximum-a-Posterior 

MCC Mathews Correlation Coefficient 

MR Magnetic Resonance 

MRF Markov Random Field 

MRI Magnetic Resonance Imaging 

NN Neural Network 

OCT Optical Coherence Tomography 

PD Parkinson Diseases 

PDF Probability Density Function 

RF Radio Frequency 

RFC Relative Fuzzy Connectedness 

ROC Receiver Operator Characteristic 

RoI Region of Interest 

SB Spatial Block 

SNR Signal-to-Noise Ratio 

SOM Self-Organizing Map 
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