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In the recent past, significant strides have been made in the field of deep learning and data 

fusion, enabling computers to comprehend, identify, and analyse human emotions with 

remarkable precision. However, reliance on external biological features for emotion 

recognition can be misleading, as individuals may consciously or unconsciously mask their 

true emotions. Consequently, an objective and reliable approach is sought, one that draws 

on physiological markers for emotion recognition. This paper introduces a novel model, the 

Tripartite Tier Convolutional Neural Network (TTCNN), specifically designed to leverage 

deep learning methods for the extraction and classification of significant features in 

multimodal emotion recognition. Amongst various physiological features, this study 

prioritizes eye movement and Electroencephalogram (EEG) data due to their robust potential 

to reflect emotional states. The multimodal data-based feature extraction facilitated by the 

TTCNN model yields a comprehensive set of features, enhancing the effectiveness of 

emotion classification into categories such as disgust, fear, sadness, happiness, and 

neutrality. This innovative cognitive approach has been evaluated using two established 

datasets, SEED and DEAP. The performance of the TTCNN model demonstrates its 

efficacy, achieving an impressive 95.84% classification accuracy on the SEED dataset and 

87.01% on the DEAP dataset. These results significantly outperform existing state-of-the-

art methods, underscoring the TTCNN model's potential as a robust tool for human emotion 

recognition. This research contributes to the advancement of computer-aided emotion 

analysis, presenting a significant step forward in the field and opening up potential 

applications in diverse areas such as psychology, healthcare, and human-computer 

interaction. 
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1. INTRODUCTION

Emotions, by their nature, significantly influence 

interpersonal communication. They represent complex mental 

or behavioural states, signifying people's beliefs and attitudes 

[1]. While humans can naturally recognize emotions, 

machines find this task more challenging. Building systems 

that understand, interpret, and respond appropriately to human 

emotions establishes a more natural connection between 

robots and people. A physiological theory identifies six 

generally recognized emotions - joy, sadness, surprise, disgust, 

fear, and anger - based on inherent body responses. Emotions 

can dramatically change the interpretation of communication, 

making emotion recognition a growing field of interest across 

various domains, crucial for the enhancement of interactivity 

between humans and computers. 

Emotions, as complex psycho-physiological processes, 

have intricate connections to both internal reactions and 

external behavior. While significant research exists on 

automatic identification systems based on facial or auditory 

features, the integration of these modalities has seen relatively 

less exploration. Previous studies, focusing primarily on brain 

or peripheral signals, have highlighted that a single modality 

cannot fully describe emotional states, nor provide 

complementary information to other modes [2]. 

Traditional approaches to emotion recognition include 

facial analysis, non-verbal communication, and voice analysis; 

however, these methods are susceptible to intentional 

deception. Physiological parameters, stemming from innate 

body responses are less prone to deceit. Techniques like EEG 

and functional Magnetic Resonance Imaging (fMRI) measure 

the association between cerebral blood flow and neuronal 

activity in the brain. For instance, when a specific brain region 

is active, blood flow to that area increases. 

Single-channel analysis, a technique where EEG features 

are extracted from multiple brain regions individually within 

each EEG channel, is predominant in EEG-based emotion 

recognition research [3]. However, cognitive science and 

neuroimaging research demonstrate that the complex 

behavioral and physiological response of emotion involves 

circuits across various brain regions. Moreover, neuroscience 

and neuropsychiatry research indicate that individuals with 

cognitive impairment and psychophysiological disorders like 

mental retardation, mental illness, and chronic depression 
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show reduced functional connectivity in the brain, as 

determined by fMRI and brain imaging spectroscopy. 

Furthermore, fMRI-based neuroimaging studies suggest that 

functional brain connectivity might reflect fingerprints in 

profiling personalities and an individual's attention span. 

These findings reinforce the connection between cognition and 

brain function connectivity. 

Existing research in emotion recognition has primarily 

focused on either behavioral modeling or physiological 

modalities, but seldom the integration of the two. Behavioral 

modelling, including facial expressions and body language, 

offers valuable emotional cues but is often subjective and 

influenced by cultural and contextual factors. Physiological 

modalities like heart rate and skin conductance provide 

objective measures but may lack specificity when used in 

isolation. Bridging this research gap through the integration of 

behavioral and physiological modalities could lead to a more 

comprehensive, robust emotion recognition system. Such a 

system would have the potential to discern subtle emotional 

states, enhancing applications in mental health, human-

computer interaction, and affective computing. 

Emotion detection techniques are primarily categorized into 

two main types based on the modalities employed: internal 

physiological signals such as EEG and ECG, and external 

behavioral signals such as facial expressions and speech [3]. 

These internal and external signals possess their unique 

characteristics. While data collection for external behavioral 

signals is relatively straightforward, it may not offer the same 

accuracy as internal physiological signals. The latter are 

considered more reliable and objective when expressing 

emotions. Among different physiological modalities, 

Electroencephalography (EEG) stands out for its remarkable 

performance in recognizing human emotions, offering 

promising insights into neural mechanisms. 

Eye-tracking data mainly reflects observable behavior, 

providing indirect insights into cognitive and thinking 

processes. Since behavior is the outcome of complex brain 

activities, interpreting eye-tracking data is inherently 

multifaceted and challenging. Successful eye-tracking 

research requires meticulous experimental design for accurate 

data interpretation. This may involve integrating interviews or 

retrospective tests to gain insights into cognitive processes. 

For instance, one study demonstrated that combining EEG and 

eye-tracking is effective in studying natural and attention-

shifting phenomena [4, 5]. Another study reported that relying 

solely on EEG data for predicting self-regulation may not 

accurately discern emotional responses to affective stimuli [6]. 

Furthermore, Electrooculography (EOG) signals obtained 

through EEG networks can yield results as precise as 

conventional optical eye-tracking devices, simultaneously 

assessing neural activity during all types of eye movements [7]. 

Eye data is often considered the simplest and most effective 

modality due to its automatic reactions to psychological 

activity. Therefore, the integration of EEG data synchronized 

with eye-tracking can overcome the limitations of single-

detection methods, offering enhanced value in emotion 

recognition. 

Common physiological parameters monitored using current 

consumer sensors include heart rate, respiration rate, blood 

pressure, and temperature. Emotion classification often 

employs machine learning approaches such as Support Vector 

Machine (SVM), Linear and Nonlinear Algorithms, Decision 

Trees, and K-Nearest Neighbor (KNN). These techniques have 

varying degrees of accuracy. Recently, emotion classification 

has been explored using Deep Learning (DL) based methods, 

which combine Long-Short Term Memory (LSTM), Deep 

neural Long-Short Term Memory, and Convolutional Neural 

Networks (CNN) (CLSTM), BDAE, MESAE, and Deep 

Canonical Correlation Analysis (DCCA) [6]. DL-based 

methods offer the highest recognition rates, particularly when 

a large amount of correctly identified data is available. 

Multimodal emotion recognition methods accurately classify 

emotions by combining the predictive capacities of individual 

behavioral and physiological characteristics. However, these 

methods are more complex than unimodal emotion detection 

systems due to the requirement for concurrent processing of 

multiple input sources. 

Prediction accuracy varies widely even among multimodal 

methods, necessitating robust methodologies. As a result, the 

use of multimodal signal fusion has gradually increased in 

emotion recognition [7]. The proposed system independently 

analyzes each model and combines the features to create a 

multimodal representation. 

1) The integration of two modalities enhances 

performance and robustness. Given the high capacity 

of EEG signals for detecting changes in the human 

mental state, emotion detection using EEG signals 

has become a significant research topic. In this paper, 

two modalities, eye movement data and EEG signals, 

are considered. 

2) This paper introduces a unique TTCNN multimodal 

emotion recognition algorithm to incorporate EEG 

and eye gaze data for emotion recognition. 

 

The rest of the paper is structured as follows: Section 2 

surveys existing research on multimodal emotion recognition. 

Section 3 details the proposed emotion recognition method. 

Section 4 presents the experimental results and discussion, 

with the conclusion provided in Section 5. 

 

 

2. LITERATURE REVIEW 

 

Traditional emotion detection techniques primarily utilize 

external characteristics such as facial expressions, body 

gestures, and vocal tones. The collection of these signals does 

not require wearing sensors, thus they can be easily and 

inexpensively captured. The authors applied the Naive Bayes 

method to identify six distinct emotions: surprise, anger, 

contempt, fear, sadness, and neutrality [8]. Emotion detection 

accuracy, when comparing facial expressions of different 

individuals, stands at 64.3%. However, when evaluating the 

same individual, the accuracy rate escalates to 93.2%, 

illustrating that facial expressions can be leveraged effectively 

to identify emotions. However, these external signals are 

highly sensitive and can be easily influenced by the testers' 

subjective variables. The system fails to make an accurate 

evaluation when there is a conflict between the subject's actual 

emotions and external manifestations. Moreover, external 

manifestation represents only a subset of emotional expression, 

and does not fully encompass the breadth of human emotions 

[9]. The individual's central nervous system, which regulates 

physiological changes, can more objectively represent the 

individual's emotional state. Consequently, the use of 

physiological signals for emotion recognition is an emerging 

research trend in affective computing. 

Over the years, emotion recognition experiments have been 

conducted using various signals such as EEG, 
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Electromyogram (EMG), Galvanic Skin Responses (GSR), 

Electrooculogram (EOG), electrocardiogram (ECG), pulse 

rate, blood vessel resistance pulse, skin temperature, and facial 

expressions [10]. Thanks to the physiologically-based emotion 

detection technique, the data collected accurately reflect the 

participants' emotional states [11]. The novel emotion 

recognition method proposed in this paper categorizes 

emotions into three groups based on the signals used: EEG 

signals and eye movement data. 

 

2.1 EEG signals 

 

EEG-based emotion detection algorithms are typically 

categorized into supervised learning and unsupervised 

learning. In unsupervised learning, the sample data does not 

include any labels. Using a predetermined procedure, 

researchers automatically classify all samples and then assign 

subsequent labels. Unsupervised learning techniques such as 

K-means, fuzzy C-means (FCM), and self-organizing methods 

are commonly employed [12]. 

Researchers automatically classify all samples according to 

a predetermined procedure and then apply corresponding 

labels. Frequently utilized unsupervised learning methods 

include K-means, fuzzy C-means (FCM), and self-

organization methods [13]. For each instance within the entire 

data set, we can calculate the critical connection matrices 

based on the five critical sub-networks in the corresponding 

bandwidths. If an edge is part of the critical subnetwork, its 

associated weight in the matrix remains untouched; otherwise, 

it is reduced to zero, removing that connection from the neural 

circuit [14]. The three topological metrics - strength, clustering 

coefficient, and eigenvector centrality - were obtained from 

the key connectivity matrix using the Brain Connectivity 

Toolbox [15]. 

The study [16] used heart rate data derived from ECG 

signals to perform valence-arousal emotion recognition. 

Ranjani and Supraja [17] doubled the accuracy of EEG-based 

emotion recognition by combining feature ranking based on 

mutual information and kernel classifiers. The study [18] 

developed a system for recognizing genuine feature emotions 

that can be continuously represented within the valence-

arousal space, identifying discrete emotional states. The 

method for identifying emotions via Electroencephalography 

(EEG) proposed by Kulke et al. [5] is grounded on a 

systematic evaluation for feature extraction, feature selection, 

and classification models. Their findings revealed consistent 

neural patterns both within and across periods. EEG has shown 

potential as a modality for emotion recognition, demonstrating 

its ability to elucidate the neural mechanisms underlying 

emotion processing. Conventional methods for acquiring EEG 

data can be divided into frequency, temporal, and time-

frequency domains. Raw EEG signals often contain 

considerable artifacts and noise, necessitating pre-processing 

for their elimination. Subsequently, different features are 

extracted for emotion classification. However, these studies 

were all conducted using a single channel, and did not consider 

the functional connectivity networks associated with different 

emotions. Functional connectivity patterns from brain 

networks indeed exist as specific connectivity patterns for 

emotional states in affective computing. Our network utilizes 

brain functional connectivity patterns derived from EEG 

features to classify emotional states such as happiness, sadness, 

neutrality, disgust, and fear. 

 

2.2 Facial features 

 

Emotion recognition should consider the context and not 

solely rely on external appearances, while overlooking the 

intrinsic characteristics and connotations of emotions. Eye 

movement features can yield a wealth of information about an 

individual's ocular activity [19]. They can guide systems to 

monitor users' subtle subconscious behaviors, offering crucial 

context for the users' current activities. Eye-tracking is a 

method for recording an individual's eye movements. Using 

this approach, one can determine the subject's gaze position at 

any given moment, as well as the trajectory of the eyes over a 

specific time period. 

As proposed by Li et al. [20], pupil dilation responses can 

express emotional valence and reflect confidence in decision-

making. The integration of differential entropy and pupil 

diameter parameters was able to discern negative, positive, 

and neutral emotions using EEG and eye measurement data. 

The present research employs complementary representations 

of eye movement data and EEG connectivity features for 

further investigation. 

 

2.3 Multimodal emotion recognition 

 

The multimodal combination model aims to recognize 

emotions by integrating physiological data. This approach 

evaluates the effectiveness of a Convolutional Neural Network 

(CNN) with Auto Encoder units for facial expression 

recognition. The combination of these two Deep Learning 

methodologies improves the classification performance by 

34.6% [21]. In a study, it was found that 34.6% of individuals 

reported clinical depression, while the rest had anxiety or other 

mental illnesses. For negative emotions such as sadness and 

fear, the accuracy of Emotion Recognition (ER) decreased 

with age in large clinical samples of individuals with 

emotional disorders [22]. The emotion detection rate of the 

multimodal combination model surpasses that of the 

individual modal models [23]. 

Deep Neural Networks (DNNs) have been employed to 

address the problem of emotion recognition. A study [24] 

proposed combining DNNs with hypergraphs for image-based 

emotion recognition. In this approach, each node in the final 

fully connected layer was considered as a feature, forming a 

hyperedge in a hypergraph [17]. Another study utilized CNNs 

and Recurrent Neural Networks (RNNs) to identify categorical 

emotions in videos. Initially, a CNN was trained to recognize 

static emotional expressions. The features obtained from the 

CNN were then used to train an RNN to generate an emotion 

for the video. Emotion recognition using audio and visual 

modalities has shown promising results. 

Some research proposed four distinct Deep Belief Network 

(DBN) architectures, one of which was a basic 2-layer DBN, 

while the others were variations of it. This paper suggests a 

multimodal emotion recognition method using a Temporal 

Topology Convolutional Neural Network (TTCNN) [25]. This 

approach aims to address the shortcomings of previous studies' 

single-modality and low accuracy. 

 

2.4 Functional connectivity of the brain 

 

Neuroscience and neuroimaging have long been used to 

delve deeper into brain-computer interaction and enhance our 

understanding of the brain. Brain connectivity can be 

categorized into three types: structural, functional, and 
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effective [26]. These categories respectively deal with the 

potential directed influence among neural elements, statistical 

relationships between physically disparate areas of the brain, 

and the biophysical coupling of neurons or neural elements. It 

has been observed that certain psychophysiological illnesses 

and cognitive deficiencies are connected with the brain's 

functional connectivity. 

In a study [27], strong EEG connectivity patterns were 

discovered in individuals with autism spectrum disorders 

while at rest. Another study [28] found that functional 

connectivity in schizophrenia is slower and less efficient. 

Adolescent sadness [22] has been associated with rigidly 

increased connections in the default mode network based on 

fMRI data. According to Whitton et al., increases in EEG-

based brain networks could represent a neurobiological pattern 

for chronic illness in severe depression. However, while 

researchers have investigated the link between brain networks 

and emotions, it remains unclear whether distinct emotional 

states correspond to specific connectivity patterns. 

Only a few pioneering studies on EEG-based emotion 

recognition have utilized multichannel EEG analysis. For 

instance, a study [11] used the phase-locking value as a 

measure of connectivity to differentiate between positive and 

negative emotions. Another research [29] employed 

correlation, coherence, and phase synchronization index as 

three measures of connectivity to characterize emotions. An 

exploration of three emotions using action features and 

functional connections was undertaken in literature [30]. From 

this literature [31], three connectivity matrices — Phase-

locking value, correlation, and phase lag index — were 

described using a Convolutional Neural Network (CNN). 

However, these studies either overlooked or did not take into 

consideration the aspects of functional connectivity related to 

emotions. 

Based on prior research on brain's functional connectivity 

patterns, this study aims to identify emotions found in the brain 

networks for each of the five emotions [22]. This research 

extends previous work to multimodal emotion recognition 

tasks with three classes (sadness, happiness, and neutrality), 

and five classes respectively. 

 

 

3. PROPOSED METHODOLOGY 

 

Eye movement data and EEG signal data have to be pre-

processed to identify the most relevant features. 

 

3.1 EEG signal pre-processing 

 

It might be challenging to filter and analyze emotion-

relevant brain neural activity because the raw EEG data 

collected when testing for emotions is frequently high-

resolution and tainted by artifacts shown in Figure 1. 

Application of a bandpass filter between 1 and 50 Hz and 

baseline correction was performed on the raw EEG data as part 

of pre-processing. To expedite the analysis, the EEG waves 

were then quantized to 200 Hz. To filter the EEG data, five 

frequency bandpass filters were used: delta (0.5–4 Hz), theta 

(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30 

Hz or more). 

First, the EEG and eye movement data are collected and 

segmented into epochs, typically aligned with stimulus 

presentation. Baseline correction is applied to remove baseline 

drift, and filtering techniques may be used to isolate desired 

frequency components in EEG signals. Concurrently, eye 

movement data can be pre-processed with filtering or 

smoothing methods to reduce noise.  

Next, connectivity metrics are computed to assess the 

interactions between EEG channels. For instance, spectral 

coherence, a common connectivity metric, quantifies the 

degree of synchronization between two EEG channels at 

specific frequency bands using the formula:  

 

𝐶𝑜ℎ(𝑖, 𝑗, 𝑓)  =  |𝑃𝑥𝑦(𝑖, 𝑗, 𝑘)2 (𝑃𝑥𝑥(𝑖, 𝑓) ∗ |𝑃𝑦𝑦(𝑗, 𝑓))  (1) 

 

where, Coh(i,j,f) is the spectral coherence between channels i 

and j at frequency k, and Pxy(i,j,k), Pxy(i,f), and Pyy(j,f)) are 

the cross-spectral density and auto spectra densities. 

After calculating connectivity metrics, relevant features, 

such as vectorized connectivity matrices or summary statistics, 

are extracted for each epoch, combining EEG and eye 

movement data into feature vectors. Labeling is crucial and 

should be based on the subject's emotional states or conditions, 

typically using subjective ratings or experimental task 

conditions. Subsequently, an LDA model is trained to 

maximize the separation between these labeled emotional 

states or conditions, with the LDA criterion function given as: 

 

𝐽(𝑤) = (𝑤𝑇 ∗ 𝑆_𝐵 ∗ 𝑤)/(𝑤𝑇 ∗ 𝑆_W * w) (2) 

 

where, S_B represents the between-class scatter matrix and 

S_W is the within-class scatter matrix. The feature vectors are 

then projected onto the discriminant subspace using the 

learned discriminant vectors. Classification is performed by 

applying a decision threshold on the transformed feature 

vectors for classifying the similar frequency bands of emotions. 
 

3.2 Eye movement data pre-processing 
 

In terms of eye movement data statistical and image-based 

features are to be retrieved. The eye movements were analyzed 

using eye-tracking glasses. 
 

3.2.1 Statistical feature Extraction of eye movement data 

Raw eye tracking has different types of eye movements 

along with certain noise and blinks. The lack of signal quality 

and subject-based variations are the major issues in identifying 

the exactness of the events. The events are Fixations, Saccades, 

Smooth, Pursuits, Post saccadic oscillations. Fixation 

indicates still or static focus on an object. Saccades are fast 

movements between fixation points. This is an essential 

feature as the brain doesn’t exactly focus on the image in the 

front. This event could lead to effective inference in knowing 

the various emotions under study. Post saccade oscillations 

can indicate nystagmus which is stimulated by stress and 

fatigue. Therefore, every event has more contributions to 

emotion identification. The below-mentioned Table 1 eye 

movement parameters were identified using Begaze Analysis, 

an analysis software [32]. 
 

Table 1. Statistical features of eye tracking data 
 

Parameters for Eye 

Movement Data 
Features Extracted 

Diameter of Pupil Mean, Standard Deviation 

Duration of Fixation (ms) Mean, Standard Deviation 

Saccade 
Mean, Standard Deviation of 

duration(ms) and Amplitude 

Duration of Blink Mean, Standard Deviation 
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Figure 1. Pre-processing of raw EEG signal 

 

The diameter pupil being an important parameter for 

identifying emotional stimulus also causes the luminance 

reflex. Principal component analysis is used to reduce the 

dimensionality of the obtained features prioritizing the most 

important features. Principal components are chosen to 

eliminate the artifacts like luminance reflex. 

 

3.3 Eye image based data pre-processing  

 

Feature Selection from images widely utilizee Gabor filters, 

which are convolutional kernels with a bio-inspired design [5]. 

These filters have two crucial characteristics: location 

frequency selectivity and orientation. Gabor filter represents 

similarity to the human visual cortex that can effectively track 

the patterns in the eye movement data. A 2-D Gabor filter is a 

Linear discriminant technique generated by a complicated 

sinusoidal plane wave [31]: 

 

𝜓𝑓,𝜃 =
𝑓2

𝜋𝛾𝜂
𝑒𝑥𝑝 (

𝛼2𝑥′2+𝛽2𝑦′2

2𝜎2 ) exp (𝑗2𝜋𝑓𝑥′ + ∅)  (1) 

 

𝑥′ = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑐𝑜𝑠 cos 𝜃 (2) 

  

𝑦′ = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃 (3) 

 

In this instance, f denotes the sine frequency, θ the 

orientation of the Gabor method, φ the phase offset, α and β 

the Gaussian sharpness, with the major and minor axes being 

parallel to and perpendicular to the wave, respectively. It can 

capture pixel dependencies with narrow spectral bands. The 

spatial aspect ratio is denoted by γ, whereas the Gaussian 

envelope's standard deviation is denoted by σ. The step-by-

step process of feature extraction is given in the Figure 2: 

1. Gabor Filter is a complex filter with the real and 

imaginary part acting as two filters. The complex data has real 

part which handles phase information of the eye signal. The 

imaginary part indicates the frequency spectrum of the 

obtained eye signal information. 

2. The fixed images are subsequently downscaled to remove 

superfluous data. 

3. The filter convolutes each riddle in the Gabor filter 

collection with the image. 

4. The orientations should be obtained by Gabor filter bank. 

A Gabor filter bank is made up of Gabor filters of varying 

orientations and scales. There are seven Gabor filter banks 

with four scales each. Then, unit variance and normalization 

to zero means are used. The final feature vector for the image 

is created by combining the normalized feature vectors.  

Since EEG signals may accurately describe changes in brain 

state; emotion detection using EEG signals is a popular 

research technique. For emotion identification, EEG data are 

supplemented with a facial expression signal. To create multi-

modular emotion recognition, the EEG signals, and facial 

impression data have been merged using the TTCNN network 

and then the emotions are classified into five different 

emotions such as happy, sad, angry, scared, and worried. 

Recognizing emotions in many modes BDAE is utilized for 

model combination to investigate the stability of EEG and 

facial impression information expressing emotions across time. 

The integration of EEG and facial impression information 

enhanced the emotion detection model's accuracy. After 

training, the third BDAE layer (five-layer) is utilized to extract 

features, which are then sent to the TTCNN for administered 

picking-up preparation to obtain the feeling characterization 

model. As a result, the prototype will be better ability to 

differentiate between things of emotions in the two signals that 

the profound neural organization has retrieved. The pre-

processed inputs are fed to the proposed TTCNN model for 

emotion recognition is shown in Figure 3. 

 

 
 

Figure 2. Eye movement data pre-processing 

 

3.4 Tripartite tier-convolutional neural network 

 

The main aim of this research is to combine the features of 

different modalities like Eye movement image data, Eye 

movement based statistical data and, EEG signal-based data. 

Combination of modalities helps in bringing more context to 

the emotions under study. The detailed architecture is given in 

the Figure 4: 

Input Layers 

There are three input layers in the network. The top tier uses 

the EEG signal as the input which collects the frequency 

variations based on the external stimuli to identify the various 

emotions. The middle tier uses the Eye movement-based 
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image data. Features learnt will indicate the movement of eyes 

based on the emotions. The bottom tier will take statistical 

features of eye movement data. 

Tier Blocks 

Convolution, ReLu, max pooling, and dropout are only a 

few of the operations that each tier can carry out. Each tier has 

complete connectivity between all the tiers. The convolutional 

layer multiplies the input segment element by element before 

adding the results in a single output cell. Three different types 

of filters—3×3, 5×5, and 7×7—with various sizes are 

employed to get the best results while utilising TTCNN. As 

soon as the data is sent to the pooling layer, the number of 

attributes that were produced using the dataset is reduced. 

The input picture is taken in the TTCNN network's input 

layer. The convolution layer completes the matrix dot product 

of the dual input conditions. Consider an image matrix's h, w, 

and d dimensions. The formula for its dimensions is (h * w * 

d).  

 

 
 

Figure 3. Proposed emotion recognition method 

 

 
 

Figure 4. Tripartite tier-convolutional neural network 
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Figure 5. Convolutional layer 

 

The filter's size would be represented as (hf * wf * d) if the 

filter's height, width, and depth were written as hf, wf, and d, 

respectively. The resultant convoluted sight or feature map can 

then be generated using preceding calculation. 

Convolutional filters are applied to the image horizontally 

as well as vertically in the layer known as convolutional, 

which calculates the dot product by including the bias term. 

The operation of the convolution layer is shown in Figure 5. 

Edge detection, picture blurring, image sharpening, and other 

processes employ convolved images. The ReLu layer is 

utilised for non-rectilinear function and to prevent negative 

values. The ReLu layer's operational mode is shown in Figure 

6. The ReLu level output purpose could be explained as 

follows:  

 

𝑓(𝑣) = 𝑚𝑎𝑥(0, 𝑣) (6) 

 

where, v is a non-negative value. 

Every input element is placed through a threshold operation, 

and any element whose range is less than 0 can be set to 0 is 

considered to have that value. The four-dimensional extent of 

the convoluted feature is subsequently decreased by the 

pooling layer. It quickens calculation while limiting over-

fitting. The different pooling operations are depicted in Figure 

7. 

Every single input element is subjected to a threshold 

operation, and if the range of any component is lower than 0, 

it is to be set to 0. The merging layer (pooling layer) is then 

used to shrink the four-dimensional extent of the convoluted 

feature. It accelerates computation and restricts over-fitting. In 

Figure 7, the various pooling operations are shown: 

 

𝑓(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗𝑘

𝑗=0

  (7) 

 

where, i,j=0,1,2,......k and z is the key value.  

Concatenation Layers 

The features from different modalities are concatenated to 

obtain the overall combined context of emotions like happy, 

sad, angry, scared and worried. These features are passed on 

to the dense layer for learning the embedding in the fully 

connected layer. This is represented in the Figure 8. 

The main contribution of this work is the usage of different 

modalities and CNN is configured as Tripartite Tier 

Convolutional Neural Network. It helps in taking up the 

individual type of data and the proposed model concatenates 

the entire features for collective contribution. These yields 

better insights compared to existing state of art models in 

terms of emotion recognition. 

 

 
 

Figure 6. ReLu layer 

 

 
 

Figure 7. Pooling operation 

 
 

Figure 8. Multimodal based classification 
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4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

4.1 Experimental results and discussion 

 

In this work, tripartite tiers were used to improve emotion 

recognition. The tripartite layers introduce the concept of 

multimodality. The multimodal data used in this work are EEG 

signals and eye movement data. The SEED-V and DEAP 

datasets were employed to measure the effectiveness of the 

proposed work. The datasets are analyzed and compared based 

on the performance factors from different perspectives that 

highlight the substantial ability of the proposed work using the 

tripartite tier system. A 5-fold cross-validation technique is 

used for both SEED-V and DEAP datasets. In this validation 

technique, the dataset is divided into five folds, one-fold will 

be a testing set and the remaining four will be the training set. 

The same folds iterate four more times by changing the testing 

folds. 

The proposed methodology has been evaluated on the 

publicly available datasets: SEED [16] and DEAP [22]. Five 

classes (happy, sad, angry, scared, and worried) of emotion 

have been classified on the SEED dataset The first 9 tests and 

the last 6 tests, respectively, make up the training and test sets, 

according to literature [11]. The DEAP dataset includes viii-

channel peripheral physiological inputs and 32-channel 

electroencephalogram (EEG) recordings from 32 people in the 

valence-arousal dimension. Each participant observed about 

40 music videos that lasted one minute. The EEG signals have 

undergone pre-processing using a band-pass filter with a 

regularity range of 4 and 45 Hz [33]. Then, utilizing 32 

channels in four frequency bands with a non-overlapping time 

frame of two seconds, the neural networks from the DEAP 

dataset were built. The peripheral physiological characteristic 

is 48-dimensional. Arousal level and valence level binary 

classification tasks were also completed using a ten times 

cross-validating technique [34]. This paper employs the 

strongest EEG functional connectivity network parameter, or 

strength [35], to further evaluate its discriminating capability 

in recognizing emotions on the SEED and DEAP datasets. On 

the SEED dataset, the strength feature has an accuracy of 

80.17 7.12 percent in classifying three types of emotions, 

which is greater than the DE feature's accuracy of 

78.5114.32% [11]. With scores of 73.424.67 and 76.104.49% 

in the DEAP dataset's two tasks for binary classification 

(arousal-level and valence-level), respectively, the strength 

feature performs well. These results beat the 68.28 and 66.73 

percent results produced by using the capsule network, as well 

as the 62.0 and 57.6 percent [36] outcomes of the PSD feature. 

These results show that the three-class emotions of sadness, 

happiness, and neutrality as well as the five-class emotions of 

disgust, fear, sadness, and happiness as well as the valence-

arousal dimension in the three-class emotion classification can 

be distinguished by the features of an operational network for 

the EEG. When correlation is used as the connection metric, 

strength outperforms both the most common PSD feature and 

the most recent DE feature, making it the top EEG functional 

connectivity network feature. Utilizing strength and 

correlation, the EEG functional connectivity network is 

evaluated [37]. 

Confusion matrices have been developed to evaluate the 

capabilities of each emotion in identifying each distinct EEG 

brain connectivity signature and eye movement data. This 

analysis includes EEG parameters including strength, which 

has 62 channels overall, and correlation connectivity. It has 

been discovered that both EEG and Pupil movement of eye 

data have the potential to be used in the classification of 

emotions such as happy, sad, angry, scared, and worried [38]. 

EEG connectivity has a strong influence on emotion 

identification, whereas eye movement data is particularly 

effective in detecting fear and sadness.  

Figure 8 demonstrate that multimodal data fusion 

approaches have the potential to greatly improve classification 

measure for all emotions of five categories, in contrast to the 

emotional model with a single modality [6]. These results 

demonstrate that when it comes to identifying the five 

emotions, the EEG brain signal characteristic and eye pupil 

data for movement have complementary representation 

properties [12]. 

 

4.2 Experiment with SEED-V dataset 

 

The SEED-V dataset represents five different emotional 

classes happy, sad, angry, scared, and worried. Table 2 offers 

the comparative analysis of category performance in the 

proposed method with different existing emotional recognition 

methods concerning the SEED-V dataset and the respective 

graphical representation has been illustrated in Figure 9. It 

infers that the classification performance values for DGCNN, 

BDAE, Bimodal-LSTM, and DCCA methods of 90.40±8.49, 

91.01±8.91, 93.97±7.03, 93.94.58±6.16 respectively. 

 

Table 2. On the SEED dataset, classification performance 

(%) of several studies in multimodal emotion recognition 

 

Methodology 
Mean Accuracy 

(%) 
Std 

FLF 83.70 - 

Fuzzy 87.59 - 

DGCNN 90.40 8.49 

BDAE 91.01 8.91 

Bimodal-LSTM 93.97 7.03 

DCCA 94.58 6.16 

Proposed TT-CNN 95.42 5.06 

 

The suggested method uses eye movement data to detect 

three emotions—happiness, neutrality, and sadness achieves a 

higher classification accuracy of 95.42±5.06% [22]. These 

findings support the theory that combining EEG and eye 

movements can improve classification accuracy. 

 

 
 

Figure 9. Graphical illustration of comparative analysis of 

Classification performance on SEED dataset 
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Figure 10. Confusion matrix of emotional classes 

 

In Figure 10, the confusion matrix is given for the 

classification of emotional classes, and the corresponding 

confusion graph is in Figure 11. The Classes ‘Angry’ and ‘Sad’ 

are identified with the highest value of 0.96. 

In Figure 11, the states are the emotional classes and the 

transitions represent the value. From the figures, it is 

understood that the majority of the emotions are identified 

correctly.  

 

 
 

Figure 11. Confusion graph of emotional classes 

 

4.3 Experiment with DEAP dataset 

 

The proposed method is analysed with the DEAP dataset 

and compared with the existing methods. This test is 

conducted on 32 subjects in which they watch 40-minute 

online videos and the videos are played to elicit the different 

emotional states of the subjects. Each subject takes 40 trials so 

in total there were 1280 trials. Each video clip is scaled from 

1-9 for arousal and valence labels for the classification of the 

emotion recognition. Table 3 presents the comparative 

analysis of classification performance proposed method with 

different existing recognition methods concerning the DEAP 

dataset and the graphical representation has been illustrated in 

Figure 12. The foundation of existing recognition methods is 

the correlation of peripheral physiological traits with PSD [39] 

or DE [40] traits. The classification performance values for the 

BDAE, Bimodal-LSTM, and DCCA techniques were 

80.50±73.39, 83.23±2.61, 84.33±2.25 for Arousal and, and 

85.20±4.47, 83.82±5.01, 85.62±3.48 respectively. These 

numbers were computed using data from eye movements and 

the EEG connectivity feature. In the two binary classification 

tasks, the proposed technique achieves the highest 

classification accuracy: 87.01±3.18% for the valence level and 

85.84 ±2.12% for the arousal level.  

The discussion suggests that combining eye movement data 

with the EEG connectivity characteristic may improve the 

effectiveness of five-class emotion detection. The DCCA 

model might also discover that there is a greater emotional 

bond in the common environment. Additionally, the addition 

of eye movement data to the 18-channel EEG connectivity 

feature greatly improves classification performance. 

 

Table 3. On the DEAP dataset, the classification 

performance (%) of several studies in multimodal emotion 

recognition 

 

Methodology 

Arousal 

Mean 

Accuracy 

(%) 

Valence 

Mean 

Accuracy 

(%) 

Arousal 

Std 

Valence 

Std 

SAE_LSTM 74.38 81.1 - - 

BADE 80.5 85.2 3.39 4.47 

Bimodal-

LSTM 
83.23 83.82 2.61 5.01 

MESAE 84.18 83.04 - - 

DCCA 84.33 85.62 2.25 3.48 

Proposed TT-

CNN 
85.84 87.01 2.12 3.18 

 

 
 

Figure 12. Graphical illustration of comparative analysis of 

Classification performance on DEAP dataset 

 

Comparing the strength feature with correlation as the 

connection measure, it is possible to obtain superior 

performance in identifying all emotions. Also, the feeling of 

happiness can be recognized quite well by the EEG 

characteristic, but it may also be readily mistaken by the 

emotions of sadness and anger, which is consistent with earlier 

findings [41].  

 

 

5. CONCLUSION 

 

Emotions appear in both internal and exterior bodily 

reactions. Multimodal signals offer complementary 
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information that may be used to build a more powerful feeling 

detection network than unimodal methods. This paper 

proposed the TTCNN Scheme for recognizing human feelings 

using EEG and eye movement data. We show that integrating 

EEG and eye movement data may improve emotion 

identification accuracy compared to a single modality. We also 

assessed the strength of our suggested structure across existing 

models and the complementing features of EEG and ocular 

developments for emotion detection. Our suggested TT CNN 

Scheme architecture has been quantitatively evaluated. For the 

SEED dataset, classification accuracy is 95.42%, and on the 

DEAP dataset, it is 87.01%. In future, this model can be used 

to health care applications where the focus is more on 

emotions based study. 
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