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The development of online education has driven a profound transformation in the teaching 

mode of vocational education, with the generation of personalized learning paths as one of 

the key factors in improving the learning effectiveness of learners. However, current online 

learning platforms still face a series of challenges in personalized teaching practices. 

Especially in terms of accurately capturing and understanding learner behavior and 

emotions, existing systems have not fully met the personalized learning needs of learners. 

This study aims to explore a novel mechanism for generating personalized learning paths 

for learners through image recognition technology. Firstly, by combining migration learning 

and dual stream convolutional networks, this study proposes a recognition method that can 

adapt to the behavioral characteristics of different groups of learners. Secondly, using graph 

convolutional neural networks (GCNNs) for deep recognition of learner micro-expressions 

to accurately capture the learner's emotional state, making the generation of learning paths 

more detailed and adaptable. This study addresses the shortcomings of existing systems in 

processing multimodal data integration and real-time feedback dynamic adaptation, and 

improves the accuracy and practicality of personalized learning path generation for learners. 

The research results not only promote the progress of personalized learning path generation 

in online education for learners technically, but also provide learners with a more 

customized learning experience. 
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1. INTRODUCTION

Vocational colleges are an important way to cultivate high-

quality and highly skilled talents that meet the needs of social 

development, and are an important component of the lifelong 

education system. With the booming development of online 

education and the continuous progress of artificial intelligence 

technology, in order to meet the learning habits and needs of 

students, industries, and social learners, the education and 

teaching models of vocational colleges are also constantly 

being updated, transforming from traditional offline training 

to a combination of online and offline or pure online training. 

The teaching quality and effectiveness of online education 

have always been a focus of attention in vocational colleges, 

among which the research on personalized learning paths for 

learners has become one of the key to improving teaching 

effectiveness. Traditional online learning systems typically 

adopt a static course structure, ignoring individual differences 

and dynamic learning needs among learners. Building a 

system that can identify learner behavior and emotional states 

and provide individualized learning paths is therefore very 

crucial [1-6]. The identification and analysis of learner 

features is greatly aided by image recognition, a significant 

area of artificial intelligence [7, 8]. Related study is important 

because it helps understand learners' requirements and 

learning status more precisely by analyzing their learning 

behavior and micro-expressions in detail [9-11]. Dual stream 

convolutional networks can efficiently process time series data 

and precisely identify learner behavior patterns, whereas 

migration learning can assist systems in fast adapting to new 

learner groups [12-14]. In addition, GCNNs are an effective 

tool for deciphering and examining learner micro-expressions 

due to their advantages in processing non-Euclidean data 

structures. The development of mechanisms for creating 

tailored learning paths will be considerably aided by the 

integration of these technologies [15, 16]. 

Nonetheless, there are still issues with current study 

methodologies. Utilizing the rich information included in 

video data is challenging because, on the one hand, current 

systems frequently lack efficient integration procedures when 

processing multimodal data [17-19]. However, the 

development of learning paths frequently relies too much on 

preset guidelines and lacks the dynamic flexibility needed to 

respond quickly to learners' feedback. Such a shortfall hinders 

the depth and precision of personalized learning paths. 

This paper focuses on the exploration of a novel mechanism 

for generating personalized learning paths tailored to the needs 

of learners in vocational colleges. The core research is 
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bifurcated into two segments: the first involves the 

formulation of a method for recognizing learner group 

behavior, amalgamating transfer learning with dual-stream 

convolutional networks, thereby enhancing suitability for 

varied learner characteristics. The second part focuses on 

using GCNNs to recognize complex micro-expressions, which 

allows for a more thorough recording of learners' emotional 

fluctuations. In addition to improving the understanding of 

learner behaviors and emotional states in online learning 

environments, the suggested mechanism makes it easier for 

learning paths and content to be dynamically adjusted in 

response to real-time input, resulting in more individualized 

training. It is expected that this research would significantly 

enhance the field of online education technology by offering 

vocational institutions' online learners more sophisticated, 

tailored learning experiences. 

 

 

2. GROUP BEHAVIOR RECOGNITION FOR 

PERSONALIZED LEARNING PATH GENERATION 

 

Within the context of online education, the implementation 

of group behavior recognition, predicated on image processing, 

is instrumental in the construction of mechanisms for 

generating personalized learning paths. This recognition 

mechanism provides an intuitive and dynamic way to 

understand learners' learning attitudes, engagement, and 

responses by capturing and analyzing their visual behavior 

data, enabling the teaching system to more accurately adjust 

teaching content and pace to meet the specific needs of 

different learners. For example, by monitoring the attention 

distribution of learners, the system can determine whether they 

understand the current teaching content or feel confused and 

uneasy. 

A method is proposed, amalgamating transfer learning with 

dual-stream convolutional networks, for the recognition of 

group behavior among learners in vocational college online 

education. Figure 1 depicts the structure of a conventional 

dual-stream convolutional network. Transfer learning can 

utilize existing rich data resources to quickly adjust model 

parameters to adapt to the behavioral characteristics of specific 

groups of learners. In addition, dual-stream convolutional 

networks can more comprehensively capture and analyze the 

dynamic behavioral changes of learners during the learning 

process by simultaneously processing spatial features and time 

series information. Integrating the fast adaptation 

characteristics of transfer learning with the deep information 

processing capabilities of dual stream convolutional networks, 

this image recognition driven behavior analysis not only 

improves the generation efficiency of personalized learning 

paths, but also provides a more delicate and personalized 

teaching strategy for online education in vocational colleges, 

helping to achieve a truly learner centered teaching model. 

Figure 1 illustrates the structure of a traditional dual-stream 

convolutional network. In the task of identifying group 

behavior of learners in online education, the spatial and 

temporal flow networks of the dual stream convolutional 

network are configured to jointly handle the static features and 

dynamic changes of video frames. The spatial network is 

mainly responsible for parsing the image content of each 

individual video frame, capturing the facial expressions, 

postures, and other spatial features related to learning behavior 

of learners. Usually, this stream adopts a standard 

convolutional neural network (CNN) architecture, which has 

been proven to have strong feature extraction capabilities in 

various image recognition tasks. Time networks focus on 

sequence information, processing the flow of actions and 

behaviors between consecutive frames, and mining the 

behavior patterns of learners in the temporal dimension, such 

as gesture actions, changes in gaze points of the eyes, etc. This 

flow usually uses optical flow method to pre calculate and 

input motion information between frames, and encodes these 

dynamic features through CNN architecture. Figure 2 presents 

the framework of the recognition model, grounded in transfer 

learning and dual-stream convolutional networks, as 

conceptualized in this study. 

The spatial network's output is manifested as a high-

dimensional feature vector, encapsulating the spatial 

information of the current frame. This serves as the 

foundational basis for subsequent behavior recognition and 

analysis. Inputs to the spatial stream network predominantly 

comprise raw video frame imagery, capturing static visual 

characteristics of learners at discrete moments, such as posture, 

facial expressions, and interactive actions. In contrast, the 

temporal network yields an alternative set of feature vectors, 

delineating the dynamic alterations in learners' behaviors over 

time, exemplified by the fluidity of gestures and the velocity 

of head rotations. The temporal stream network inputs a 

succession of consecutive video frames comprising optical 

flow images, specifically engineered to calculate and depict 

the motion information transpiring between frames, thereby 

reflecting changes in object and surface movements. 

The optical flow images for the temporal stream network 

are customarily derived from processing red, green and blue 

(RGB) images of learners' group behavior in online education 

settings, utilizing optical flow methodologies. Optical flow, a 

method for estimating pixel motion across consecutive video 

frames, operates on the premise that pixel intensity remains 

unaltered over brief periods, with only minor spatial shifts 

occurring in corresponding pixel locations. Within the scope 

of analyzing group behavior in online education, optical flow 

initially acquires continuous RGB frame sequences and 

subsequently computes a motion vector for each pixel from 

one frame to the next. This vector is composed of both 

horizontal and vertical displacement components. The 

foundational assumption of brightness constancy in optical 

flow facilitates the tracking of learners’ movements, such as 

head rotations and gestural alterations. The direction and 

velocity of these movements are estimated by examining the 

variations across the image sequence. Assuming the velocity 

vector of a pixel is denoted by n= (i, n), the brightness 

constancy assumption is articulated as follows: 

 

( , , ) ( , , )U a b s U a fa b fb s fs= + + +  (1) 

 

Expanding this using Taylor's series results in: 

 

( , , ) ( , , )
U U U

U a b s U a b s fa fb fs
a b s


  

= + + + +
  

 (2) 

 

Defining i=fa/fs, n=fn/fs, Ua=∂U/∂a, Ub=∂U/∂b, and 

Uc=∂U/∂c, the combination of the preceding expressions 

yields the following relationship: 

 

0a b sU i U i U+ + =  (3) 

 

In the context of a single optical flow image, the information 
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pertaining to pixel motion is confined to that between two 

consecutive frames. This limitation might not suffice to 

capture complex or gradual motion patterns, a scenario often 

encountered in group behavior recognition tasks that 

necessitate analysis over extended time sequences. To address 

this challenge, a trajectory tracking method is employed, 

processing the input from a singular optical flow image. This 

technique is instrumental in accumulating and amalgamating 

motion information across a series of consecutive frames. The 

process involves tracking the movement paths of designated 

feature points or pixel blocks over multiple frames, thereby 

constructing trajectories that encapsulate motion changes over 

prolonged durations. The input vector is denoted by Us, and 

the following procedure is applied to each frame s: 

 

( )1( , ,2 1) a

j jU i n j f O  + −− = ; ( )1( , ,2 ) b

j jU i n j f O  + −=  

[1, ], [1, ], [1, ]i q n g j M= = =  
(4) 

 

Oj denotes the j-th layer along the trajectory. In the frames 

capturing learner group behaviors, it is posited that a recursive 

relationship exists, commencing from (i, n): 

 

1 ( , )O i n= ; ( )1 2 1 , 1j j j jO O f O j− + − −= +   (5) 

To harness the knowledge embedded in models pre-trained 

on extensive datasets, thus expediting and refining the learning 

process for learner behavior recognition in specific online 

education scenarios, this study integrates transfer learning into 

the dual-stream convolutional network designed for vocational 

college learner group behavior recognition. Transfer learning 

facilitates the transference of feature representations, honed in 

the domain of image recognition, to the realm of learner 

behavior recognition within online education. This approach 

serves a dual purpose: for behavior recognition tasks in online 

education, where data is often scarce, pre-trained models offer 

a substantial foundation of knowledge, diminishing the 

dependency on extensive annotated data needed for training 

models from the ground up. Additionally, it endows the model 

with robust feature extraction capabilities from the onset of 

learning, enabling quicker adaptation and refinement in 

recognizing learner behavior features during subsequent 

training phases. Simultaneously, the study incorporates a 

formalized approach to maximizing average differences using 

multiple kernels. This strategy aims to augment the efficacy of 

model testing, essentially enhancing the model's capacity to 

discern true effects, while concurrently minimizing Type II 

errors, which entail the risk of erroneously accepting a 

spurious hypothesis or failing to reject an invalid null 

hypothesis. 

 

 
 

Figure 1. Structure of the traditional dual-stream convolutional network 

 

 
 

Figure 2. Framework of the proposed recognition model based on transfer learning and dual-stream convolutional networks 
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In unsupervised domain adaptation, the source domain is 

defined as Ft={(at
u,bt

u)}vt
u=1, and vt is marked as an example. 

The target domain is defined as Fu={as
k}vs

k=1, where vs is an 

unmarked example. The probability distributions of source 

and target domains are represented by o and w, respectively. 

By maximizing the testing power, the multi-kernel 

maximization of average differences aids in accurately 

capturing the real behavioral pattern changes in online 

education scenarios. By minimizing Type II, it ensures that the 

model does not easily miss important behavioral signals when 

facing unseen behavioral samples. The goal is to build a deep 

neural network that can learn transferable features across 

domain differences, and to construct a classifier b=ϕ(a) to 

minimize the target risk R(ϕ)= Oe(a,b)-w[ϕ(a≠b)]. In the context 

of semi-supervised adaptation, where the target domain 

contains a limited number of labeled samples, annotated 

examples vx for both the source and target domains are 

represented as Fx={(ax
i, bx

u)}. 

It is hypothesized that the reproducing kernel Hilbert space, 

equipped with feature kernel j, is represented by Gj. The 

average embedding of distribution o in Gj, identified as the 

unique element ωj(o), ensures that for all d∈Gj, the relation 

Ra~Ed(a)=<(d(a),ωj(o)>Gj is upheld. The distance between the 

average embeddings of distributions o and w in the 

reproducing kernel Hilbert space, termed as the multi-kernel 

maximization of average differences LJ-LLF fj(o,w), is defined. 

The squared formula for this multi-kernel maximization of 

average differences is articulated as: 

 

( ) ( )2 2( , )
j

s s

j o o Gf o w R a R a 


   = −
   

‖ ‖  (6) 

 

The model developed in this research is predicated on 

transfer learning and dual-stream convolutional networks, 

drawing upon the VGGNet architecture. Its network depth is 

adept at extracting intricate feature representations, essential 

for comprehending learners' behaviors and emotional states. 

The network comprises 13 convolutional layers and 5 

maximum pooling layers, designed to capture features across 

varying scales and to abstract higher-level semantic 

information progressively. Three fully connected layers 

integrate these features, and a preceding softmax layer 

processes them for probability output before classification. In 

the realm of transfer learning, adaptation layers (14 to 16) are 

appended to the VGGNet foundation, facilitating the fine-

tuning of the pre-trained model's weights for enhanced 

performance on novel datasets. Additionally, by merging 

features from both the spatial and temporal streams before the 

softmax layer, the model harnesses static information (e.g., 

posture, expressions) and dynamic data (e.g., gestures, motion 

trajectories) from learners, enabling more precise behavior 

predictions. 

To harmonize the distributions of source and target domains 

under the latent representation of the fully connected layers 

(14th to 16th), the CNN risk incorporates a multi-layer 

adaptation regularizer grounded in the multi-kernel 

maximization of average differences. It is posited that the 

network's final three layers are denoted as m0, m1, and m2. The 

aggregation of all labeled data from both source and target 

domains is represented by ax
u and vx. Consequently, the 

network's optimization objective is formulated as follows: 

 

( )( ) ( )
2

2

1

1
, ,

p

o

v U
x x s s

u u j t s

u m U

MN K a b f F F
v

 


= =

+   (7) 

The essence of the multi-kernel maximization of average 

differences is founded on employing a suite of kernel functions 

to translocate data into a high-dimensional feature space. 

Within this space, the disparities in distributions between 

source and target domains are quantified. The process of 

computing the inner products of these kernels fundamentally 

entails evaluating the similarities between data from source 

and target domains across multiple dimensions. Nonetheless, 

this approach may be susceptible to biases arising from 

unbalanced sample sizes, potentially leading to skewed 

estimations. An unbiased estimation technique is utilized to 

mitigate this concern. By making up for any potential bias in 

sample selection, this technique aims to prevent systematic 

biases and align the predicted expectations with the actual 

distribution differences. Using cu=∆(at
2u-1, at

2u,as
2u-1, 

as
2u)f2

j(o.w)=2/vt∑vt/2
u=1hj(cu), one may express the unbiased 

estimation: 

 

( ) ( ) ( )

( ) ( )
2 1 2 2 1 2

2 1 2 2 1 2

, ,

, ,

t t s s

j u u u u u

t s t s

u u u u

h c j a a j a a

j a a j a a



− −

− −

= +

− −

 
(8) 

 

 

3. MICRO-EXPRESSION CLASSIFICATION AND 

RECOGNITION FOR PERSONALIZED LEARNING 

PATH GENERATION 

 

Micro-expressions made by learners in online education can 

provide nuanced and intricate insights on their emotional and 

mental states. The educational system may infer learners' 

emotional reactions during the learning process, such as 

perplexity, uncertainty, interest, or contentment, by accurately 

classifying and detecting learners' micro-expressions. In 

individualized instruction, these emotional states provide as 

vital feedback signals. For instance, the system can 

automatically modify the course material to match each 

learner's unique needs, offer more thorough explanations, or 

offer further assistance as soon as it notices a perplexed 

learner's micro-expression. 

However, in the event that learners exhibit micro-

expressions of contentment or curiosity, the system might 

expedite instruction or suggest more difficult materials in 

order to correspond with their degree of involvement. Utilizing 

image processing technology for the recognition of micro-

expressions enables fine-tuned adjustments in personalized 

learning paths, concentrating on brief, subtle facial movements 

that often represent non-verbal, intuitive expressions of 

internal emotional states. This enhanced understanding of 

learners by the teaching system fosters a more sensitive and 

responsive learning environment, where teaching strategies 

dynamically align with shifts in learners' emotional states, thus 

effectively bolstering learning efficiency, elevating learner 

satisfaction, and ultimately enhancing learning outcomes. 

In order to identify micro-expressions in online learners, 

this research presents a novel method that combines the 

attention on essential facial action units with the use of Graph 

Convolutional Networks (GCNs). Structured facial expression 

data is easily captured and utilized by GCNs. They 

successfully simulate the interactions between edges (like the 

muscles that cause changes in skin texture) and nodes (like the 

mouth and eyes) in important facial regions. By scrutinizing 

the complex interplay between these domains and action units, 

GCNs reveal the more profound patterns present in micro-

expressions. 
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Figure 3. The whole structure of the prototype network 

 

 
 

Figure 4. Prototype network structure 

 

Prototypes are used in this work to contain the feature 

representations and important parameters for each micro-

expression category. The prototype network's overall structure 

and framework are depicted in Figures 3 and 4, respectively. 

The Euclidean distance between these prototypes and the input 

test image is calculated during the recognition phase. The 

predicted micro-expression category is determined by 

identifying the prototype's category that is closest to the test 

image. An adaptive hybrid function that combines triplet loss 

and cross-entropy loss is used to improve classification 

accuracy. To guarantee that samples from the same category 

are close together in the feature space, while samples from 

different categories are separated, triplet loss functions are 

used. Within-category compactness and inter-category 

differentiation are strengthened by this optimization of relative 

sample distances. On the other hand, the prediction probability 

for the accurate category is optimized by cross-entropy loss. 

Combining these loss functions improves the model's ability 

to generalize and facilitates more distinct boundary lines 

across categories. 

The developed prototype network's computational process 

proceeds as follows: 

Learners' facial expression images are first processed using 

a GCN, which maps each image into a feature embedding 

space.  Within this space, embedding vectors signify the 

expression features of the images, delineating the intricate 

relations between pivotal facial areas and action units. For 

each micro-expression category in the training set, the 

weighted average of its embedding vectors is computed, 

signifying the central point of that category in the feature 

embedding space, hence forming the class prototype. The 

computation of covariance matrices for the embedding vectors 

of each category captures the distribution of features within 

the class. This computation reflects the dispersion of data 

points within each category, aiding in evaluating the 

resemblance of new samples to the class prototypes. The 

embedding function is denoted by dθ(Au), with a sample set of 

j categories represented by Tj, the quantity of samples in j 

categories indicated by |Tj|, the feature vector of the u-th 

sample in Tj illustrated by Au, and the label of the u-th sample 

in set Tj represented by Bu. The formula for each category 

prototype zj is delineated as: 

 

( )

( )
,

1

u u j

j u u

a b Tj

z d A b
T




=   
(9) 

 

In the assessment of an input test sample, it is initially 

2803



 

mapped into the feature embedding space utilizing the same 

GCN. Subsequently, the Euclidean distances between the 

sample and each class prototype are computed. Assuming that 

the inverse matrix of the covariance matrix for category j is 

denoted by Lj, the formula for calculating the Euclidean 

distance dfj(u) given the class prototype zj, is established as 

follows: 

 

( ) ( )
Y

j u u j u uf u a z L a z= − −  (10) 

 

The distances calculated between the test sample and each 

class prototype are then fed into a softmax regression function. 

This function transforms these distances into a probability 

distribution for belonging to each category, with the category 

having the highest probability designated as the model's 

predicted category. The formula for calculating the probability 

of test sample a belonging to category j is articulated as: 

 

( )( )
( )( )

exp ( ),
( )

exp ( ),

j

jj

f d a z
o b j a

f d a z







−
= =

−
∣  (11) 

 

The following formula is used to compute the cross-entropy 

loss function: 

 

log ( )zLOSS o b j a= − = ∣  (12) 

 

During the network's training phase, a hybrid loss function 

that combines cross-entropy loss and triplet loss is used to 

assess the model's prediction mistakes. Depending on the size 

of the loss value, the backpropagation algorithm modifies the 

parameters of the GCN. By decreasing the value of the loss 

function, this method aims to improve the model's ability to 

distinguish between various categories of micro-expressions 

inside the feature embedding space. 

In order to improve the model's capacity for generalization 

in situations where sample availability is restricted and to 

guarantee that positive (same category) and negative (different 

categories) samples are effectively distinguished during the 

learning process, this study applies the triplet loss function in 

an N-way K-shot setting to the recognition and classification 

of micro-expressions in online learners. Small samples of data 

are used in this N-way K-shot learning technique; "N-way" 

denotes that N categories are selected for each learning task, 

and "K-shot" denotes that K samples are available for each 

category to train the system. This technique allows appropriate 

categorization even in the presence of sparse or novel data by 

training the model with significant cases. The maximum 

distance between a positive sample, dϕ(au
x), and a negative 

sample, dϕ(au
o), is represented by the formula MAX(f(dϕ(au

x))-

f(dϕ(au
o)). 

 

( )( ) ( )( )( )  =
=

+
−+=

V

u

V

x

u

o

u

xS adfadfMAXlLOSS
1

1


 (13) 

 

In this study, a hyperparameter l is constructed to carefully 

balance the effects of triplet loss and cross-entropy loss inside 

the composite loss function, thereby fine-tuning the model's 

responsiveness to challenging data. This hyperparameter 

ensures that the model is appropriately trained to increase 

categorization distinction and recognition accuracy for 

positive data by adjusting the weighting of the different 

components of the loss function. The following is a list of the 

processes needed to create the hybrid loss function. With T 

standing for the training set and mu
rd for the length of the final 

dimension in the feature matrix, the following function for the 

u-th embedding space in the training set, represented by ds
ϕ(a), 

is hypothesized: 

 

( ), , , ( )u u

rd r dm d a a a T r d=    (14) 

 

The first step involves using a GCN to extract features from 

learners' micro-expression images, which creates a modified 

feature matrix. For every image post-network processing, this 

matrix contains high-dimensional feature vectors that capture 

important visual information related to micro-expressions. 

ds
ϕ(a) represents the matrix [Vz, Vt, mu

rd], where Vz is the total 

number of categories and Vt is the number of categories in the 

training set. The altered feature vectors are aggregated over the 

range of Vt in order to generate this matrix. The summation 

∑Vt
k=0du

θ(a) expresses this numerically. 

 
, ,

0

( ) ( ) ( )

u
tz t rd

tV V m
u u u

k

d x d a d a  
=

→ →  (15) 

 

The different feature vectors within ∑Vt
k=0du

ϕ(a) are then 

separated by pairwise Euclidean distances. This distance 

matrix reveals the samples' relative positions in the feature 

space, which is a fundamental component in differentiating 

between various micro-expression categories. 

 

( ) ( )
0 0 2

, ( )
t tV V

u u u

rd r d

k k

F d a d a r d 
= =

=    (16) 

 

The next step is to link the matching micro-expression 

labels to the calculated distance matrix. To be more precise, 

Fu
rd is transformed into a matrix Fu

rd′, sized [VWA×VQU, VWA], 

and has a micro-expression label m attached. The goal of this 

process is to adjust the weights in the loss function according 

to the label of each sample, reflecting the categorical 

differences across samples. The following is how the distance 

matrix Fu
rd′′ is obtained: 

 

u u

rd rdF F m
 = +  (17) 

 

( ) ( )   1 MINu u Column u

rd rd rdF F r d f
 

=  ⎯⎯⎯⎯→∣  (18) 

 

The influence of each sample's label within the training 

process is ascertained by calculating the ratio of every element 

in the distance matrix Fu
rd′′ to its corresponding distance-label 

vector fu
rd element. This ratio dictates the weight each sample 

holds within the loss function; samples with greater label 

influence are assigned lower weights, thereby diminishing 

their impact during the training phase. 

 
u

rd
t u

rd

F
e

f



=  (19) 

 

Subsequent to a series of experimental trials and validations, 

the hyperparameter value is fine-tuned to attain an optimal 

configuration. This optimal setting allows the adaptive loss 

function to effectively balance the challenge of recognizing 
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different categories during the training process, thereby 

optimizing the overall performance of the model. The 

determination of the hyperparameter value is iterative in 

nature, typically reliant on the model's performance in the 

validation set. The formula for calculating the final 

hyperparameter value is: 

 

( ) *u

drS l e l=  (20) 

 

( ) ( )( )log 1 log 1 *t te e e m= + − +  (21) 

 

The computation formula for the triplet loss function, a 

critical component of the hybrid loss function, is formulated 

as: 

 

( ) ( )( ) ( )( )( ) 
 

+
−+

Wa ox u

u

o

u

x

u

rdS adfadfMAXlSLOSS 
 

(22) 

 

The scaling factor, denoted by β, plays a crucial role in the 

hybrid loss function, which is expressed as: 

 

*z SLOSS LOSS LOSS= +  (23) 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

In the experimental evaluation, the method incorporating 

transfer learning and dual-stream convolutional networks, 

specifically designed for the recognition of group behaviors in 

vocational college learners, demonstrated superior 

performance. The comparative analysis of recognition rates, 

presented in Table 1, reveals that this method achieved 

remarkable success across various group behavior recognition 

tasks. Notably, in the task of synchronous interaction, the 

proposed method significantly excelled, outstripping 

competitors such as Residual Network (ResNet) and 

EfficientNet, underscoring its proficiency in complex 

behavior analysis. While the EfficientNet model registered a 

marginally higher recognition rate (98.9%) in the discussion 

and cooperation category, the proposed method's performance 

(95.6%) remained commendably close. Regarding collective 

emotional response, the method's rate (97.8%) was on par with 

ResNet, though the implausibly high rate (101%) of 

EfficientNet suggests potential methodological inaccuracies. 

For categories such as participation changes and discipline and 

order, data for EfficientNet and GoogLeNet were not available, 

indicating either non-assessment in these areas or subpar 

results. On average, the proposed method led with a 

recognition rate of 96.1%, closely tailed by GoogLeNet's 

94.5%. The efficacy of the method proposed in this study, 

integrating transfer learning with dual-stream convolutional 

networks, was demonstrated to surpass that of other prevalent 

CNN models. This superiority is ascribed to the method's 

capacity to harness pre-trained knowledge comprehensively, 

thereby augmenting feature extraction capabilities and 

accurately capturing dynamic behavioral aspects of learners. 

These results so confirm that the suggested method can be 

used to identify group behaviors among vocational college 

learners. This methodology is demonstrated to be a highly 

effective tool for creating customized learning paths, 

suggesting that it has broad relevance in the vocational 

education domain. 

Based on True Positive Rates (TPR) and False Positive 

Rates (FPR) at various thresholds, the created group behavior 

recognition model's Receiver Operating Characteristic (ROC) 

curve was plotted to assess the classifier's performance. A 

ROC curve that is ideal approaches the upper left corner, 

signifying a high TPR accompanied by a minimal FPR. As can 

be seen in Figure 5, the curve shows a growth in TPR in 

tandem with growing FPR, a common feature of ROC curves 

where classifiers produce more false alarms while stepping up 

their efforts to identify true positives. The steady rise in TPR 

in regions with low FPR (from 0 to roughly 0.2) indicates the 

model's limited ability to correctly detect true positives while 

preserving a low rate of false positives. With further escalation 

in FPR, a marked acceleration in TPR growth is observed, 

particularly notable in the range from 0.2 to 1, where TPR 

elevates from 0.04 to 1. This trend indicates the model's 

proficiency in identifying true positives, albeit accompanied 

by an increase in false alarms. Reaching a TPR of 1 at an FPR 

of 1 implies that the classifier ultimately detects all true 

positives, but also misidentifies all negatives as positives. The 

ROC curve, thus, underscores the utility of the group behavior 

recognition model, especially in scenarios where a higher 

tolerance for false alarms exists. 

In the context of model training, Figure 6 elucidates the 

accuracy trajectory of the group behavior recognition model 

across varying epochs. The initial training phase (0-20 epochs) 

witnessed a modest rise in accuracy from 0.315 to 0.375, 

indicative of the model's initial phase of feature learning for 

group behavior recognition. Accuracy increased steadily 

during the course of training (20-60 epochs), peaking at 0.645 

by the 60th epoch, indicating the model's continuous 

adaptability and learning improvement. Specifically, accuracy 

increased significantly between 60 and 100 epochs, reaching a 

maximum of 0.915, indicating a notable improvement in the 

model's capacity to identify group behaviors. This steady 

increase in accuracy during the training period demonstrates 

how well the model learns the characteristics of group 

behavior. The model achieves excellent accuracy, as seen by 

the highest accuracy of 0.915, and the overall trend shows an 

upward pattern in accuracy. Despite fluctuations in later 

training stages, the model's performance distinctly surpassed 

random guessing, emphasizing the robustness and 

effectiveness of the proposed method in recognizing group 

behaviors. 

 

Table 1. Comparative recognition rates of different group behavior recognition models 

 
Behavior Type Proposed Method ResNet DenseNet EfficientNet GoogLeNet 

Collective attention 96.1 95.2 77.9 93.6 95.6 

Synchronous interaction 88.9 55.8 72.1 64.2 88.7 

Discussion and cooperation 95.6 88.9 92.3 98.9 97.8 

Collective emotional response 97.8 98.3 72.5 101 97.6 

Participation changes 93.5 85.2 82.3 N/A N/A 

Discipline and order 95.8 95.4 92.6 N/A N/A 

Average 96.1 88.6 81.2 88.9 94.5 
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Table 2. Impact of threshold values on recognition accuracy 

for 5-way-1-shot learning strategy 

 

Threshold Value 
5-Way-1-Shot 

Training Set Validation Set 

0.05 0.562 0.415 

0.14 0.578 0.421 

0.21 0.559 0.418 

Threshold Value 
5-Way-1-Shot 

Training Set Validation Set 

1.1 0.748 0.725 

1.3 0.789 0.745 

2.1 0.745 0.736 

 

Table 3. Comparison of F1-score and recognition accuracy 

with several micro-expression recognition models 

 

Method 

Training Set Validation Set 

Accuracy 
F1-

Score 
Accuracy 

F1-

Score 

3D-FCNN 0.578 0.558 0.568 0.542 

Deep CNNN 0.714 0.732 0.569 0.463 

Graph-TCN 0.751 0.724 0.764 0.689 

Micron-BERT 0.779 0.732 0.762 0.725 

LDL 0.746 - - - 

LE 0.689 - - - 

DCACNN 0.652 0.639 0.589 0.598 

MER-GCN 0.432 - - - 

Proposed 

method 
0.789 0.751 0.765 0.744 

 

 
 

Figure 5. ROC curve of the constructed group behavior 

recognition model 

 

 
 

Figure 6. Accuracy curve of the constructed group behavior 

recognition model 

The investigation of learner micro-expression recognition 

utilizing GCNs was conducted to more precisely discern the 

nuances of learner emotional changes. Table 2 delineates the 

model's recognition accuracies on both training and validation 

sets under varying threshold settings, employing a 5-way-1-

shot learning strategy. Recognition accuracies on the training 

set were observed at 0.562, 0.578, and 0.559 for threshold 

values of 0.05, 0.14, and 0.21, respectively, while accuracies 

on the validation set were 0.415, 0.421, and 0.418. These 

relatively modest accuracies, particularly on the validation set, 

indicate constrained generalization capabilities. Enhancement 

in accuracies was noted when threshold values were increased 

to 1.1, 1.3, and 2.1, achieving 0.748, 0.789, and 0.745 on the 

training set, and 0.725, 0.745, and 0.736 on the validation set, 

respectively. This improvement suggests an upward trend in 

model performance with elevated threshold values. The 

threshold setting of 1.3 emerged as the most effective, yielding 

the highest accuracy on both the training (0.789) and 

validation (0.745) sets, thereby indicating its optimality for 

training and generalization. The findings imply that threshold 

values significantly influence the performance of micro-

expression recognition models, with higher settings enhancing 

accuracy in both training and validation contexts. This 

underscores the efficacy of the proposed methodology and the 

critical role of appropriate threshold settings in bolstering 

model generalization, particularly emphasizing the GCNs' 

capability in micro-expression capture. 

Figure 7 showcases the learner micro-expression 

recognition model's loss curves on both training and validation 

sets across various training epochs. Initially, an identical loss 

of 0.518 was exhibited on both sets, reflecting the model's 

commencement of learning from a state of random weight 

initialization. In the initial 20 epochs, a marginal decline in 

loss was observed on the training set, contrasted with a rise 

followed by a decrease on the validation set, indicating the 

model's adaptation to the dataset's characteristics. The loss on 

the training set displayed a gradual yet fluctuating decrease 

from epochs 20 to 100, with the validation set showing greater 

fluctuation. Beyond 100 epochs, a stabilization in loss trends 

on both sets suggested the attainment of optimal learning 

capacity. Overall, a progressive reduction in loss was noted 

throughout the training, manifesting effective generalization 

on the validation set. 

The accuracy evolution of the micro-expression recognition 

model across training epochs, tracked in Figure 8, reflects the 

model's learning effectiveness over time. Initially, in the first 

20 epochs, a rise in accuracy on both training and validation 

sets was observed, indicating the model's commencement in 

assimilating useful features from the data. Continued training 

up to 100 epochs led to a steady increase in accuracy, a trend 

that persisted without substantial overfitting, as demonstrated 

by the concurrent rise in accuracy on the validation set. Post 

100 epochs, accuracies approached 0.796 on the training set 

and attained 0.797 on the validation set, highlighting the 

model's robust generalization ability. The closeness of 

accuracies on both sets throughout the training process is 

indicative of sound model generalization, suggesting the 

model learned generalizable features applicable to the 

validation set. A sign of a successful model generalization is 

when the accuracy on the validation set continuously matched 

that of the training set during the training process. This 

observation suggests that instead of overfitting on the training 

data, the model absorbed general features that worked just as 

well on the validation set. Consequently, the study's learner 
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micro-expression recognition model achieved excellent levels 

of accuracy on both the training and validation sets and 

demonstrated a steady rise in accuracy during the training 

stages. These outcomes support the model's excellent 

generalization capabilities and demonstrate its ability to 

distinguish between different micro-expressions. 

 

 
 

Figure 7. Loss change curves of the learner micro-expression 

recognition model 

 

 
 

Figure 8. Accuracy change curves of the learner micro-

expression recognition model 

 

Table 3 contains several micro-expression recognition 

models as well as two essential metrics: recognition accuracy 

and F1-score, which are used to assess how well classification 

models work. While the F1-score, a harmonic mean of 

precision and recall, shows the comprehensiveness and 

accuracy of positive class recognition, accuracy represents the 

percentage of correctly classified samples. With an accuracy 

of 0.789 on the training set, the suggested methodology 

performed better in terms of categorization than the other 

methods. Its F1-score of 0.751 was likewise among the top on 

the training set. The suggested method had the highest 

accuracy (0.765) and F1-score (0.744) on the validation set, 

indicating its strong ability to differentiate between real 

positive samples while retaining high accuracy and 

completeness. The suggested technique's exceptional capacity 

for generalization is demonstrated by its excellent accuracy 

and F1-score on training and validation sets. This capacity is 

crucial for micro-expression recognition algorithms to 

function well on unseen data. To sum up, the approach 

described in this research is remarkably effective at identifying 

micro-expressions. It performs exceptionally well on the 

training set and retains high accuracy and F1-score on the 

validation set. The approach's great generalization capabilities 

are indicated by the consistency seen between the outputs 

obtained during training and validation. Working with 

complex data types such as micro-expressions emphasizes 

how crucial it is for the approach to precisely identify and 

interpret minuscule changes in facial expressions. The results 

demonstrate the efficacy of the suggested methodology, 

particularly with regard to managing the multitude of 

subtleties included in micro-expression data. 

 

 

5. CONCLUSION 

 

This study aimed to enhance the recognition and 

interpretation of learner group behaviors and micro-

expressions in online vocational college education systems 

through the use of deep learning technology. This would 

enable the development of tailored learning pathways. The 

approach that was developed primarily addressed perceiving 

learner group behaviors by combining dual-stream 

convolutional networks with transfer learning. Transfer 

learning made use of information from heavily trained datasets, 

and the dual-stream network design handled temporal and 

spatial data, which was necessary to distinguish the dynamics 

of learner behavior. Moreover, GCNs were utilized for the 

complex identification of students' micro-expressions. By 

skillfully managing non-Euclidean structures in image data, 

GCNs were able to accurately represent learners' subtle 

emotional changes on their faces, making them an effective 

tool for assessing learners' emotional states. Combining these 

methods produced highly accurate results in terms of 

identifying the emotions and behaviors of learners. The 

demonstrated efficacy of the suggested approach considerably 

enhances the online education systems for vocational colleges' 

operational efficiency. This feature facilitates the dynamic 

modification of learning paths and content based on real-time 

feedback from learners, hence encouraging the development 

of more customized teaching approaches. 

The experimental outcomes showed the method's 

exceptional performance on a range of datasets. This technique 

outperformed numerous well-known deep learning models in 

the field of group behavior identification in terms of accuracy 

and F1-score. The approach showed significant potential for 

generalization in the field of micro-expression recognition, as 

evidenced by its good accuracy and F1-score, which were 

particularly noteworthy in the validation set. 

In conclusion, both conceptually and empirically, it has 

been demonstrated that the strategy suggested for the creation 

of customized learning pathways in vocational colleges is 

workable and efficient. This method has become an essential 

tool for online learning because it can reliably identify the 

behaviors and micro-expressions of learners in groups. It 

allows instructors and online learning platforms in vocational 

colleges to better meet the individual needs of each student, 

which improves the quality of instruction and the efficacy of 

learning outcomes. 
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