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In today's medical landscape, an array of diagnostic techniques for cancer, leveraging 

imaging data, have become increasingly prevalent. This has posed a unique challenge for 

radiologists in the detection of Digestive System Cancer (DSC). This paper introduces the 

Bottleneck Feature-based U-Net, an innovative method designed for the automated detection 

and segmentation of the digestive system utilizing endoscopy. The U-Net design, previously 

proven successful for image segmentation tasks, is harnessed to its full potential in our 

proposed method. We have enhanced its performance by integrating a bottleneck feature 

extraction technique. The encoding U-Net is initially trained prior to the training of the BS 

U-Net, facilitating the procurement of encodings from label maps containing crucial

anatomical information, such as shape and location. A Bottleneck Supervised (BS) U-Net is

thus formed by pairing an encoding U-Net with a segmentation U-Net. Our proposed

bottleneck feature in the U-Network enables the model to compress input data, an essential

learning component. This compressed view of data retains vital information used for either

reconstructing the input image or carrying out the segmentation process. In the current study,

we put forth a bottleneck-based U-Net model tailored to perform gastrointestinal tract tumor

segmentation. To train and test our method, we employed the comprehensive Kvasir dataset,

which encompasses a wide range of digestive system images. We further tested the

robustness and generalizability of our model through a thorough quantitative and qualitative

analysis. The results underscore the versatility of the bottleneck U-Net and its potential as a

reliable tool for radiologists in clinical practice. Our proposed model demonstrated rapid

and effective cancer diagnosis capabilities, thus reducing diagnosis time. The model

exhibited an impressive accuracy rate of 98.64% and a specificity score of 99.71%,

outperforming both LSTM-ANN and GA Algorithms. This not only attests to the efficacy

of our model but also underscores its potential in advancing diagnostic methodologies in

clinical settings.
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1. INTRODUCTION

Digestive system cancer, which affects both men and 

women equally, is the second most prevalent type of cancer 

among individuals aged 15 to 44 in India [1]. One of the 

primary factors contributing to the severity of this cancer type 

is that it often goes undetected or cannot be effectively treated 

in its early stages [2]. Consequently, a myriad of artificial 

intelligence techniques have been employed in the 

development and refinement of medical imaging techniques 

for cancer diagnosis and detection. 

Various diagnostic methods including endoscopic 

ultrasound (EUS), magnetic resonance imaging (MRI), 

computed tomography (CT), ultrasound (US), and positron 

emission computed tomography (PET) are routinely used to 

identify malignancies [3-5]. These imaging techniques assist 

doctors in evaluating and examining the digestive system, 

thereby pinpointing the precise location and segmented 

sections of the cancer. 

Machine learning models have been employed to detect 

gastric cancer by leveraging image data. Digestive System 

Cancer (DSC) includes colorectal cancer, which is most 

commonly diagnosed using MRI histology slides, 

colonoscopy, CT, among other methods. These techniques 

have proven effective in colorectal cancer detection. AI 

techniques used in gastrointestinal tract cancer detection are 

typically divided into classification, detection, and 

segmentation [6]. 

Pancreatic cancer detection, segmentation, and 

classification also follow a similar approach [7-9]. Past models 

have concentrated on handcrafted elements such as shape, 

color, and texture data, which were the mainstay of traditional 

ML techniques. For DSC detection, both Machine Learning 

(ML) and Deep Learning (DL) methods have been utilized.

While ML algorithms relied on specific features for training,

DL methods automatically extracted internal features, leading

to improved results during segmentation. However, feature

extraction presented challenges due to the lack of variations in
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viewpoint, blurring, illuminations, and occasionally, the 

insufflation of the colon [10].  

Medical imaging techniques such as CT, MRI, US, PET, 

endoscopic ultrasonography (EUS), among others, are 

routinely used to diagnose Digestive System Cancer (DSC), 

depending on the nature of the malignancy. Specialists then 

scrutinize the location of these malignancies to determine their 

type. In the initial phases, the interpretation of cancer imaging 

examinations was predominantly manual, requiring the 

clinical expertise and focused attention of doctors. However, 

with the increasing reliance on medical imaging data, 

radiologists are now facing significant challenges. To address 

this, artificial intelligence (AI) methodologies are rapidly 

evolving to bolster the potential for autonomous medical 

image assessment [11]. 

Automatic detection aids radiologists in achieving prompt 

and effective cancer recognition, segmentation, and 

classification, making the present research work a topic of 

significant interest. To address these challenges, we propose 

an improved Bottle Neck U-Net-based model for cancer 

detection. The embedded bottlenecks in U-Networks compel 

the model to compress the input data, an integral part of 

learning. This compressed data view retains valuable 

information used for input image reconstruction, also known 

as the segmentation process. 

In our current study, we propose a bottleneck feature 

supervised-based U-Net model for tumor segmentation. This 

paper is motivated by several factors: 

• Reducing Subjectivity and Inter-Observer 

Variability: Radiologists and other medical 

professionals often rely on their clinical experience in 

manual tumor diagnosis and segmentation from the 

Kvasir dataset, resulting in inter-observer variability. 

• Accelerating Diagnosis and Treatment Planning:

By automating this procedure with the Bottleneck

Feature-based U-Net, the turnaround time for

diagnosis can be significantly reduced. Early

diagnosis and segmentation of the digestive system

can expedite the creation of individualized treatment

plans, potentially improving patient outcomes and

quality of life.

• Enhancing Sensitivity and Accuracy: The

proposed U-Net design with bottleneck features

enables the model to learn and capture key tumor

characteristics, leading to higher sensitivity and

accuracy in identifying even small or ambiguous

tumors. This improved accuracy can assist in

detecting malignancies at an earlier stage, when they

are more amenable to treatment.

• Enabling Personalized Medicine: The precise

tumor segmentations produced by the Bottleneck

Feature-based U-Net allow for the extraction of

tumor-specific features such as size, location, and

shape. These insights, taking into account the

specifics of each patient's tumor, can be used to

develop personalized treatment plans.

The primary contributions of this research are as follows: 

• We leverage the full potential of the U-Net design,

which has demonstrated efficacy in image

segmentation applications, and enhance its efficiency

via a bottleneck feature extraction approach.

• The encoding U-Net is initially tasked with

aggregating encodings from label maps that contain

anatomical variables such as shape and spatial 

information, paving the way for the subsequent 

training of the Bottleneck Supervised (BS) U-Net. 

• We facilitate learning of input data compression

through the proposed bottlenecks in U-Networks,

which aid the model in executing this compression.

• This compression yields a condensed representation

of the data that retains pertinent information, which

is utilized during the segmentation or reconstruction

of images.

The organization of the research paper is as follows: Section 

2 reviews the methods that have been used to identify 

gastrointestinal tumors. Section 3 presents our proposed Bottle 

Neck U-Net model for the detection of gastrointestinal tumors, 

complete with an illustrative architectural diagram. In Section 

4, the quantitative and comparative analysis results of the 

proposed research are discussed along with their associated 

interpretation. Finally, Section 5 of the research paper outlines 

the conclusion and recommendations for future work. 

2. LITERATURE REVIEW

This section presents a review of current techniques for 

applying deep learning to cancer identification. Numerous 

studies have focused on detecting and classifying prostate 

cancer based on MRI scans. The current research employed a 

neural network to identify the grade of cancer tissue. Images 

were categorized according to relevant classes, using the 

ProstrateX-2 challenge [12] as a benchmark. Existing models 

were examined for their ability to embed prostate zone 

segmentation as prior information and their use of ensemble 

techniques. Vente et al. [13] devised a 2D-Unet method for 

detecting prostate cancer and determining the grade of bi-

parametric MRI. This method demonstrated effectiveness in 

identifying lesion regions. However, it was not capable of 

predicting Gleason Grade Groups (GGGs) from the MRI, 

though it did show performance improvement. This model was 

used by pathologists to grade histopathology images. It 

remained a key tool for predicting GGGs from MRIs and 

improved performance when grading histopathological 

images. Early and timely malignancy detection is closely 

linked to accurate diagnosis. Similar frames from 

gastrointestinal tract endoscopy can reduce a practitioner's 

attention, resulting in true patients being overlooked and 

incurring unnecessary high medical costs and morbidity. 

However, the developed model required keen attention to 

automatically identify abnormalities, as it visually drew the 

medical staff's attention for thorough examination. 

Lee et al. [14] developed VGGNet and ResNet-based 

models, pre-trained on ImageNet, for detecting malignancies 

from gastric endoscopy images. The results showed that the 

proposed strategy could distinguish between the classification 

of gastrointestinal endoscopy images and ImageNet images. 

An effective automatic classification was performed using a 

deep learning model, complementing the manual inspection 

efforts made by practitioners. The attention layer of the model 

was weakened to minimize missed positive results from 

endoscopy images. However, the developed model concluded 

that there was a disparity among the ImageNet dataset for 

image classification. Validation of cross and external 

parameters was required to strengthen the findings. Image 

convolution was necessary to maintain image characteristics 

using the CNN model. This model allowed for the 
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classification of input images, dramatically improving the 

CNN's capabilities. The classification of ulcers vs. cancer had 

a lower accuracy of 77.1%, presumably due to the less 

significant differences in appearance compared to normal 

situations. Using magnification endoscopy, Horiuch et al. [15] 

created a CNN model to differentiate between stomach cancer 

and gastritis. This model was able to distinguish between early 

gastric cancer (EGC) and gastritis, which required significant 

effort. Clear images were selected but diagnosing various 

conditions based on unclear images proved challenging for 

exclusion criteria. The possibility of hidden cancer was a 

concern. The selection of clear images was difficult due to the 

unclear images used for exclusion criteria. The model was 

retrospective and only clear images were selected. The model 

ultimately showed difficulty in diagnosing conditions based 

on the unclear images included. Symptoms of gastritis were 

mixed with the potential for hidden cancer, which was not 

confirmed by biopsy. With 220 out of 258 ME-NBI images 

successfully identified, the CNN system had an accuracy rate 

of 85.3%. The approach had a sensitivity rate of 95.4%, a 

specificity rate of 71.0%, a positive predictive value (PPV) 

rate of 82.3%, and a negative predictive value (NPV) rate of 

91.7%, respectively. 

The developed approach employed an intelligent healthcare 

system to identify issues in the gastrointestinal (GI) tract. In 

this area, time-frequency analysis was conducted using Deep 

Convolutional Neural Network (DCNN) models. In their study, 

Mohapatra et al. [16] created a model that combines wavelet 

transformation with a DCNN architecture to formulate a smart 

healthcare system aimed at detecting GI disorders. The method 

starts with preprocessing operations and proceeds with a 

discrete wavelet transformation extraction of a full set of 

coefficients. Each class is then inputted into the CNN model 

under consideration after the images have been decomposed. 

Two different classifiers are then trained and evaluated using 

this CNN model, enabling the prediction and identification of 

values. By merging similar datasets, it was possible to enlarge 

the experimental dataset size and achieve superior analytical 

results. The preprocessing operations include the enhancement 

of the image quality through advanced preprocessing 

techniques based on the auto-encoder. However, the 

sophisticated pre-trained CNN model has InceptionV3, 

Inception-V4, and AlexNet that performed advanced 

decomposition based on the time-frequency approach which 

required implementation for testing the model's accuracy. To 

evaluate classification performance, various assessment 

metrics are used. These metrics include accuracy, precision, 

recall, specificity, and the F1 score. The trial results 

demonstrated that the accuracy categorization rates for the first 

and secondary classification levels were 97.25% and 93.75%, 

respectively. 

Öztürk and Özkaya [17] developed a classification model 

using Long Short-Term Memory (LSTM) with CNN for 

classification of the gastrointestinal tract. The developed 

approach was an effective classifier used for classification 

using the CNN model. The CNN yielded a higher performance 

for a model that is not trained stronger. An efficient LSTM 

model was defined and was added as an output for the CNN. 

However, the developed model was successful for the datasets 

that imbalanced the data numbers among the classes. 

Majid et al. [18] developed a CNN with classical fusion of 

features, and selection was performed for the fused features. 

The features are extracted in the next step using CNN-based 

features built on the VGG-16 architecture, discrete wavelet 

transforms, discrete cosine transforms, and robust colored 

features. The features were combined by concatenating an 

array, and the best features were then selected by applying 

Genetic Algorithm (GA) to the K-Nearest Neighbors (KNN) 

model. However, the Computer-Aided Diagnosis (CAD) 

system was required to be developed for performing GI 

disease classification as it utilized CNN models such as 

CapsuleNet and DenseNet applied on complex data. Further, 

stomach deformities are detected through deep learning 

techniques. Machine learning algorithms were used for early 

AI detection that uses features for selecting before undergoing 

training. The features are trained during the scene where the 

amount of data used was relatively small for performing 

segmentation. A database composed of four datasets—Kvasir, 

CVC-ClinicDB, Private, and ETIS-LaribPolypDB—was used 

to analyze four different types of stomach infections, including 

ulcers, bleeding, esophagitis, and polyps. Using the 

aforementioned database, this method outperforms others, 

achieving a remarkable accuracy rate of 96.5%. 

Liu et al. [19] investigated the use of Computed 

Tomography (CT) for texture analysis, predicting features 

from histopathology images to identify gastric cancer. The 

team used entropy and standard deviation features derived 

from the CT image's textural parameters to calculate the 

maximum and mean attenuation. The mode in the portal 

venous phase for all percentiles showcased promising non-

invasive methods to identify the signet ring cell carcinoma 

(SDC) and perform differentiation. Improvements in the 

Lauren classification and vascular invasion processes for 

stomach cancer have facilitated better patient treatment and 

evaluation. 

Sundaram and Santhiyakumari [20] employed a Computer-

Aided approach for colon cancer detection in Wireless 

Capsule Endoscopy (WCE) images based on the Region of 

Interest (ROI) color histogram images and a Support Vector 

Machine (SVM). Their developed framework conducted 

preliminary processing on the digital image using the k-means 

clustering technique to identify instances of colon cancer. K-

means clustering was applied to the digital images for tumor 

detection in the colon. The features extracted from the 

images—in terms of correlation, contrast, homogeneity, and 

energy—were applied to the Spatial Gray Level Dependence 

Matrix (SGLDM) model. The selected features that identified 

the tumor as malignant or normal were inputted into the SVM 

classifier. The gathered features were utilized to enhance the 

hybrid feature vector for the accurate categorization of 

malignancies. Experimental results from this method 

demonstrated its capacity to accurately detect tumors in colon 

images, with an evaluation rate of approximately 95%. 

Convolutional layers of the deep neural network framework, 

which extract training features for cancer identification, served 

as the basis for the deep learning models. Gastric cancers were 

detected based on various aspects of work that included 

different types of gastric cancer, performing both 

classification and segmentation for gastric cancer detection 

using Artificial Intelligence (AI). Detection of gastric cancer 

primarily relied on endoscopy images and pathological images. 

Wang et al. [21] developed a Convolutional Neural Network 

(CNN) model to recognize biopsy tissue from Hematoxylin 

and Eosin (H&E) stained images and identify diseases. The 

lesions detected helped assess the malignancy in digestive 

system-related problems. The developed model rapidly 

learned the features adaptively at multiple levels of abstraction 

using the CNN, showing promising results for pathological 
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image analysis. The model highlighted areas that provided 

evidence for the classification of the tumor when given as an 

input. The CNN, U-Net, and CNN—the most popular deep 

learning models for digital subtraction cytography (DSC) 

detection, segmentation, and classification—were all fully 

utilized in the developed model. 

Limitations of Existing Systems 

Existing algorithms can sometimes misclassify benign 

structures as cancers or overlook actual tumors. To enhance 

the reliability of these algorithms, it's crucial to minimize such 

errors. Automated algorithms may struggle with atypical 

tumor shapes, small tumors, and tumors located near critical 

structures. Additionally, the ability of the algorithm to 

generalize might be hampered if certain examples are missing 

from the training data. Deep learning algorithms for automatic 

detection and segmentation may be prone to overfitting, where 

they memorize training data without being able to generalize 

to new data. This limitation necessitates appropriate 

regularization. The implementation of automated algorithms 

in medical settings raises ethical and legal concerns, such as 

patient privacy, data security, and accountability for algorithm 

errors or misinterpretations. 

Problem Identification 

Tumors in the gastrointestinal tract can vary in shape and 

size, and can develop in different sites within the digestive 

system. While some tumors may be evident and easy to 

distinguish, others may be subtle and challenging to detect. 

The automation system needs to be capable of handling this 

variance and accurately classifying tumors with different 

characteristics. 

To be considered reliable for clinical application, an 

automated system must minimize both false positives 

(misidentifying non-existent tumors) and false negatives 

(overlooking actual tumors). The system needs to be efficient, 

achieving a high true positive rate while reducing false 

detections. 

The system should be able to generalize across different 

patient demographics, endoscopy procedures, and imaging 

conditions. Additionally, it should be capable of evolving over 

time to accommodate changes in medical protocols and 

technological advancements. 

3. PROPOSED METHODLOGY

Figure 1. The block diagram of proposed bottle neck feature 

supervised U-Net for cancer detection 

The block diagram for the suggested method is shown in 

Figure 1. The Kvasir dataset, which includes pictures of the 

intestines, is also shown in this graphic. The normalisation 

method is used for the pre-processing of the intestinal pictures. 

The masked regions are predicted using layer masking. Lastly, 

the suggested Bottleneck Feature Supervised U-Net is used to 

perform automatic segmentation and classification. 

3.1 Dataset 

The Kvasir dataset [22] consists of hundreds of images for 

each class that illustrate phatological findings, anatomical 

landmarks, or endoscopic procedures in the GI tract. The 

images were annotated and verified by medical professionals 

(experienced endoscopists) as shown in Figure 2. There are 

sufficient images to employ for a variety of applications, 

including transfer learning, machine learning, image retrieval, 

deep learning, etc. The clinical findings include esophagitis, 

polyps, ulcerative colitis, etc., whereas the anatomical markers 

include Z-line, pylorus, cecum, etc. For the excision of the 

lesion with raised polyps and coloured resection margins, only 

a few sets are required. The dataset contains various picture 

resolutions for the image, ranging from 720×576 to 

1920×1072. The images are divided into classes, each of 

which is represented by a green image that shows how the 

endoscope was set up to focus on the patient's bowel 

movements. The models for electromagnetic imaging 

demonstrated how to analyse images with evidence and what 

kind of information is crucial for investigations. In order to 

recognise the endoscopic image findings, the model must 

handle it carefully. 

Figure 2. Sample image from Kvasir dataset 

3.2 Data preprocessing 

The obtained datasets go through a pre-processing 

procedure that uses the min-max approach for normalisation. 

By lowering the minimum value, it demonstrates the worth of 

interest, and a unique augmentation model was used to 

increase the data's runtime. The model is generalised to 

produce better results, and the pre-processing step improves 

the image by removing any noise or obstructions and 

performing the segmentation procedure. In order to identify 

the precise site of the disease, the current research activity 

painstakingly analyses and takes into account a significant 

amount of patient data. The massive dataset is made up of data 

that was missing as a result of faulty technology, an error on 

the part of a person, or a faulty database. The image data 

contains ambiguous and incomplete medical information that 
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will be eliminated to enhance the image quality. Data pre-

processing is used to finish the data integration process. 

Processing of the min-max normalisation, which was a crucial 

step in both the integration and data normalisation processes. 

The feature value's minimum and maximum values are now 0 

and 1, respectively. The values are expressed as decimals 

between 0 and 1. The normalisation procedure is expressed in 

Eq. (1), which provides an example. 

Assume that the initial gastrointestinal tract data is labelled 

X, and that you will scale it using Min-Max scaling to obtain 

the scaled data X_scaled. The Min-Max scaling formula can 

be stated as follows for each feature (voxel intensity) x in X: 

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑀𝑖𝑛𝑥

𝑀𝑎𝑥𝑥 − 𝑀𝑖𝑛𝑥

 (1) 

 

The scaled value of the original feature is X_scaled. The 

feature's minimum value for the entire dataset is represented 

by Minx. The maximum value of the feature over the entire 

dataset X is represented by Maxx. 

 

3.3 Mask segmentation 

 

When large complex images need to establish a Region of 

Interest based on anatomical structure, segmentation is crucial. 

Low contrast and concealed contrast are present in the organ 

with a boundary in the noisy pixels. In order to classify cancer, 

the neighbourhood pixels must look at the various types of 

intestinal tissue. Pre-processing is a method for accurately 

identifying cancer by getting through noisy pixels. For the 

purpose of computing two sections of intestine images and 

accurately identifying cancer, the mask segmentation of an 

intestine part is carried out. To compute T1w and T2w mask 

segments, the intestine is segmented, and the results are 

reported as follows: 

Step 1: The T2w image is resampled in step one until it 

matches the resolution of the T1w image. 

Step 2: The voids in the T2w image are removed during the 

foreground segmentation. 

Step 3: The T1w image is rescaled and matched based on the 

closed T2w intensity-based image to attain the highest intensity 

value. 

Step 4: The foreground image is segmented to create the 

background image, and the output image produces the region-

growing section that is depicted in Figures 3 and 4. 

The Eq. (2) is used to determine the class probabilities 

inside the weights. 

 

𝑞1(𝑡) = ∑ 𝑃(𝑖)𝑡
𝑖=1 , 𝑞2(𝑡) = ∑ 𝑃(𝑖)𝐼

𝑖=𝑡+1 𝑞𝑛(𝑡) (2) 

 

= ∑ 𝑃(𝑖)𝑛
𝑖=𝐼+𝑡+1   (3) 

 

The threshold values vary in range from 1 to t. The pixel 

probabilities P with background and foreground weighted 

classes are represented by q1……n. According to Eq. (4), the 

class means weighting the image as T1w with an intensity value 

that is closer to T2w. 

 

𝜇1(𝑡) = ∑
𝑖𝑃(𝑖)

𝑞1(𝑡)
𝑡
𝑖=1    

𝜇2(𝑡) = ∑
𝑖𝑃(𝑖)

𝑞2(𝑡)
, . . . . . ,𝐼

𝑖=𝑡=1 𝜇𝑛(𝑡) = ∑
𝑖𝑃(𝑖)

𝑞𝑛(𝑡)

𝑡
𝑖=𝑛   

(4) 

 

According to the Eq. (3) above, μ1 and μ2 represent the 

average grey level values with I being the intensity value with 

the highest value. The segmented mask region features a 

structural element that can be utilized as an input to produce 

identical-sized output images with high-quality results. The 

goals for the large-scale medical images that produced correct 

findings during categorization are the focus of the current 

research project. 

 

 
 

Figure 3. The input and masked images obtained for 

gastrointestinal images 

 

 
 

Figure 4. The input and masked images obtained for 

gastrointestinal images and predicting the masked regions 

 

3.4 Base U-Net architecture 

 

The U-Net network is divided into two parts: The first 

choice has a typical CNN design and is known as the 

contracting path. A ReLU activation unit, a layer for max-

pooling, and two successive 33 convolutions make up each 

segment of the contracting circuit. There have been a number 

of changes made to this configuration. The novel features of 

the U-Net design may be seen in the following step of the 

expansion route, where each phase employs 22 up-

convolutions to improve the resolution of the feature map. 

The upsampled feature map is then properly trimmed and 

connected to the feature map of the corresponding layer within 

the contracting pathway. ReLU activation is followed by two 

more convolutions of 33. A set of 11 finishing convolutions is 

used to reduce the feature map to the necessary channel count 

and create the segmented image. In order to remove pixel 

attributes in the peripheries, which carry little contextual 

information, cropping is required. As a result, a network 

structure in the shape of an u appears. An important aspect of 

the network's contextual information distribution is that it 

enables the network to distinguish between objects that 

overlap in several regions, improving its capacity to identify 

things in various places. 

The network's energy function is given by: 

 

𝐸 = ∑ 𝑢(𝑦) log (𝑞𝑙(𝑦)(𝑦))  (5) 
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where, pl is the final feature map's pixel-wise SoftMax 

function, which is defined as: 

 

𝑞𝑙 = exp(𝑎𝑙(𝑦)) / ∑ exp (𝑎𝑙(𝑦)′)𝑙
𝑙′=1   (6) 

 

and al stands for channel k activation. 

 

3.4.1 Proposed bottle neck feature supervised U-Net 

The Bottleneck U-net architecture is a variation on the well-

known U-Net architecture, which is used for image 

segmentation tasks [23]. It combines the contracting and 

expanding channels of the U-Net architecture with a 

bottleneck layer in the middle, hence the name "Bottleneck U-

Net." This change is intended to improve the model's 

representation power and efficiency in capturing both low-

level and high-level elements in the input data. 

 

 
 

Figure 5. Architecture of proposed bottle neck feature 

supervised U-Net 

 

Figure 5 depicts the BS U-Net composition, consisting of 

an encoding U-Net (auto-encoder) and a segmentation U-Net 

(predictor). A bottleneck layer is introduced between the 

encoder and decoder paths in the Bottleneck U-net design. 

This layer is intended to extract very abstract and complicated 

features from incoming data, thereby functioning as a link 

between the contracting and expanding routes. The bottleneck 

layer acts as a compact representation of the critical elements 

of the input image, assisting in improving the model's overall 

segmentation performance. 

Within this study, both conventional U-Nets with skip 

connections and those without are employed as models for 

constructing segmenting and encoding U-Net structures. 

Notably, the BS U-Net harbors substantial potential for 

advancement, as any U-shaped neural network has the 

capability to serve as a building block for constructing a U-Net 

framework. 

To train the BS U-Net, the process begins by training the 

encoding U-Network using label maps as both input and labels. 

The encoding U-Net functions as an auto-encoder, 

compressing the data into a low-dimensional representation at 

the bottleneck layer. These encodings serve an additional 

supervisory role during the training of the segmentation U-

Network. The training employs a comprehensive loss function 

for the segmentation U-Net, which combines two distinct loss 

functions associated with the input image and its 

corresponding label. 

There are two primary loss components: 

Euclidean loss, computed between the bottleneck feature 

vectors produced by the segmentation U-Net using an input 

image and the encoding U-Network utilizing the label. 

Dice loss, which measures the dissimilarity between the 

network's output and the label mappings. 

Given that the encoding U-Net functions as an auto-encoder, 

the segmentation U-Net acts as a predictor. The overall loss 

function used for training is a weighted average of the 

Euclidean loss and the Dice loss. Notably, the architecture of 

the BS U-Net shares similarities with the "T-L network" [24]. 

Monitoring the bottleneck feature vector is critical for the 

reasons listed below. When given the same set of intensity 

photos, matching label mappings, completely trained 

segmentation and encoding U-Nets, and pairs of intensity 

photographs, both instances must yield identical binary 

segmentation maps. As a result, any changes to the bottleneck 

feature vector prior to decoding are not recommended. Based 

on the previously supplied information, the details of the 

bottleneck feature vector may now be examined. Incorporating 

encoding information, such as supervision, has the potential to 

enhance segmentation performance and shorten training time, 

as shown by the results from the studies described in section 4. 

 

3.5 Loss function 

During the network training phase, the discrepancies 

between the expected and actual values were calculated using 

the loss functions weighted dice loss and binary cross entropy. 

Eqs. (2) and (3) give the formulas for computing binary cross-

entropy and weighted dice loss, respectively. 

 

𝐿 = −𝑊 (
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
)  (7) 

 

The definitions of true positive, false positive, false negative, 

and false negative are denoted by the acronyms TP, FN, FP, 

and FN, respectively. The letter W stands for a weighting 

factor that is used to balance the difference in class frequency 

between the foreground and background. 

 

𝐵 =
−1

𝑀
∑ 𝑦𝑖 .𝑀

𝑖=1 log log (𝑞(𝑦𝑖)) + (1 −

𝑦𝑖). log 𝑙𝑜𝑔 (1 − 𝑞(𝑦𝑖))  
(8) 

 

 

4. RESULTS 

 

The suggested method assesses the categorization outcomes 

using metrics for accuracy, precision, F-score, and recall. 

Because of the class imbalance in the MRI dataset, these 

evaluations point to the necessity for model generalization. 

These metrics assess the overall effectiveness of the model as 

well as the level of inequality in class distribution. On a 

computer with an Intel Core i7 processor, 48 GB of RAM, and 

a 2 GHz CPU, the simulations are run. Cross-validation is a 

part of the process, and metrics for accuracy, precision, and 

recall that are obtained from the confusion matrix are 

presented. 

 

4.1 Performance metrics 

 

The performance measures used to evaluate the proposed 

method is explained as follows: 

 

Accuracy: 

The percentage of accurate predictions relative to all other 
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predictions is what is meant by the term "accuracy." Eq. (9), 

when used, establishes the performance metric for accuracy. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
× 100  (9) 

 

Sensitivity: 

The term sensitivity is defined as the calculation for 

measuring the positive ratios that are determined correctly. 

The sensitivity term is defined as shown in Eq. (10): 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(%) =
𝑇𝑃

𝑇𝑃 +𝐹𝑁
× 100  (10) 

 

Specificity: 

The term specificity is defined as the ratio of negatives 

which are determined correctly defined using the Eq. (11): 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(%) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100  (11) 

 

Precision: 

Precision is defined as the ratio of overall positive results to 

overall positive predictions. Eq. (12) expresses the accuracy 

metric. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(%) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100  (12) 

 

F-score: 

The term F-score computes the accuracy for the model 

which is the combination of recall and precision. The F-score 

is measured as shown in Eq. (13): 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒(%) =
𝑇𝑃

𝑇𝑃+1/2(𝐹𝑃+𝐹𝑁)
× 100  (13) 

 

The notations TP, TN, FN, and FP represent the values for 

"True Positive," "True Negative," "False Negative," and 

"False Positive" in accordance with the equations presented. 

 

4.2 Quantitative analysis 

 

Table 1. Results obtained for the proposed model 

 

Performance 

Measures 

Number of Training 

Data 

Percentage 

(%) 

Accuracy 

2500 94.36 

5000 96.21 

7500 98.64 

Sensitivity 

2500 87.54 

5000 89.13 

7500 93.28 

Specificity 

2500 99.45 

5000 99.62 

7500 99.71 

F-measure 

2500 87.25 

5000 91.63 

7500 98.12 

Precision 

2500 91.05 

5000 92.41 

7500 98.08 

 

Table 1 shows the performance obtained for the BS-U-Net 

architecture for the cross validated test data. An auto encoder 

creates a low dimensional encoding method for the bottleneck 

layer using the U-Net based functions as input. After that, the 

features are encoded to execute supervision for segmentation 

using the U-Net. The input photos are segmented, and the label 

corresponding to it creates an error loss function. Once the 

transition is performed the test dataset which submits for the 

evaluation of the competition organizer. Figures 6 and 7 show 

the results for supervising Bottleneck feature vectors 

condensed dimensional lowered data are represented as label 

maps. This transmission of data helps to control the FP and FN 

mistakes are reduced which in turn reduced the shape 

distortions. The table is evaluated and makes sense for the 

three perspective functions. First, the model evaluates the 

suggested approach by accounting for the volume of data, and 

an average numerical improvement of 4% is realized. Because 

a greater number of training samples leads to improved test 

performance, variation in the number of training samples is 

used in the evaluation process. The proposed approach is then 

compared to deep learning architectures. 

 

 
 

Figure 6. The Graphical representation for the obtained error 

values with respect to Epochs 

 

 
 

Figure 7. The Graphical representation for the error values 

obtained with respect to Epochs 

 

 

5. DISCUSSIONS 

 

5.1 Comparative analysis 

 

The efficiency of the suggested method is assessed by 
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comparison with current methods that displayed the result for 

various approaches that correspond to the KVASIR dataset 

that has been assessed using more traditional methods. Table 

2, which offers more results than other cutting-edge techniques 

in the classification procedure, is what we looked at. Due to 

instances of misclassification, the model's accuracy was 

reduced because it was trained on a small sample of photos 

from the KVASIR dataset. The developed model lacked in the 

enhancement of images during the pre-processing phase and 

thus the datasets with labelled data showed problems for the 

medical image dataset. The developed LSTM-ANN model 

utilized a small size of data for evaluation of results which 

showed better memorization of the image based on their 

previous states. However, when the large size of data is not 

utilized for evaluation the LSTM-ANN model which was not 

able to memorize the image data. The accuracy performance 

failed to choose an appropriate number of parameters using 

GA for obtaining mutation rate and cross over. The model 

showed improvement in the performances that was lowered 

when the increase in a number of classes. Whereas the 

proposed model considered image samples of 7500 that 

utilized the proposed BS- U-Net for the process of 

automatically segmenting, features selection and classification 

that improved the learning rate as well as the performances for 

obtaining better precision, f-measure, and accuracy values 

Table 2 displays a comparison of the proposed and current 

models. 

 

Table 2. Comparative analysis 

 

Authors Dataset 
Accuracy 

(%) 

Precision 

(%) 

Measure 

(%) 

Mohapatra 

et al. [16] 

KVASIR 

97.25 97.56 97.59 

Öztürk and 

Özkaya [17] 
97.90 94.46 92.64 

Majid et al. 

[18] 
96.5 95.22 95.21 

Proposed 

BS U-Net 
98.64 98.08 98.12 

 

5.2 Implication and significance of the proposed work 

 

The gastrointestinal tract can now more accurately detect 

and segment these tumours because to the implementation of 

a U-Net architecture with a bottleneck feature extraction 

component. The bottleneck feature improves the model's 

capacity to distinguish between healthy digestive system and 

tumour regions accurately by capturing crucial data and 

abstract representations of the tumour regions. Radiologists 

and physicians are relieved of some of their work by 

segmentation and detection of digestive system. This 

technique saves important time and resources while improving 

the effectiveness of diagnostic and treatment planning by 

delivering quick and reliable results. For successful treatment 

and better patient outcomes, gastrointestinal tract must be 

accurately and quickly detected. This method aids in the early 

detection of tumours, allowing medical personnel to intervene 

sooner in the course of the disease. The suggested approach 

advances the field of computer-aided diagnosis, deep learning, 

and continuing research in medical picture analysis. It lays the 

groundwork for more investigation and development of 

comparable architectural designs for other medical imaging 

activities. 

 

5.3 Confounding factors 

 

Patients with various characteristics, such as age, gender, 

general health, and other underlying medical issues, may be 

included in the study. These variables may affect how 

gastrointestinal tract tumours appear dataset, which could have 

an impact on the effectiveness and generalizability of the 

model. The appearance of tumours can be impacted by the 

presence of prior treatments or changes in tumour size brought 

on by progression. The model's predictions may be less 

accurate if these factors are not adequately taken into account. 

Due to variations in genetic characteristics, lifestyle choices, 

and illness frequency, the model's performance may change 

among various ethnicities and demographic groups. 

 

 

6. CONCLUSIONS 

 

The proposed BS U-Net technique was used in the current 

study to identify the GI anomalies. The results of the suggested 

approach showed that 8000 images from the KVASIR V2 

dataset were used for both training and testing. The present 

research work utilized a raw dataset that consisted of an 

unbalanced size dataset for performing the process of scaling 

and enhancement. The proposed Bottlenecks in U-Networks 

are a way that forces the model for performing the input data 

compression and it is quite important to learn the input data 

compression. This compressed view of data consists of useful 

information which is utilized for input image reconstruction 

and is called as segmentation process. As a result, eight 

separate classifications—Z-line, pylorus, cecum, esophagitis, 

polyps, ulcerative colitis, dyed and lifted polyps, and dyed 

resection margins—are automatically applied to the precise 

segments. However, the handheld values were believed that 

gastric cancer was helpful to determine the biopsy samples 

taken from the patient to determine area required a useful 

model. The proposed methodology successfully and quickly 

identified cancer, reducing the amount of time needed for 

diagnosis. The proposed model outperformed the LSTM-ANN 

and GA Algorithms, with accuracy and specificity of 98.64% 

and 99.71, respectively. By extending the current method to 

handle three-dimensional images, gastrointestinal tract can be 

accurately segmented in three dimensions (3D). This might 

offer a more thorough image of tumour location and 

morphology, improving clinical applications. 
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