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Face detection constitutes a pivotal task in computer vision, with its utility extending across 

security and surveillance, biometrics, human-computer interaction, and entertainment. This 

technology facilitates the automated recognition and location of human faces within images 

or videos, a feature instrumental for identification, authentication, and tracking. However, 

the efficacy of face detection algorithms is compromised under low-light conditions 

prevalent in CCTV videos, due to variations in illumination levels. To address this 

challenge, this study introduces a video enhancement method, the Enhanced Deep Curve 

Estimation (EDCE), designed to augment the quality of low-light CCTV footage, thereby 

improving face detection accuracy. To circumvent the redundancy of frames during face 

detection from the input video, a key frame extraction method was employed. Subsequently, 

the Retina Face was utilized to detect faces from the enhanced CCTV video keyframes. The 

CCTV videos evaluated in this study were sourced from public cameras, and the 

performance of the EDCE model was assessed against other existing enhancement models. 

The findings reveal that the EDCE model exhibits superior performance with a Peak Signal-

to-Noise Ratio (PSNR) of 21.37 and a Structural Similarity Index Measure (SSIM) of 0.83. 

Further, the face detection evaluation yielded an Average Precision of 0.847, signifying the 

effectiveness of our enhancement methodology. This study, thus, underscores the potential 

of the EDCE model in enhancing the performance of face detection systems under 

challenging low-light conditions. 
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1. INTRODUCTION

Face recognition has become increasingly crucial for 

surveillance applications in various settings, including banks, 

supermarkets, traffic monitoring systems, criminal 

identification, crowd monitoring, active device authentication, 

facial biometrics for payments, and autonomous vehicles. The 

prerequisite for accurate face identification is high-quality 

video footage, the quality of which depends on several factors, 

such as hardware selection, camera positioning and direction, 

and ambient lighting conditions. Regrettably, lower-resolution 

CCTV systems often generate pixelated, poorly lit, and noisy 

images, impeding information extraction and adversely 

affecting the overall performance of face detection and 

identification in surveillance systems. Hence, it is imperative 

to implement low-light enhancement techniques that can offset 

the performance deficiencies caused by substandard image 

quality. 

Moreover, videos inherently comprise numerous frames, 

many of which carry redundant information. This redundancy 

results in multiple detections of the same individual, thereby 

escalating memory usage, computational resources, and 

processing time, which represents a significant hurdle in 

achieving efficient video-based face identification. 

Furthermore, faces present considerable variations in aspects 

such as position, lighting, blur, occlusions, and video quality, 

primarily due to being extracted from unrestricted recordings. 

Consequently, a robust face detection system must be 

equipped to manage these divergences and effectively address 

the challenges intrinsic to face detection. 

This paper focuses on videos captured in low-light 

environments, where face detection presents a formidable 

challenge. To address this, initial video enhancement is 

performed. Historically, the Histogram Equalization method 

[1-5] was employed for image enhancement by adjusting 

intensity levels. While this method is simple and effective, it 

is susceptible to noise, which can lead to undesirable outcomes 

in the enhanced image. The process of equalizing the 

histogram to adjust intensity levels can sometimes result in the 

loss of subtle image details. In some instances, Histogram 

Equalization can introduce unnatural colors or artifacts, which 

can degrade the overall quality and realism of the enhanced 

image. Another prevalent enhancement technique is the 

Retinex theory [6-13], based on the human visual perception 

system. This enhancement technique considers an image as a 

composition of reflectance and illumination. However, the 

Retinex technique is limited in its applicability to real-time 

applications due to its computational intensity and slow 

operation for larger images. Additionally, this technique 

requires multiple images of the same scene captured under 
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different lighting conditions to calculate color constancy, 

which can be impractical in certain scenarios. 

Deep learning techniques [14-17] have recently surpassed 

traditional methods with their superior performance and 

efficiency. However, most of these models are optimized for 

image enhancement. Video enhancement is a more complex 

task as it involves processing larger data volumes and dealing 

with various types of noise and artifacts. In video enhancement, 

maintaining temporal consistency between frames is critical to 

prevent flickering. Additionally, these enhancement 

techniques can be computationally demanding, particularly 

when dealing with high-resolution videos. As a result, their 

usage may be limited to real-time applications or devices with 

constrained processing capabilities. For instance, motion blur 

can manifest in videos when objects move too fast, causing a 

loss in detail and sharpness. Furthermore, the limited data 

available for video enhancement makes it challenging to train 

deep-learning models. 

In this paper, we introduce a novel model, the Enhanced 

Deep Curve Estimation (EDCE), which builds upon the DCE-

Net [18] architecture. Like DCE-Net, EDCE is a lightweight 

network that does not require paired or unpaired data for 

training. We propose a cubic enhancement function within the 

EDCE model, establishing a stronger non-linear association 

between the input and enhanced image. This function 

effectively preserves critical features and enhances visual 

details, thereby improving overall image quality. 

Upon applying the EDCE model for video enhancement, we 

proceed with Key-Frame extraction. This module enables us 

to identify and extract the key frames from the video, 

eliminating redundant frames and focusing exclusively on the 

essential ones. By processing only these key frames, we can 

achieve higher accuracy in face detection while 

simultaneously reducing computational complexity and 

storage needs. For the Key-Frame extraction process, we 

utilize a CNN-based model. 

To identify faces within the enhanced video footage, we 

deploy the Retina Face model [19], a state-of-the-art face 

detection model. This final step aims to demonstrate the 

efficacy of our proposed image enhancement model in 

enhancing the accuracy of face detection. By integrating the 

EDCE enhancement model, Key-Frame extraction, and Retina 

Face, we aim to enhance video quality and optimize face 

detection performance in low-light environments. 

The primary contributions of this paper are as follows: 

⚫ Enhanced low-light CCTV videos using the EDCE 

(Enhanced Deep Curve Estimation) model. 

⚫ Proposed a CNN-based Key Frame extraction module 

to avoid redundant frames. 

⚫ Demonstrated face detection results using both 

existing and proposed video enhancement methods. 

The remaining sections of the paper are organized as 

follows. Section 2 provides an overview of related works in 

the field of low-light video enhancement and Keyframe 

extraction. Section 3 outlines the employed methodology, 

which includes details about the EDCE model and the CNN-

based Keyframe extraction module. Section 4 describes the 

experimentaldetails, including the dataset used and the 

evaluation metrics. Section 5 presents the results obtained 

from the experiments, comparing the performance of the 

proposed method to existing approaches. Finally, Section 6 

draws conclusions based on the study's findings and discusses 

potential areas for future research in this domain. 

 

2. RELATED WORKS 

 

Deep learning techniques have recently surpassed 

traditional methods such as Histogram Equalization, Retinex 

Theory-based models, and Gamma correction [20, 21]. Many 

of these conventional methods primarily focus on enhancing 

the image's brightness, but often neglect the issue of noise 

amplification. As a result, increasing the brightness often 

simultaneously increases the noise, leading to a degradation in 

image quality. Some methods, like Retinex-based models, 

perform enhancement and denoising separately. However, if 

enhancement precedes denoising, it can amplify noise, and if 

denoising precedes enhancement, it can result in image 

blurring. 

To overcome the problems of blurring and noise, Lv et al. 

[22] proposed an attention-guided low light enhancement 

model that simultaneously enhances brightness and removes 

noise. However, this model struggles to capture facial details 

within highly dark regions of the image and can create 

blocking artifacts due to heavy compression. Che Aminudin 

and Suandi [23] proposed a deep learning model that utilizes 

CNN and an autoencoder model to tackle issues of low 

illumination, low resolution, and noise. Anitha and Kumar [24] 

focused on improving image resolution and illumination while 

reducing noise using a GAN model. However, this model is 

particularly effective for images taken indoors. 

Retinex DIP (Deep Image Prior) model, proposed by Zhao 

et al. [25], integrates Retinex theory and neural networks. This 

model enhances the low-light input image by obtaining 

illumination information through Retinex decomposition. 

Notably, this model only requires a single low-light image for 

training and does not rely on any external datasets. Lamba et 

al. [26] introduced LLPackNet, which enhances the image 

while reducing memory utilization and model parameters. 

Although this model reduces processing time, it can introduce 

blurring for larger down-sampled images. 

Li et al. [27] proposed a lightweight Zero DCE (Deep curve 

Estimation) network that eliminates the need for paired and 

unpaired data. Despite its merits, like any deep learning-based 

method, this model requires a large training dataset and careful 

parameter tuning to achieve optimal results. Furthermore, the 

enhancement curve of this image enhancement model is linear, 

which may not capture complex non-linear relationships. We 

propose a quadratic enhancement curve to address this 

limitation, where the output is computed using a quadratic 

function of the input image. 

In the field of CCTV monitoring, keyframe extraction is a 

valuable tool that selects a representative subset of frames 

from a video sequence. This can greatly assist in identifying 

and tracking faces in video footage, facilitating efficient 

analysis of large volumes of CCTV footage. Muhammad et al. 

[28] extracted keyframes using a combination of Mobile Net 

architecture, memorability and entropy scores, and color 

histograms. However, the processing rate of 18 fps may not 

suffice for real-time video surveillance applications. 

Basavarajaiah, and Sharma [29] performed keyframe 

extraction by selecting keyframes specifically when a 

significant scene change was detected within the video. Yuan 

et al. [30] proposed a Global Motion Statistics-based Scheme 

(KEGMS) that extracts keyframes based on global motion and 

events. Yasmin et al. [31] proposed a novel agglomerative 

clustering algorithm for extracting informative frames based 

on key moments. However, this model may require high 

computation time for larger input video files. In this study, we 
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adopt a technique inspired by Basavarajaiah and Sharma [29] 

due to its efficiency and speed, incorporating a pre-trained 

model to extract features from video frames and a 

straightforward frame selection algorithm for video 

summarization. 

 

 

3. METHODOLOGY 

 

The primary focus of this paper is to enhance the quality of 

CCTV videos captured in low-light conditions. The quality of 

these videos is influenced by assorted aspects such as the 

camera's quality, position, lighting conditions, and the distance 

between the camera and the human face. Therefore, a novel 

video enhancement is performed first to enhance the dark 

videos. Then, from this enhanced video, the keyframes are 

selected to avoid processing repeated frames. Finally, the face 

is detected by using the pre-trained model RetinaFace. 
 

3.1 Video enhancement 
 

Inspired by the work of Guo et al. [18], we proposed EDCE 

(Enhanced Deep Curve Estimation) to enhance the low light 

input CCTV video. Like the zero DCE model, the EDCE 

model also contains seven convolutional layers, each featuring 

32 filters with a dimension of 3×3 and a stride of 1With the 

exception of the last layer, the ReLU activation function is 

applied to all the other layers. The Tanh activation function is 

specifically used in the last convolutional layer. Furthermore, 

the model takes an image as input and generates higher-order 

curves to facilitate image enhancement. In the paper [18], the 

authors used the below formula for enhancement: 

  

LEC((I(i);γ)=I(i)+γI(i)(1-I(i))  (1) 

 

Here I(i) denotes the pixel in the input image, 1-I(i) 

represents its complement, and γ is the learned parameter that 

controls the enhancement amount applied to the input low-

light image learned during training. A higher value of γ results 

in a stronger enhancement effect, while a lower value of γ 

results in a more subtle effect. However, this model fails to 

enhance the extremely low-light images. Hence, we changed 

Eq. (1). to find the enhancement curve to capture more 

complex variations in the input image. Eq. (2). is the modified 

low light enhancement curve. 

 

LEC((I(i): γ) = I(i) + γI(i)2(1 − I(i))2  (2) 

 

To apply the above equation for video, first, we convert the 

video into frames then it is passed to the enhanced DCE model 

to perform an enhancement. Here the enhancement curve is 

repeatedly applied to the enhanced until we get the expected 

enhanced frame. For that, the difference between the enhanced 

frame from the current iteration and the previous iteration is 

calculated. Before this step, we have to fix the threshold value 

in the initial stage. Here the specified threshold value is 0.3. If 

the difference is below the threshold, the enhancement process 

is stopped, and the final enhanced image is returned as the final 

result of the processing. On the other hand, if the difference is 

above the threshold, the enhancement process continues with 

another iteration. Figure 1 shows the complete architecture of 

video enhancement. 

 

3.1.1 Loss functions 

To improve the quality of the enhanced frames, loss 

functions are utilized. In this paper, we utilized four different 

loss functions, including the spatial consistent loss function, 

color constancy loss function, exposure control loss, and total 

variation loss. 

 

 
 

Figure 1. EDCE architecture 
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Spatial consistent loss function (Lsc) 

The non-reference Spatial consistency loss function aims to 

maintain spatial consistency between the input and enhanced 

images by minimizing the differences in their spatial structures. 

This loss function can be mathematically represented as: 

 

𝐿𝑠𝑐 =
1

𝑁
∑ ∑ (|(𝐸𝑖 − 𝐸𝑗)𝑗∈𝑅(𝑖)

𝑁
𝑖=1 |  − |(𝐼𝑖 − 𝐼𝑗)|)2  (3) 

 

Here, N refers to the number of smaller regions partitioned 

from the image, while R represents the four conterminous 

regions incorporated at i. The variables E and I denote the 

output image after enhancement and the original image before 

enhancement. 

Color constancy loss function (Lcc) 

Non-reference color constancy loss is a loss function 

commonly employed in image enhancement algorithms to 

assess the color constancy of the enhanced image. Unlike 

reference-based methods, non-reference methods do not 

require a reference image to evaluate color constancy. Instead, 

they rely on statistical measures such as the Mean and 

Standard-deviation of pixel values to estimate the degree of 

color constancy in an image. 

 

𝐿𝑐𝑜𝑙 = ∑ (𝐸𝑝 − 𝐸𝑞)
2

∀(𝑝,𝑞)∈(𝑅,𝐺),(𝑅,𝐵),(𝐺,𝐵)   (4) 

 

where, Ep and Eq are the pixel values of the enhanced image at 

the corresponding positions in the color channels p and q. 

Exposure control loss (LE) 

This loss function aims to balance the exposure level across 

different partitions of the image by computing the difference 

between the intensity values of these partitions and the Well-

exposedness Measure (WEM). Here, value of E is measured 

by using the Gauss curve [32]. The loss function is defined as: 

 

𝐿𝐸 =
1

𝑁
∑ |𝐸𝑘

𝑁
𝑘=1 − 𝑊𝐸𝑀|  (5) 

 

Total variation loss (Ltv) 

Total Variation (TV) loss is used to reduce the amount of 

noise and artifacts in the enhanced image by minimizing the 

total variation of the image. Total variation measures the 

amount of variation in the intensity of adjacent pixels in the 

image. The TV loss encourages the enhanced image to have 

smooth and continuous regions by penalizing abrupt changes 

in the intensity of adjacent pixels. 

 

𝐿𝑡𝑣 (𝑒) = √(𝑒𝑖+1,𝑗 − 𝑥𝑖,𝑗 )
2 + (𝑒𝑖,𝑗+1 − 𝑥𝑖,𝑗 )

2  (6) 

 

where, e denotes enhanced image, and i and j represent the 

pixel coordinates in the image. Finally, the total loss function 

is given by: 

 

𝐿𝑇𝐿 = 𝐿𝑠𝑐 + 𝐿𝐸 + 𝑤𝑐𝑐𝐿𝑐𝑐 + 𝑤𝑡𝑣𝐿𝑡𝑣  (7) 

 

The weight factors wcc, wtv controls the trade-off between 

reducing noise and preserving fine details in the enhanced 

image. 

 

3.2 Key frame extraction 

 

In this research paper, we incorporated a keyframe 

extraction module to address the issue of processing repeated 

frames. As videos often contain redundant frames that do not 

contribute substantially to the overall content, selecting only 

frames that exhibit changes becomes crucial for efficient 

analysis. Here, we incorporated a keyframe extraction module 

based on a previous study [29] to optimize processing time and 

memory usage. For feature extraction, a pre-trained VGG16 

model [33] was employed to extract features from the video. 

The output of the final convolutional layer provided the feature 

representation for each frame. Subsequently, k-means 

clustering was applied to group the feature vectors of the 

frames. Keyframes were identified by selecting frames that 

were closest to the centroids of each cluster. These keyframes 

were then saved as individual images. 

Initially, the number of clusters was set to 5, and the optimal 

number of clusters was determined using the elbow method. 

Algorithm 1 and Figure 2 provide a comprehensive illustration 

of the keyframe extraction process, detailing the essential steps 

involved. The integration of this keyframe extraction module 

aimed to improve the efficiency of video analysis by focusing 

on frames that capture significant changes. This approach 

resulted in a more concise and informative video summary, 

reducing the processing of redundant frames. 

 

Algorithm  

Input: Video (V), Pre-trained CNN model (M), Number of 

keyframes to extract (K) 

Output: Set of K keyframes (KF) 

Step 1: Extract features from the video: 

Decompose video into frames {f1, f2, f3,……,fn} 

for each frame f in V: 

 Pass f into the Pretrained CNN model M to obtain feature 

map ℱ 

Flatten ℱ to a 1D feature vector fv. 

Store fv in a feature array F[]. 

Step 2: Determine the optimal number of clusters using the 

elbow method: 

Initialize an empty list of distortion values D. 

 for k in range (1, max(k+1)): 

Apply K-means clustering to F[] with k clusters, obtaining 

cluster labels L. 

Compute the distortion value for this clustering using the 

sum of squared distances between every point and its assigned 

centroid. 

Append the distortion value to D. 

Plot D as a function of k and identify the elbow point as the 

optimal number of clusters. 

Step 3: Apply K-means clustering to F [] with K clusters, 

obtaining cluster labels L. 

Select the keyframes from each cluster: 

For each cluster c in L: 

Compute the distance between each feature vector in c and 

the cluster centroid. 

Sort the feature vectors in c by their distance to the centroid. 

Select the top-ranked feature vectors as the keyframes for 

this cluster. 

Map each keyframe's feature vector back to its 

corresponding video frame and add it to the set of keyframes 

KF. 

Return the set of K keyframes KF. 

 

3.3 Detection 

 

After extracting the keyframes, faces are detected from it by 

using the pre-trained face detection model RetinaFace [19]. 

Retina Face is a face detection algorithm that can work in real-

world scenarios where faces vary in scale, pose, and occlusion. 
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It is a single-stage detector that uses a dense anchor box design 

and a multi-task loss function to simultaneously predict the 

bounding boxes of each detected face. The algorithm is based 

on a modified version of the Single Shot Detector (SSD) [34] 

architecture, which uses a single convolutional network to 

predict object detections. RetinaFace incorporates a novel 

scale-aware training strategy that helps the algorithm better 

handle faces of different sizes. 

 

 
 

Figure 2. Key frame extraction 

 

 

4. EXPERIMENTAL DETAILS 

 

The dataset we collected consists of a total of 219 videos, 

with a duration of 30s. The resolution of videos is 1920×1080. 

Due to the difficulty in obtaining real nighttime CCTV videos 

without light and with several people, we simulated low-light 

conditions by darkening videos captured during the period of 

6 pm to 10 pm using the OpenCV library. 

For video enhancement, we implemented the EDCE model 

using PyTorch on Google Colab Pro. The model was trained 

for 50 epochs with the Adam optimizer and a learning rate of 

0.0001. The goal was to improve the quality of the low-light 

videos and enhance important features while preserving visual 

details. After enhancing the videos, we utilized a keyframe 

extraction module based on a pre-trained VGG16 model. This 

module selected keyframes that represented significant 

changes in the video content. These keyframes were identified 

by applying k-means clustering to the feature vectors of the 

frames and selecting frames closest to the centroids of each 

cluster. Finally, we employed a Retina Face detection model 

to detect faces in the enhanced keyframes. This model was 

applied to identify and locate faces accurately within the low-

light video footage. The combination of video enhancement, 

keyframe extraction, and face detection aimed to improve the 

overall quality of the video to detect faces. 

In this study, we computed PSNR (Peak Signal to Noise 

Ratio) and SSIM (Structural Similarity Measure) [35] for 

evaluation purpose. PSNR is a widely used performance 

metric to evaluate the quality of enhanced images or videos. It 

measures the dissimilarity between the original and enhanced 

frames by computing the ratio between the maximum possible 

pixel value (peak signal) and the Mean Squared Error (MSE) 

of the two images. A higher PSNR value indicates that the 

enhanced video is more similar to the original. The formula to 

calculate PSNR value is given by:  

 

𝑃𝑆𝑁𝑅 = 20 log10 (
𝑀𝐴𝑋𝑝

√𝑀𝑆𝐸
)  (8) 

 

𝑀𝑆𝐸 =
1

ℎ,𝑤
∑ ∑ (𝑂(𝑥, 𝑦) − 𝐸(𝑥, 𝑦))2𝑤−1

0
ℎ−1
0   (9) 

 

In the PSNR equation, MAXp represents the maximum 

possible pixel value of the image (usually 255 for 8-bit 

images), while h and w represent the height and width of the 

image. O(x,y) represents the pixel value of the original image 

at position (x,y), while E(x,y) represents the pixel value of the 

enhanced image at the same position. 

On the other hand, SSIM considers not only the pixel values 

but also the structural information of the video. It compares 

the luminance, contrast, and structure of the original and 

enhanced video frames and calculates their similarity. The 

SSIM value ranges between 0 and 1, with 1 indicating perfect 

similarity. SSIM is known to correlate better with subjective 

visual quality than PSNR. The formula for calculating SSIM 

is: 

 

SSIM(o, e)  =  L(o, e)  ∗  C(o, e)  ∗  S(o, e) (10) 

 

where, o and e are the original and enhanced images, 

respectively. L(o,e), C(o,e), and S(o,e) are the luminance, 

contrast, and structure similarity measures, respectively, and 

are defined as: 

 

𝐿(o, e) =
(2 ∗ 𝜇𝑜 ∗𝜇𝑒+ 𝑐1)

(𝜇𝑜2+ 𝜇𝑒2  +𝑐1)
  (11) 

 

𝐶(o, e) =
(2∗𝜎𝑜 𝜎𝑒+𝑐2) 

(𝜎𝑜2+ 𝜎𝑒2  +𝑐2)
  (12) 

 

𝑆(o, e) =
𝜎𝑜𝑒+𝑐3

𝜎𝑜 𝜎𝑒+𝑐3
  (13) 

 

where, μo and μe represent the mean pixel values of o and e, 

respectively, similarly, σo and σe are the standard deviations of 

the pixel values of o and e, respectively, while σoe is the 

covariance of the pixel values of o and e, and c1, c2, and c3 are 

small constants to prevent division by zero. 

 

 

5. RESULTS 

 

The proposed model was compared with existing 

enhancement methods ZeroDCE [18], Enlighten GAN [36], 

LIME [11], Semantic-Guided zero-shot learning [37] to 

evaluate its performance. Figure 3 shows the sample frames of 

the input video. The hyperparameter settings are explained in 

section 4. Figure 4 shows the training and validation loss 

curves using the Enhanced DCE Video Enhancement model. 

For comparison, we used already published codes available on 
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GitHub. 

The results of various enhancement models are visually 

shown in Figure 5. From the resulting images, we can 

understand the EDCE video enhancement model provides 

better result as compared with other methods. Table 1 and 

Figure 6 presents the performance evaluation of the models 

using the metrics PSNR and SSIM. From this, we can 

understand our model is better than other models in extremely 

dark video enhancement. 

 

 
 

Figure 3. Sample low-light CCTV video frames 

 

After video enhancement, key frame extraction is 

performed. Figure 7 represents the output of keyframe 

extraction. By doing this, we can avoid repeated frames to 

detect faces. Here, we applied Retina Face to detect faces. 

Figure 8 illustrates the results of face detection in the enhanced 

video frames mentioned above. From the results, we can 

understand EDCE method outperforms the state-of-art 

enhancement methods. The proposed model not only increases 

the brightness of the image but also preserves its color, and it 

also provides a higher face detection rate. Figure 9 shows the 

training and validation accuracy of the Retina face detection 

model where the input frame is enhanced by using the 

proposed EDCE model. Figure 10 shows the Precision-Recall 

curve for face detection using different enhancement model 

images. However, a drawback of this model is the occurrence 

of flickering in the enhanced video. Flickering occurs when 

there are abrupt and inconsistent changes between consecutive 

frames after enhancement, causing visual disturbances in the 

video. To avoid flickering problems in video enhancement, 

you need to ensure temporal consistency across frames. 

 

Table 1. Quantitative evaluation of different enhancement 

methods 

 
Model PSNR SSIM 

ZeroDCE [2] 16.57  0.59 

MBLLEN [38] 20.56 0.71 

Enlighten GAN [17] 16.21 0.59 

LIME [18] 16.17  0.57 

Semantic-Guided-Low-Light-

Image-Enhancement [19] 

16.60  0.613 

EDCE 21.37 0.83 

 
 

Figure 4. Training and validation loss using the EDCE model 

 

  
 

Figure 5. Results of different enhancement model 
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(a) SSIM comparison 

 
 

(b) PSNR comparison 

 

Figure 6. Graphical representation of performance evaluation 

 

 
 

Figure 7. Sample output for keyframe extraction 
 

  
(a) Input image (b) Zero DCE [2] 
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(c) Enlighten GAN [17] (d) LIME [18] 

  
(e) Semantic-guided zero-shot 

learning [19] 
(f) EDCE 

 

Figure 8. Results of face detection in various enhancement results 

 

 
 

Figure 9. Training and validation accuracy of Retina Face detection model 

 

 
 

Figure 10. PR curve for face detection 

 

 

6. CONCLUSION 

 

In this paper, we proposed an EDCE model based on the 

Zero-DCE model to enhance low-light CCTV videos. Here, 

we used a cubic enhancement curve to enhance the video. 

From the visual results, we can observe that this model not 

only enhances the curve but also preserves the color details of 

the image. From the quantitative analysis, we can find that the 

PSNR and SSIM values are also high. After the enhancement, 

key frame extraction is performed to avoid repeated frames. 

2748



 

Then face detection is performed by using the RetinaFace 

detection method. With this enhancement, the face detection 

rate is also increased due to the higher image details. The 

enhanced video footage can greatly benefit security personnel, 

law enforcement, and other stakeholders involved in video 

monitoring, as it provides clearer and more informative visual 

data for analysis. This, in turn, can lead to quicker response 

times and more effective decision-making in critical situations. 

To further enhance the model’s practical impact and address 

the flickering issue observed in the current implementation, 

several potential techniques and approaches can be explored. 

For example, temporal smoothing techniques can be employed 

to reduce flickering by considering the information from 

adjacent frames and creating smoother transitions between 

them. 
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