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Handwritten signature verification poses a formidable challenge in biometrics and document 

authenticity. The objective is to ascertain the authenticity of a provided handwritten 

signature, distinguishing between genuine and forged ones. This issue has many applications 

in sectors such as finance, legal documentation, and security. Currently, the field of 

computer vision and machine learning has made significant progress in the domain of 

handwritten signature verification. The outcomes, however, may be enhanced depending on 

the acquired findings, the structure of the datasets, and the used models. Four stages make 

up our suggested strategy. First, we collected a large dataset of 12600 images from 420 

distinct individuals, and each individual has 30 signatures of a certain kind (All authors' 

signatures are genuine). In the subsequent stage, the best features from each image were 

extracted using a deep learning model named MobileNetV2. During the feature selection 

step, three selectors—neighborhood component analysis (NCA), Chi2, and mutual_info 

(MI)—were used to pull out 200, 300, 400, and 500 features, giving a total of 12 feature 

vectors. Finally, 12 results have been obtained by applying machine learning techniques 

such as SVM with kernels (rbf, poly, and linear), KNN, DT, Linear Discriminant Analysis, 

and Naïve Bayes. Without employing feature selection techniques, our suggested offline 

signature verification achieved a classification accuracy of 91.3%, whereas using the NCA 

feature selection approach with just 300 features it achieved a classification accuracy of 

97.7%. High classification accuracy was achieved using the designed and suggested model, 

which also has the benefit of being a self-organized framework. Consequently, using the 

optimum minimally chosen features, the proposed method could identify the best model 

performance and result validation prediction vectors. 
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1. INTRODUCTION

1.1 Background 

Today, artificial intelligence has reached a critical point. 

The methods and data sets used in the studies are the building 

blocks that make them necessary. Incredibly unique and 

different data sets make the work more striking. One of these 

unique and different datasets mentioned is the handwritten 

signature dataset. 

Signatures, such as letters and papers, are included in 

official documents to affirm identity or agreement. Since 

ancient times, it has been seen in different forms in various 

states, professions, and art institutions. Handwritten signatures 

are usually created with ink or wax. The signature can be a 

simple "OK," a specific emblem, or even your handwritten 

name that verifies the document. Handwritten signatures are 

one of the most widely accepted ways to prove the legal 

validity of documents. 

Handwritten signatures authenticate a person to protect their 

privacy and security [1]. Verifying whether a signature is real 

or fake is a critical area of research, and the primary purpose 

of these systems is to reduce and prevent fraud. 

The definition and authenticity of a signature are of critical 

importance. Signature recognition systems are being 

developed to authenticate signatures and detect forgeries. 

These systems are classified as online and offline [2]. The 

online system uses an electronic tablet and pen attached to a 

computer to verify dynamic information such as pressure, 

speed, and typing speed. In offline systems, the signature 

template comes from an imaging device, and only static data 

is obtained. Offline signature recognition systems are more 

valuable and useful. For this reason, the offline signature 

verification technique was used in the study done in this article. 

1.2 Motivation 

The datasets used in offline signature verification mostly 

consist of signed signatures based on the signers’ names. It is 

possible that several signers have the same name. Conversely, 
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some datasets exhibit an imbalance, with restricted 

participants. To address these problems, we compiled a dataset 

in which all signers signed using their own unique structures. 

Our dataset is carefully balanced to include an equal number 

of signatures from each signer.  

There is a lot of work in the literature on signatures and 

verification. In 2014, Kudlacik and colleagues used a dataset 

of 20 genuine and 20 forged signatures from 40 users. They 

have achieved an accuracy rate of 99.19% with the fuzzy 

method applied as a result of the work done [3]. Radhika and 

Gopika [4] conducted their work on online and offline 

signature verification. Their study using the SVM algorithm 

obtained a 74.04% accuracy rate in offline work. Serdouk et 

al. [5] proposed a new system called AIRSV for offline 

signature verification using three datasets: MCYT-75, GPDS-

300, and GPDS-4000. As a result of the work done, they 

achieved a 76.59% accuracy rate.  

Longjam et al. [1] proposed a hybrid system called CNN-

BiLSTM. GPDS-300, GPDS-Bengali, GPDS-Devanagari, 

CEDAR, and BHSig260-Bengali, for signature verification in 

this proposed hybrid system. BHSig260-Hindi and Meitei 

Mayek datasets were also used. As a result of the study, they 

achieved 100% accuracy with the CEDAR dataset. 2023, Ren 

et al. [6] proposed a two-channel and two-flow transformer 

approach (2C2S) to solve the signature verification problem. 

At the end of the study, the four datasets used, SUES-SIG, 

CEDAR, BHSig-B, and BHSig-H, obtained an accuracy rate 

of 93.25%, 90.68%, 100%, and 72.22%, respectively. 

Hafemann et al. [7] proposed formulations for learning 

characteristics for offline signature verification in their study. 

Experiments on GPDS-960 have yielded 1.72% ERR, 

compared to 6.97% in the literature, and this result shows a 

significant improvement in the latest technology. 

Jahandad et al. [8] used the GPDS dataset to achieve 83% 

and 75% accuracy using the InceptionV1 and InceptionV3 

architectures. Tuncer and his colleagues [9] present a new 

deep signature verification model. The study, which consisted 

of deep feature creation using transfer learning, iterative 

minimum redundancy maximum relevance (IMRMR) 

property selection, and classification phases, used both the 

CEDAR dataset and the dataset collected by the researchers. 

At the end of the study, 97.16% accuracy was achieved in the 

dataset collected and 100% accuracy in the CEDAR dataset. 

The study by Majidpour et al. [10] proposed a new use of the 

Generative Adversarial Network (GAN) model as a high-

quality data synthesis method to solve the problem of 

unreadable data in signature verification. In addition to the 

three architectures used in the study, MobileNet, SqueezeNet, 

and ShuffleNet, three different high-intensity noises, Salt & 

Pepper (S&P), Gaussian and Gaussian Blur, were added to the 

images in the pre-processing phase to make the signature 

unreadable. The highest success rate was 98.68% using 

Gaussian Blur and MobileNet. 

The study by Banerjee et al. [11] developed an offline 

signature verification model that does not change the language 

and is almost equally applicable for both writer-dependent and 

author-independent scenarios. CEDAR, UTSig, Sigcomp 

2011 Dutch, Sigcomp 2011 Chinese, and SigWIcomp 2015 

Bengali signature datasets were studied. At the end of all 

studies, an accuracy rate of 99% was achieved in the Sigcomp 

2011 Chinese dataset. An overview of numerous published 

investigations is shown in Table 1. 

 

Table 1. A summary of previous studies 

 
Year Researchers Proposed Method Data Numbers Accuracy 

2014 Kudlacik et al. [3] Fuzzy Logic 1600 99.19% 

2015 
Radhika and 

Gopika [4] 
SVM - 74.04% 

2017 Serdouk et al. [5] AIRSV 1125 genuine, 1125 forged 76.59% 

2017 
Hafemann et al. 

[7] 
SigNet, SigNet-F GPDS-960 ERR 6.97% 

2019 Jahandad et al. [8] InceptionV1, InceptionV3 GPDS 83% and 75% 

2021 Tuncer et al. [9] Transfer Learning, IMRMR 
CEDAR, 

Collected dataset 
100% and 97.16% 

2021 
Banerjee et al. 

[11] 

Red Deer Algorithm, proposed meta-

heuristic method, Naïve Bayes 

CEDAR, UTSig, Sigcomp 2011 Dutch, 

Sigcomp 2011 Chinese and SigWIcomp 2015 

Bengali 

Sigcomp 2011 

Chinese 

99% 

2022 
Majidpour et al. 

[10] 

MobileNet, SqueezeNet, and 

ShuffleNet 

Salt & Pepper (S&P), Gaussian, and 

Gaussian Blur 

Indic scripts dataset 

Gaussian Blur and 

MobileNet 

98.68% 

 

1.3 Contribution 

 

The novelty of this study is that a new signature dataset has 

been obtained that has not been used before. 

The contributions of the proposed approach are: 

- 420 distinct signatures, 30 genuine signatures for 

each class, were gathered for an offline signature 

collection. 

- To improve model performance accuracy and 

decrease model time complexity, the optimal 

minimal features for recognizing the signatures 

should be chosen from a range of 38%, 31%, 23%, 

and 15% of all features. 

- Achieving remarkable results of more than 92% with 

the fewest features possible via popular machine 

learning algorithms such as SVM (which includes 

linear kernels, rbf, and poly), KNN, DT, LDA, and 

Naïve Bayes. 

 

Identification of the signatures based on different machine 

learning classifiers with high accuracy. 

 

1.4 Organization 

 

Information about the handwritten signature image corpus 

and the proposed image classification framework is explained 

in Section 2. Section 3 presents the complete experimental 

results. Lastly, the conclusion part is given in Section 4. 
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Figure 1. The proposed structure 

 

 

2. MATERIAL AND METHODS 

 

To verify each offline handwriting signature with the 

highest accuracy, the fewest mistakes, and minimal processing 

time, an approach combining deep learning, feature selection 

techniques, and machine learning techniques is presented in 

Figure 1. Our suggested model's framework consists of the 

following four steps: (i) dataset and preprocessing include 

steps like collecting and preparing a private dataset, cropping, 

and resizing; (ii) feature extraction uses a TL-based 

MobileNetV2 model; (iii) feature selection uses fine-tuned 

NCA, Chi_2, and mutual_info; (iv) offline signature 

verification uses machine learning techniques like SVM with 

kernel (rbf, poly, and linear), KNN, DT, Linear Discriminant 

Analysis, and Naïve Bayes. Here are thorough descriptions of 

each step. The proposed structure is shown in Figure 1. 

 

2.1 Dataset 

 

12600 images from 420 people were gathered for a private 

dataset, along with 30 participants' signatures. Students and 

faculty members of the University of Raparin in Ranya, Iraq, 

provided all of the signatures. The procedures for gathering 

our dataset are outlined below: 

1. Set up an A4 sheet of paper with a grid that has five 

rows and three columns so that each individual can 

sign 15 signatures on each side. 

2. Provide each signer with two grid-lined sheets of 

paper for the required 30 signatures. 

3. Each person's signed signatures must all be of the 

same type. 

4. Blue and black pens must be used to sign each 

signature on the grid paper. 

 

We have a team dedicated to gathering signatures and 

providing input before, after, and throughout the signing 

process. Dataset collection took place over the course of two 

months. A selection of signed signatures is presented in Figure 

2. 

 
 

Figure 2. A selection of signed signatures 

 

2.2 Transfer learning model 

 

A large dataset is necessary for training CNNs to obtain the 

necessary accuracy, but there are some situations when the 

challenges of putting up a large dataset may compromise the 

model's performance accuracy. Real-world training and 

testing data pairs are notoriously challenging to obtain [12]. 

"Transfer learning" was proposed as an answer to this problem. 

To put it another way, transfer learning is a method of machine 

learning where a trained model is used as the foundation for a 

model applied to a different problem. It is possible to model 

the second task quickly by using an optimized model for the 
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first task and then applied to the second. The outcomes of 

applying transfer learning to a new activity are significantly 

more spectacular than training with little to no data [13]. Our 

suggested approach uses the MobileNetV2 transfer learning 

model for feature extraction, which is described in the section 

below. 

 

2.2.1 MobileNetV2 as feature extraction 

MobileNet is a Convolutional Neural Network designed for 

mobile and embedded vision applications. The MobileNet 

architecture aims to develop deep learning applications on 

mobile and embedded systems with lower data processing 

capabilities than computers [14]. Although designed with 

mobile environments in mind, it is also a preferred deep 

learning architecture in desktop environments. This 

architecture has been driven by researchers' drive to create 

small but efficient deep-learning architectures with fewer 

training parameters. In extracting features from images with 

convolutional filters, it uses the technique of Depthwise 

separable Convolutions instead of the standard convective 

operation. In 2019, MobileNet's architecture was developed 

and became MobileNetv2, which will be faster and more 

efficient. In MobileNetV2, the size of the feature maps has 

been narrowed using 1×1 convolutions. It is one of the facts 

that the MobileNetV2 architecture is known to have fewer 

parameters in its layers than other architectures [15]. 

The main advantage of the MobileNet architecture is that it 

performs relatively few computations compared to the 

traditional CNN model. With two different parameters used in 

the architecture, it is possible to control the details and delay 

time of the objects in the image. If the values entered in these 

parameters are kept low, they can have the same effect as the 

minimum number of properties, such as Palmprint recognition. 

As a result, it is possible to simplify or make the architecture 

complex [16]. This is one of the main advantages of the 

MobileNetV2 architecture [17]. 

The MobileNetV2 architecture is one of the architectures 

where the deeply detachable convection method is preferred. 

If this architecture is compared with the first version, it is seen 

that the number of weights is reduced further by narrowing the 

output channels. In addition, a layer of point convection has 

been imported before the deeply detachable convection, 

further improving its performance. 

 

2.3 Feature selection 

 

Feature reduction and feature vector expansion are the goals 

of this subsection. We employ the three most well-known 

feature selectors. NCA [18], Chi2 [19], and MI [20] are the 

feature selectors in question. The following sections expand 

on the function of each feature selector. 

 

2.3.1 NCA 

For choosing discriminative features and for maximum 

classification accuracy, NCA is a feature selection method 

based on distance. Eq. (1) provides the normalized equation 

for computing the NCA feature selection for a multi-class SEC 

problem. 

 

𝑆 = {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,2, … , 𝑛} (1) 

 

where, 𝑐 is the number of emotional class labels, 𝑥𝑖 signifies 

the feature vectors, 𝑦𝑖  denotes the class labels of emotional 

features, and 𝑛 is the number of observations [21]. To put it 

simply, the objective is to give the classifier 𝑓: 𝑅𝑝 →
{1,2, … , 𝑐}  relevant features (from the feature extraction 

segment of the model) so that it can perform a classification 

𝑓(𝑥) for the ground truth (label) 𝑦 of 𝑥. 

 

2.3.2 Chi-Square algorithm 

It is based on whether the difference between observed and 

expected frequencies makes sense. It is used in the 

qualitatively specified analysis [22]. Which is used for the chi-

square test, 

- In the test of whether there is a difference between 

two or more groups, 

- In the test of whether there is a link between the two 

variables, 

- In the inter-group homogeneity test. 

Test whether the distribution obtained from the sample 

conforms to any desired theoretical distribution (compatibility 

goodness test). 

 

2.3.3 Mutual Information (MI) 

In feature selection, MI is a statistical technique. It measures 

the degree to which two variables (a and b) are interdependent. 

Through the use of the other random variable, it assesses the 

"measure of data" amassed regarding one arbitrary variable 

[23]. The MI between two discrete random variables, a and b, 

is calculated using Eq. (2). 

 

𝐼(𝐴, 𝑏) = ∑ ∑ 𝑝(𝑎, 𝑏) log (
𝑝(𝑎, 𝑏)

𝑝(𝑎)𝑝(𝑏)
)

𝑎∈𝐴𝑏∈𝐵
 (2) 

 

where, 𝑝(𝑎, 𝑏)  represents the joint probability function of 

𝐴 and 𝐵, and 𝑝(𝑎), 𝑝(𝑏), respectively, represents the marginal 

probability distribution functions of 𝐴 and 𝐵. 

 

2.4 Classification 

 

Seven well-known classifiers are used to verify the 

collected offline handwritten signature: SVM [24] with the 

kernel (Radial Basis Function, polynomial, Linear), KNN [25], 

DT [26], LDA [27], and Naïve Bayes [28]. The specifics of 

each classifier are detailed in the subsections below. 

 

2.4.1 Support Vector Machine (SVM) 

Support Vector machines are a supervised learning method 

often used in classification problems. Support Vector 

Machines (SVMs) are the decomposition and classification of 

points on the plane by a straight or hyperplane [24]. It is 

suitable for small or medium-sized datasets and needs to be 

scaled. 

The purpose of classification problems is to decide which 

class the future data will be in. To do this classification, a line 

separates the two classes, and the region between ± 1 of this 

line is called the margin. The wider the margin, the better the 

separation of two or more classes. 

RBF, which stands for Radial Basis Function Kernel, is an 

extremely powerful kernel that is utilized in SVM. RBF is 

more sophisticated and efficient than linear or polynomial 

kernels because it may combine multiple polynomial kernels 

multiple times of varying degrees to project non-linearly 

separable data into higher dimensional space and separable 

using a hyperplane. 

An SVM kernel, known as a polynomial kernel, maps the 

data into a higher-dimensional space using a polynomial 

function. This is accomplished by taking the dot product of the 
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polynomial function in the new space and the original space's 

data points. 

The linear kernel—also known as the "Non-kernel"—is the 

most straightforward of all the kernels. The inner product of x 

and y with an optional constant term c is all that exists when 

this kernel is technically utilized because the data isn't 

projected onto higher dimensions. 

 

2.4.2 K-Nearest Neighbours (KNN) 

The nearest neighbor algorithm is expressed as a supervised 

machine learning method in which the class (learning cluster) 

and the nearest neighbor (element) are to be classified 

according to the k value (similarity) [25]. 

General classification algorithms (models) use this 

classifier on every data value within the system by creating a 

classifier within their solutions. Compared to these 

classification algorithms, the KNN algorithm classifies the 

values for each value by creating a classifier over a set of 

neighbors closest to the corresponding value. 

The K-nearest neighbors algorithm (KNN) predicts two 

fundamental values [29]. 

- Distance: The distance of the point to be estimated 

from other points is calculated. For this, the 

Minkowski distance calculation function is used. 

- K (number of neighbors): The number of neighbors 

is calculated from the nearest number. The value of 

K directly affects the result. If K is 1, the probability 

of overfitting is very high. If it is too large, it gives 

very general results. Therefore, estimating the 

optimal K value is the main issue in the problem. 

 

Three indicators are commonly used to measure the 

performance of a model produced with the KNN (K-nearest 

neighbors) algorithm. 

- Jaccard Index: The ratio of the intersection set of the 

correct prediction set and the actual value set to their 

junction set, taking values between 1 and 0. 1 is the 

best. 

- F1-Score: Calculated from precision and recall 

values calculated from the confusion Matrix. F1-

Score = 2*((Pre*Rec)/(Pre+Rec)) is a value between 

1 and 0. 1 is the best. 

- LogLoss: At the end of the logistic regression, the 

LogLoss value is calculated from the probabilities of 

the predictions. It is valued between 1 and 0. Unlike 

the above two values, 0 means the best performance. 

 

2.4.3 Decision Tree (DT) 

A DT is a Supervised Machine Learning Algorithm that 

uses a set of rules to make decisions like humans do [26]. 

Classification trees are tree models in which the goal variable 

can take a discrete set of values; in these tree structures, leaves 

indicate class labels, and branches represent feature 

conjunctions that lead to those class labels. 

 

2.4.4 Linear Discriminant Analysis (LDA) 

LDA is a type of linear combination. This mathematical 

operation uses a variety of data elements and applies functions 

to this set to analyze multiple object or item classes separately 

[27].  

Fisher’s linear discriminant, flowing from linear 

discriminant analysis, can be helpful in areas such as image 

recognition and predictive analytics in marketing. LDA is 

based on looking for a linear combination of variables that best 

differentiate between good class (goals). Fisher describes the 

score function. According to the score function, the problem 

predicts linear coefficients that maximize the score [30]. 

Calculating the Mahalanobis distance between the two groups 

is the best way to determine discrimination. The fact that the 

Mahalanobis distance is smaller than three means that the 

probability of misclassification is small. 

 

2.4.5 Naïve Bayes  

Bayes' theorem is a crucial subject in probability theory [28]. 

This theorem shows the relationship between conditional and 

marginal probabilities within the probability distribution for a 

random variable. 

The NB classifier is based on Bayes' theorem. It is a lazy 

learning algorithm that works on unstable data sets. The 

algorithm calculates the probability of each case for an element 

and classifies it according to the one with the highest 

probability value [31]. They can do very well with a bit of 

training. If a value in a test set has a value that cannot be 

observed in the training set, it gives a probability value of 0, 

which means it cannot make a prediction. This is often referred 

to as zero frequency. Corrective techniques are used to resolve 

this situation. One of the most straightforward correction 

techniques is known as Laplace prediction. Examples of uses 

include real-time forecasting, multi-class forecasting, text 

classification, spam filtering, sensitivity analysis, and 

recommendation systems. 

 

2.4.6 Evaluation criteria 

Each classification's effectiveness is evaluated using a 

variety of observational error measurements. One indicator of 

its efficacy is how accurately a classification model can 

categorize data. The frequency with which our model delivers 

accurate predictions is referred to as "accuracy" in this context. 

Technically speaking, being precise means: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (3) 

 

where, TP = True Positives, TN = True Negatives, FP = False 

Positives, and FN = False Negatives. 

 

The percentage of pertinent examples among all the ones 

found is called precision, which is often referred to as a positive 

predictive value. It gauges the proportion of projected positive 

classes that contain members of that class. The Eq. (4) that 

follows defines precision. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

 

Recall is occasionally used to demonstrate or evaluate how 

well a test can conclusively exclude the presence of an illness 

or disease state. This test accuracy indicator is essential in 

situations where a false positive could result in significant 

financial loss. Recall is defined by Eq. (5). 

 

Recall =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5) 

 

The F-score, also known as the F1-score, measures how well 

a model fits the provided data. The F-score, which is calculated, 

is the harmonic mean of the model's recall and accuracy. To 

calculate an F1 score, use Eq. (6): 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (6) 

 

 

3. EXPERIMENTAL RESULTS 

 

This work aims to use deep learning and machine learning 

methods to verify offline handwritten signatures. There are 

three steps in the primary method: In the beginning, we 

acquired a large data set of 420 distinct individuals, each of 

whom had 30 identical signatures taken. The second step is to 

decide which features, based on the fundamental composition 

and morphological texture of the signature images, will be most 

helpful, and the third step is to reduce error and boost the 

accuracy of signature verification. 

Each signature image, as is well known, contains few details 

and is only one color, making it challenging to verify and 

adding to the complexity. Several preprocessing, feature 

extraction, feature selection, and classifier methods have been 

combined for this study, and they are evaluated using a variety 

of criteria. The preprocessing, training, and testing specifics 

come before the system's actual implementation in this section. 

The experiments that employ the suggested strategies are then 

displayed and reviewed. 
 

3.1 Preprocessing 

 

The total number of images includes 12,600 images taken 

by 420 people, each scanned and stored separately. That each 

individual is a distinct class, each A4 page had 15 signatures; 

therefore, we automatically cropped and saved them using 

MATLAB's Crop function. Each signature was then saved as 

a distinct image and saved in the class associated with the 

relevant person. In the final phase, we resized the images to 

500×600. Figure 3 shows a cropped signature ready to be 

saved as one image. 

We personally reviewed and cropped the images to look for 

these occurrences because, during automatic cropping, it's 

possible that certain signatures were removed from the 

boundary and other signature parts were destroyed. 

 

 
 

Figure 3. A cropped signature and save it as one image 

 

Every stored image is split into testing and training sets. 20% 

is used to assess the data's performance, while the remaining 

80% is used to train the models. The cross-validation (CV) 

approach [32] is used to assess the system's correctness. We 

trained and tested each classifier five times on different sets of 

data using the fivefold CV approach, dividing the data into 80 

percent for training and 20 percent for testing. We averaged 

each of the five CVs in the batch to get the mean CV. 

 

3.2 Training and testing phases 

 

Our primary focus is on developing and training a model 

employing feature selectors, deep learning, and machine 

learning, with the following goals: Features should be 

minimized and chosen optimally, and the accuracy of the 

model's performance should be improved. 

Despite these challenges, Tables 2, 3, and 4 demonstrate 

that a limited number of features can nevertheless achieve a 

high level of verification accuracy for offline handwritten 

signature verification. The current proposed approach consists 

of two steps. In the first step, a MobileNetV2 fine-tuning 

transfer learning model from the global average pooling layer 

was used to extract all preprocessed gathered signatures and 

imagined features. A total of 1280 characteristics were 

retrieved from each image.  

Even if several feature selection methods exist, picking the 

best one for a certain task is never easy. Three well-known 

feature selectors, including NCA, Chi2, and MI, were used in 

our suggested model. Each feature selector received all the 

extracted features and used them to choose the best and most 

helpful characteristics. The goals we set for ourselves were 

200, 300, 400, and 500 features from each of the feature 

selectors in the various test models. When each feature group 

chosen by the feature selectors is sent to machine learning 

algorithms for signature verification, Tables 2, 3, and 4 show 

the performance accuracy of each model based on each feature 

group. 
 

3.3 Discussion 

 

In this study, firstly, classification was performed without 

using any feature selection technique. These classification 

algorithms were performed using different SVM algorithms, 

KNN, DT, LDA, and Naïve Bayes algorithms. As can be seen 

in Table 2, when the accuracy rates are compared, the LDA 

algorithm has the highest accuracy rate of 92.2%. Likewise, 

when the precision, recall, and f1 score rates are analyzed, the 

LDA algorithm has a higher success rate than the other 

algorithms. Another conclusion drawn from Table 2 is that the 

accuracy, precision, recall, and f1 scores of the KNN and DT 

algorithms are equal to each other and the lowest compared to 

other algorithms. Also, when SVM algorithms are compared 

among themselves, it is seen that SVM-Linear ratios are higher 

than the others. SVM-Poly is the SVM algorithm with the 

lowest rates. 

In the second study, feature extraction was performed using 

MobileNetV2. For feature selection, the data was classified 

using Chi-2. It is seen that LDA has the highest accuracy rate 

when 500 features are initially selected (see Table 3). Likewise, 

when precision, recall, and f1-score are compared, it is seen 

that LDA is the algorithm with the highest rates. When SVM 

algorithms are compared among themselves, it is observed that 

SVM-Linear has the highest rate and SVM-Poly has the lowest 

rate. 

 

Table 2. Experimental results without using feature selection methods 

 
 SVM-rbf SVM-poly SVM-Linear KNN DT LDA Naïve Bayes 

Accuracy 0.902 0.881 0.917 0.825 0.825 0.922 0.825 

Precision 0.913 0.897 0.93 0.849 0.849 0.939 0.825 

Recall 0.902 0.881 0.917 0.825 0.825 0.922 0.825 

F1-score 0.899 0.881 0.918 0.821 0.821 0.925 0.825 
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Table 3. Experimental results of the proposed model for multiple models based on the Chi_2 feature selection method on 200, 

300, 400, and 500 features 
 

MobileNetV2 1280 

Features 

Number of 

Selected Features 
Metrics 

Machine Learning Models 

SVM-rbf SVM-poly SVM-Linear KNN DT LDA Naïve Bayes 

Chi_2  

500 

accuracy 88.89 86.47 90.12 81.31 81.31 92.50 81.31 

precision 90.31 88.58 91.73 84.18 84.18 93.74 81.31 

recall 88.89 86.47 90.12 81.31 81.31 92.50 81.31 

f1-score 88.76 86.56 90.26 80.96 80.96 92.63 81.31 

400 

accuracy 88.02 85.56 89.60 79.64 79.64 91.71 79.64 

precision 89.71 87.96 91.08 82.59 82.59 93.14 79.64 

recall 88.02 85.56 89.60 79.64 79.64 91.71 79.64 

f1-score 87.97 85.65 89.66 79.12 79.12 91.81 79.64 

300 

accuracy 86.55 83.45 87.98 78.53 78.53 89.92 78.53 

precision 88.58 86.23 90.08 82.30 82.30 91.77 78.53 

recall 86.55 83.45 87.98 78.53 78.53 89.92 78.53 

f1-score 86.49 83.62 88.17 78.19 78.19 90.10 78.53 

200 

accuracy 84.25 80.67 86.23 75.12 75.12 88.53 75.12 

precision 86.56 83.93 88.58 78.92 78.92 90.41 75.12 

recall 84.25 80.67 86.23 75.12 75.12 88.53 75.12 

f1-score 84.10 80.93 86.41 74.73 74.73 88.68 75.12 
 

Table 4. Experimental results of the proposed model for multiple models based on the NCA feature selection method on 200, 

300, 400, and 500 features 
 

MobileNetV2 1280 

Features 

Number of 

Selected Features 
Metrics 

Machine Learning Models 

SVM-rbf SVM-poly SVM-Linear KNN DT LDA Naïve Bayes 

NCA 

500 

accuracy 93.93 87.54 94.33 90.28 90.28 93.10 90.28 

precision 94.57 92.24 95.07 91.76 91.76 94.18 90.28 

recall 93.93 87.54 94.33 90.28 90.28 93.10 90.28 

f1-score 93.69 88.43 94.30 90.16 90.16 93.15 90.28 

400 

accuracy 97.62 64.76 97.34 95.79 95.79 96.47 95.79 

precision 97.47 90.15 97.43 96.55 96.55 96.89 95.79 

recall 97.62 64.76 97.34 95.79 95.79 96.47 95.79 

f1-score 97.34 72.22 97.33 95.88 95.88 96.51 95.79 

300 

accuracy 97.70 53.45 97.34 95.63 95.63 96.27 95.63 

precision 97.61 76.35 97.50 96.26 96.26 96.72 95.63 

recall 97.70 53.45 97.34 95.63 95.63 96.27 95.63 

f1-score 97.45 60.15 97.36 95.67 95.67 96.32 95.63 

200 

accuracy 97.34 49.56 97.06 95.63 95.63 96.27 95.63 

precision 97.21 67.75 97.30 96.17 96.17 96.60 95.63 

recall 97.34 49.56 97.06 95.63 95.63 96.27 95.63 

f1-score 97.05 54.72 97.08 95.61 95.61 96.26 95.63 

 

Table 5. Experimental results of the proposed model for multiple models based on the MI feature selection method on 200, 300, 

400, and 500 features 
 

MobileNetV2 1280 

Features 

Number of 

Selected Features 
Metrics 

Machine Learning Models 

SVM-rbf SVM-poly SVM-Linear KNN DT LDA Naïve Bayes 

MI 

500 

accuracy 89.84 87.94 90.87 82.50 82.50 92.46 82.50 

precision 91.22 89.61 92.26 84.90 84.90 93.81 82.50 

recall 89.84 87.94 90.87 82.50 82.50 92.46 82.50 

f1-score 89.71 87.97 90.94 81.99 81.99 92.63 82.50 

400 

accuracy 89.64 87.66 90.40 81.94 81.94 92.54 81.94 

precision 91.06 89.28 91.69 84.37 84.37 93.66 81.94 

recall 89.64 87.66 90.40 81.94 81.94 92.54 81.94 

f1-score 89.47 87.67 90.43 81.23 81.23 92.61 81.94 

300 

accuracy 88.93 86.55 90.12 81.07 81.07 91.87 81.07 

precision 90.27 88.27 91.37 83.38 83.38 92.90 81.07 

recall 88.93 86.55 90.12 81.07 81.07 91.87 81.07 

f1-score 88.74 86.55 90.11 80.55 80.55 91.92 81.07 

200 

accuracy 88.29 85.40 88.37 79.01 79.01 90.95 79.01 

precision 89.73 87.26 89.87 82.15 82.15 92.23 79.01 

recall 88.29 85.40 88.37 79.01 79.01 90.95 79.01 

f1-score 88.15 85.47 88.46 78.62 78.62 91.04 79.01 

When Table 3 continues to be analyzed, it is seen that LDA 

is the algorithm with the highest rate when 400 features are 

selected. Among SVM algorithms, the SVM-Linear algorithm 

has the highest rate. It is observed that the number of features 

selected gradually decreases while selecting features. When 

300 and 200 features are selected, the LDA algorithm has the 

highest accuracy, recall, precision, and f1 score ratios. On the 

other hand, the lowest ratios belong to KNN and DT 
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algorithms with equal ratios. 

When Table 3 is analyzed in general, the precision ratio 

between the selection of 500 features and the selection of 400 

features is very close to each other and is above 93%. 

In the other study, feature extraction was also performed 

using MobileNetV2. In this study, NCA was used for feature 

selection. As can be seen in Table 4, the selected features were 

again reduced from 500 to 200. The difference in this study 

compared to Tables 2 and 3 is that SVM-Linear has the highest 

accuracy rate (94.33%), recall rate (94.33%), precision rate 

(95.07%), and f1-score rate (94.30%) in the selection of 500 

features. In the 500-feature selection study, the SVM-Poly 

algorithm has the lowest accuracy rate (87.54%), recall rate 

(90.28%), and f1 score rate (90.16%), while the Naïve Bayes 

algorithm has the lowest precision. 

On the other hand, the SVM-rbf algorithm has the highest 

accuracy, recall, precision, and f1-score ratios in the studies 

with 400 and 300 features, respectively. The lowest ratios are 

obtained in the SVM-Poly algorithm. When the study with 200 

feature selections is analyzed, it is seen that the highest rates 

of accuracy and recall are obtained with the SVM-rbf 

algorithm. The algorithm with the highest precision and f1 

score is the SVM-Linear algorithm. 
In the last study, MobileNetV2 was used for feature 

extraction (Table 5). The algorithm selected for feature 

selection in this study is MI. As in the other studies, the 

number of features selected was reduced from 500 to 200. In 

this study, as seen in the first 2 studies, the highest accuracy 

rate (92.46%), recall rate (92.46%), precision rate (93.81%), 

and f1 score rate (92.63%) were obtained in the LDA 

algorithm. 

In the selection of 500 features, the lowest accuracy rate of 

82.50%, recall rate of 82.50%, and f1 score rate of 81.99% 

were obtained from KNN and DT algorithms, which are equal 

to each other. The lowest precision rate is 82.50%, obtained 

with the Naïve Bayes algorithm. 

When 400 features were selected, the lowest precision, 

recall, and f1 score ratios were obtained with KNN and DT 

algorithms. The lowest precision rate was 81.94% when using 

the Naïve Bayes algorithm. 

When 300 features were selected, the lowest accuracy and 

recall rates were obtained from KNN, DT, and Naïve Bayes 

algorithms, equal to 81.07%. The lowest precision rate was 

obtained with the Naïve Bayes algorithm, with a rate of 

81.07%. On the other hand, the lowest f1 score ratio was 

obtained at 80.55% when using KNN and DT algorithms, 

which are equal to each other. Finally, when the feature 

selection was reduced to 200, it was observed that the lowest 

accuracy, recall, precision, and f1 score ratio were obtained 

with Naïve Bayes with a rate of 79.01% in general. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 4. Comparison of the best model performance and 

accuracy using different feature selection methods ((a) Chi_2 

feature selection method; (b) NCA feature selection method; 

(c) MI feature selection method) 

 

Figure 4 displays a comparison of the highest accuracy of 

the suggested model. The greatest accuracy for the LDA 

model using the Chi_2 feature selection approach is 92.50%, 

as shown in Figure 4 (a). The highest accuracy for SVM-rbf 

and SVM-Linear using the NCA feature selection technique is 

97.70% and 97.34%, respectively, as shown in Figure 4 (b). 

The greatest accuracy for the LDA model when employing the 

MI feature selection approach is 92.54%, as shown in Figure 

4 (c). 

As a result of all the studies, when all the tables were 

examined, the highest accuracy rate was obtained from LDA 

classification using the NCA feature selection method, with a 

rate of 93.10% by selecting 500 features. The lowest accuracy 

rate was obtained in the Naïve Bayes algorithm with a rate of 

75.12% using the Chi_2 feature selection algorithm, where 

200 features were selected. The highest precision rate was 

obtained in the LDA algorithm, with 94.18%. This study was 

conducted with NCA by selecting 500 features. The lowest 

precision rate of 75.12% was obtained in Naïve Bayes with 

200 feature selections using the Chi_2 feature selection 

algorithm. Unlike the others, the highest recall rate was 

observed with 200 features, which is the lowest number of 

feature selections made with NCA. 97.06% was obtained with 

the SVM-Linear algorithm. The lowest recall rate was 75.12% 

for 200 features. This study was conducted using the Chi-

squared feature selection method. The highest f1-score ratio is 

96.26%. This rate was obtained by selecting 200 features using 

NCA in the feature selection process. The lowest f1-score ratio 

was obtained by selecting 200 features using the Chi_2 feature 

selection algorithm. The ratio obtained was 75.12% in the 

Naïve Bayes algorithm. In general, studies show a decrease in 

the ratios as the number of features decreases, while in the 
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study using NCA, it is observed that the ratios increase as the 

number of features increases. 

 

 

4. CONCLUSION 

 

The primary objective is to use transfer learning and feature 

selection techniques to authenticate offline handwritten 

signatures using the minimum acceptable features while 

working with a dataset that includes a substantial number of 

signers. Initially, a dataset comprising 420 singers is gathered, 

and a transfer learning model (MobileNetV2) is used to extract 

characteristics. To extract the acceptable features, 12 feature 

vectors from three feature selection techniques, including 

Chi_2, NCA, and MI, with 200, 300, 400, and 500 features, 

are used. Seven machine learning methods are used to validate 

the signature from specified features, including SVM-rbf, 

SVM-poly, SVM-linear, KNN, DT, LDA, and Naïve Bayes. 

The proposed model can authenticate the signature using less 

than 39% of all characteristics, surpassing the performance 

accuracy of the 97% model. 

In the future, we will use several trainable feature selection 

strategies to identify the most suitable features accurately. 

These techniques will automatically determine the optimal 

minimal number of features. Additionally, we will utilize a 

graph convolutional neural network to verify offline 

handwritten signatures.  
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