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In the pursuit of optimal energy storage solutions, rechargeable batteries have gained 

significant attention for their applications in electric vehicles, aircraft, and satellites. This 

research focuses on the thermal management of lithium manganese dioxide and nickel-

cadmium batteries, utilizing the lumped capacitance thermal modelling technique in the 

preliminary stage of analysis. The study focuses on the general lumped capacitance thermal 

equation to estimate battery temperature through analytical and numerical methods. The 

numerical approach employs the fourth order Runge-Kutta's method, which involved less 

computational cost, relatively stable and accurate to estimate the temperature with a variable 

internal resistance, a crucial factor in thermal behaviour analysis. In contrast, the analytical 

approach assumes a uniform temperature distribution across the battery's surface, simplifying 

the gradual variance between internal conductive and external convective thermal resistances. 

A comparative analysis against experimental data using error criterion techniques reveals that 

the numerical model, considering dynamic changes in internal resistance, aligns more closely 

with experimental findings and offers a statistically superior fit compared to the analytical 

model assuming constant internal resistance. This study underscores the effectiveness of the 

lumped capacitance thermal modelling technique in battery thermal management, 

emphasizing the importance for dynamic internal resistance for analysis of thermal behaviour. 
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1. INTRODUCTION

Electric Vehicles (EVs) have been identified as a superior 

alternative to conventional thermodynamically driven engine 

vehicles, offering numerous advantages including reduced 

emissions of harmful gases, thereby contributing to a cleaner 

and more environmentally friendly atmosphere. These 

vehicles, characterized by fewer moving parts, demand lower 

maintenance costs. The scarcity and limitations of fossil fuels 

have prompted the necessity to embrace renewable energy 

sources, which can serve as a feasible means to generate 

energy for electrical batteries. The harnessing and storage of 

renewable energy in batteries have minimal effects on climatic 

and biotic systems. This is primarily due to the renewable 

energy used for the generation of electricity stored in the 

batteries involve processes which are more efficient, 

environmentally friendly, and sustainable. These sources are 

becoming more popular these days due to the reduced 

greenhouse gases emission, minimal air and water pollution, 

resilience to climate change and biodiversity preservation. 

Batteries, serving as devices for the storage of 

electrochemical energy through reversible chemical reactions, 

play a pivotal role in the efficiency of EVs. These vehicles 

have been estimated to exhibit an efficiency of approximately 

70%, surpassing that of thermodynamic combustible engines 

[1]. Initially, internal combustion engines predominantly 

utilized lead-acid batteries. However, the advent of lithium-

ion and Lithium polymer-based batteries has led to a gradual 

shift, given their superior characteristics and benefits. Notably, 

Lithium-based batteries exhibit a high energy density 

(approximately 100-200 Wh/kg) and relatively low self-

discharge rates (5 to 8% per month). Additionally, these 

batteries are recognized for their long lifespan and high 

voltage per cell (3.3 V for Li-ion and 3.7 V for Li-ion polymer 

batteries). Despite these advantages, Lithium-based batteries 

are sensitive to high temperatures and vulnerable to damage 

from overvoltage [2]. Safety concerns, particularly the risk of 

thermal runaway, a phenomenon often leading to explosions 

under high-temperature conditions, are also associated with 

these batteries [3]. The forecasted demand for lithium metal is 

expected to exceed the supply from mining by 2023-2025, 

highlighting the critical need for efficient recycling of 

Lithium-based batteries as part of a circular economy 

approach [4]. 

Nickel-cadmium batteries, in contrast, find extensive 

application in aircraft and Low Earth Orbit satellite systems. 

The performance of these batteries is influenced by factors 

such as charge-discharge cycle rates, temperature, and cell 

construction. Unlike Lithium batteries, Nickel-cadmium 

batteries are prone to memory effect. Standard constant current 

charging is preferred for these batteries, though high-current 

overcharging can adversely affect their operation. These 

batteries exhibit low internal resistance and are known for their 

low voltage per cell (approximately 1.2 V). However, they 
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also demonstrate a high self-discharge rate (10-30%). Despite 

their sensitivity to high temperatures, Nickel-cadmium 

batteries offer robust operation compared to Li-ion batteries in 

several respects, including overload tolerance and mechanical 

robustness [5]. 

In terms of physical configuration, both Lithium and 

Nickel-cadmium battery cells are available in various shapes, 

such as cylindrical, prismatic, and pouch cells, each with 

distinct advantages and limitations depending on the 

application. Cylindrical cells, commonly used in EVs, are 

equipped with features like pressure relief mechanisms, 

positive thermal coefficients, and interruption devices for 

charge disconnection during malfunction. These cells are 

recognized for their mechanical resistance, higher energy 

density, and superior thermal management capabilities 

compared to other shapes. Particularly, the 18650 and 21700 

battery pack configurations have gained popularity [6]. 

In the domain of Battery Management Systems (BMS), the 

modelling of battery cells is recognized as a crucial aspect. It 

is essential for analysing battery behaviour under diverse 

operating conditions, leading to the development of more 

efficient BMS designs. Moreover, such modelling assists in 

delineating the operational boundaries of batteries and plays a 

pivotal role in determining the power requirements of battery 

cells [7]. Given the inherent non-linear nature of battery 

behaviour, the design of an optimal BMS becomes imperative. 

Various models have been developed, considering battery 

attributes such as temperature, charge/discharge cycles, State 

of Charge (SOC), and capacity fading dynamics. 

Multifunctional BMS are typically employed to predict and 

analyse battery issues across different stages, ranging from 

individual cells to complete packs composed of multiple 

modules. Such systems ensure efficient cell function by 

maintaining proper communication among modules during 

operation.  

Effective thermal management is crucial for achieving 

optimal operating temperatures in BMS, which, in turn, aids in 

mitigating excess heat and preventing thermal runaway. 

Various cooling techniques have been proposed for this 

purpose [8].  

The thermal behavior of batteries is generally governed by 

three fundamental equations: the heat generation equation, the 

energy balance equation, and the boundary condition 

equations [9]. Based on these equations, a myriad of models 

has been proposed to study and estimate the thermal 

characteristics of battery cells. Thermal modelling of batteries 

is broadly classified into two categories: numerical and 

analytical model analysis. Both approaches use differential 

equations to estimate the energy balance in batteries. 

Numerical analysis, requiring computer software and 

algorithms, is employed for solving complex non-linear 

problems lacking analytic solutions. These models simulate 

the actual phenomena of processes or systems under varied 

operating conditions. Analytical models, on the other hand, 

involve mathematical modelling and computational 

derivations of closed-form solutions for complex problems, 

offering more accurate results with less computation time 

compared to numerical techniques, albeit not suitable for all 

non-linear complex problems [10]. 

Various researchers have reviewed, studied, and analysed 

modelling techniques of rechargeable batteries in relation to 

thermal control analysis. Parhizi et al. [3] investigated various 

numerical techniques to observe the thermal runaway 

characteristics of Li-ion batteries. Zhang et al. [11] analysed 

the estimation of parameters like heat transfer coefficient and 

specific heat capacity for a lithium-ion battery using an IR-

camera and the principle of the lumped capacitance method. 

Comparative studies on thermal modelling techniques for 

lithium polymer batteries and methodologies to elaborate 

electrothermal features have been conducted [11]. The 

perspectives, mathematical approaches, and current state-of-

the-art techniques of BMS for various EVs have been 

compared and analysed [12]. The basic electric modelling 

techniques for an EFEST-IMR 18650 Li-polymer battery, 

considering applications in EVs, were compared with 

experimental results [13]. Changes in internal resistance 

during discharge processes were also estimated and compared 

with experimental analyses. The thermal control of Li-ion 

batteries using metal foams partially filled with PCM was 

numerically modelled to understand the cooling characteristics 

of electric batteries [14]. Discussions on the limitations of 

existing cathode materials, like Layered lithium cobalt oxide 

in Li batteries, and potential replacements for better 

performance were detailed [15]. 

This study aims to analyse the lumped capacitance thermal 

model for two battery cells, namely lithium manganese 

dioxide and nickel cadmium cells, of cylindrical structure 

extensively used in vehicular applications. Prototypes of 

single cells of both chemistries were experimentally tested. 

Both numerical and analytical approaches of the lumped 

model were considered for the modelling process, and their 

thermal characteristic responses were compared with 

experimental results and analysed using various statistical 

techniques. 

 

 

2. LUMPED CAPACITANCE THERMAL MODEL 

 

The lumped capacitance thermal model, commonly utilized 

in transient heat flow problems, presumes a uniform 

temperature throughout the system, varying solely with time t. 

The model is assumed and designed generally considering that 

the body is divided into several finite numbers of well-defined 

nodes, each of them treated as a separate element. It is 

postulated that the temperature gradient within the system is 

negligible, implying that the internal thermal resistance due to 

conduction is almost insignificant in the heat transfer process. 

However, the heat transfer arising from convection is 

considered a significant factor, suggesting infinite thermal 

conductivity of the system and a comparatively small heat 

transfer coefficient. The properties of the body considered are 

assumed to be homogeneous in nature. 

Envision a system with volume V, surface area A, density ρ, 

and an initial uniform temperature Ti. At time t=0, this system 

is introduced into a medium at temperature Tm, initiating a heat 

transfer process between the system and its surroundings, 

characterized by a heat transfer coefficient h. Under the 

lumped system model assumption, the temperature within the 

system is considered uniform throughout and varies only with 

time t. The heat transfer between the system and its 

surroundings is governed by an energy balance equation, 

represented as Eq. (1): 

Heat transfer inside/ outside of the system during the period 

dt = Change in the system’s energy during dt. 
 

ℎ𝐴(𝑇𝑚 − 𝑇)𝑑𝑡 = 𝑚𝑐𝑝𝑑𝑇 (1) 
 

where, T corresponds to the temperature of the system as a 
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function of time in (K), m denotes the mass of the system in 

(kg), cp corresponds to the specific heat capacity of the system 

in (kJ/kg K). During a period dt, the differential energy of the 

system corresponding to the rise in temperature is given by Eq. 

(2).  

 

𝑑𝑇 = 𝑑(𝑇 − 𝑇𝑚) (2) 

 

The mass of the system is fundamentally related to its 

volume and density as delineated in Eq. (3). 

 

𝑚 = (
𝜌

𝑉
) (3) 

 

where, m represents the mass of the material in (kg), ρ denotes 

the density of the material in (kg/m3) and V corresponds to the 

volume of the body in (m3). 

Substituting Eq. (2) and Eq. (3) into Eq. (1)  

 
𝑑(𝑇 − 𝑇𝑚)

(𝑇 − 𝑇𝑚)
=  (−

ℎ𝐴

𝜌𝑉𝑐𝑝
) 𝑑𝑡  

 

Integrating the resultant equation from an initial time of t=0 

to any given time ‘t’ yields Eq. (4). 

 

ln (
𝑇(𝑡) − 𝑇𝑚

𝑇𝑖 − 𝑇𝑚
) = (−

ℎ𝐴

𝜌𝑉𝑐𝑝
) 𝑡 (4) 

 

Taking exponential on both sides, (
𝑇(𝑡)−𝑇𝑚

𝑇𝑖−𝑇𝑚
) = 𝑒

−(
ℎ𝐴

𝜌𝑉𝑐𝑝
)𝑡

. 

On reducing the above equation, it results in Eq. (5). 

 

(
𝑇(𝑡) − 𝑇𝑚

𝑇𝑖 − 𝑇𝑚

) = 𝑒−𝛼𝑡 (5) 

 

where, 𝛼 = (
ℎ𝐴

𝜌𝑉𝑐𝑝
) is termed as the reciprocal of time constant. 

The applicability of the lumped capacitance model to a system 

is contingent upon the characteristic length (m) of the system 

L, defined in Eq. (6).  

 

𝐿 = (
𝑉

𝐴
) (6) 

 

This length must satisfy the criterion outlined in Eq. (7).  

 

(
𝐿

𝐾
) << (

1

ℎ
) (7) 

 

where, K corresponds to the thermal conductivity of the 

system in (W/m K) and h represents the heat transfer 

coefficient in (W/m2/K). The dimensionless Biot number Bi, 

defined for any given lumped system, should fulfill the 

condition stipulated in Eq. (8). 

 

𝐵𝑖 = (
ℎ𝐿

𝐾
) (8) 

 

Bi quantifies the heat transfer between the surface and the 

interior of the system. The lumped capacitance model's 

fundamental assumption of uniform temperature distribution 

during the heat transfer process is valid when Bi is less than 

0.1. Values exceeding 0.1 imply non-uniform temperatures 

within the system, rendering the lumped capacitance model 

inapplicable. Various researchers have proposed the lumped 

capacitance model to formulate battery systems, adhering to 

specific assumptions:  

(1) The battery system is considered to have a uniform 

temperature distribution profile with the absence of gradients. 

(2) The physical and thermal properties of the battery cells 

are completely independent of the temperature profile. 

(3) The battery cell core and module are characterized with 

an isothermal heat transfer phenomenon. 

(4) The battery cell system is thermally homogeneous with 

a low thermal mass of the case in which the battery is placed 

[9, 16]. 

 

 

3. ANALYTIC APPROACH BASED LUMPED 

CAPACITANCE THERMAL MODEL 
 

In the analytic approach to the lumped capacitance model, 

a focus is placed on rapidly determining the thermal behavior 

of battery cells. It has been established that during charging 

and discharging at various C-rates, the heat generated in the 

battery cells arises predominantly from Joule's heating loss, 

entropic phenomena, and polarization effects [17, 18], as 

indicated by Eq. (9). Among these, Joule's ohmic losses, 

associated with the internal resistance of the battery cell, have 

been identified as the principal contributor to the heating effect 

[19]. Consequently, the general heat balance equation for the 

battery cell is formulated as Eq. (10) [20, 21].  
 

𝑚𝐶𝑝 (
𝑑𝑇

𝑑𝑡
) =  𝑄𝑃 − 𝑄𝐵 + 𝑄𝑆 (9) 

 

𝑚𝐶𝑝(
𝑑𝑇

𝑑𝑡
) =  𝑖2𝑅0 − ℎ𝐴(𝑇 − 𝑇𝑎𝑚𝑏) (10) 

 

where, QP represents ohmic heat loss, QS denotes entropic loss, 

and 𝑄𝐵  refers to heat loss to the environment through 

convection, as per Newton’s law of cooling. At the initial time 

t=0, the system temperature T (0) is assumed to be the ambient 

temperature 𝑇𝑎𝑚𝑏 . The current flow in the battery 𝑖 (A), the 

internal resistance of the battery cell 𝑅0  (ohm), and the 

ambient temperature 𝑇𝑎𝑚𝑏  (K) are defined respectively.  

Employing the energy balance equation and assuming 

constant properties for the battery cell system simplifies Eq. 

(9) to Eq. (11).  
 

ℎ𝐴(𝑇 − 𝑇𝑎𝑚𝑏) + 𝜌𝑉𝐶𝑝(
𝑑𝑇

𝑑𝑡
) = 0 (11) 

 

Further assumption (𝑇 − 𝑇𝑎𝑚𝑏) = 𝜇  lead to the 

transformation of Eq. (11) to Eq. (12). 

 

𝑚 𝐶𝑝

𝑑(𝑇 − 𝑇𝑎𝑚𝑏)

𝑑𝑡
=  −ℎ𝐴(𝑇 − 𝑇𝑎𝑚𝑏) 

𝑚 𝐶𝑝

𝑑𝜇

𝑑𝑡
= −ℎ𝐴𝜇 

(12) 

 

Further assumption 
𝑚𝐶𝑝

ℎ𝐴
= 𝜏𝑐 lead to the transformation of 

Eq. (12) to Eq. (13). 
 

𝑑𝜇

𝜇
= −(

𝜇

𝜏𝑐

) (13) 

 

Integrating Eq. (13) on both sides, 𝜇(𝑡) = (𝑒
−(

𝑡

𝜏𝑐
)
)𝐾. 
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Considering steady state conditions, Eq. (10) can be 

simplified, leading to −ℎ𝐴𝜇 + 𝑖2𝑅0 = 0, and the deduction of 

a specific value 𝜇 as delineated in Eq. (14).  

 

𝜇 =
𝑖2𝑅0

ℎ𝐴
 (14) 

 

From the aforementioned equations, Eq. (10) is further 

reduced to a more concise form 𝜇(𝑡) = 𝐾𝑒
−(

𝑡

𝜏𝑐
)

+
𝑖2𝑅0

ℎ𝐴
. 

Assuming an initial temperature at time t=0, the constant K is 

derived as shown in Eq. (15). 

 

𝐾 =
−𝑖2𝑅0

ℎ𝐴
 (15) 

 

Subsequently, substituting the value of K into the equation 

results in 𝜇(𝑡) =
𝑖2𝑅0

ℎ𝐴
(1 − 𝑒

−(
𝑡

𝜏𝑐
)
). Hence, the final form of 

the analytical approach equation of the lumped capacitance 

model is presented as Eq. (16).  

 

𝑇(𝑡) = 𝑇𝑎𝑚𝑏 +
𝑖2𝑅0

ℎ𝐴
(1 − 𝑒

−(
𝑡

𝜏𝑐
)
) (16) 

 

The final form of the analytic approach equation of the 

lumped capacitance thermal model is presented as Eq. (16), 

illustrating that temperature is a function of time t, with 

negligible spatial temperature variation. The heat transfer is 

attributed solely to external convection, where the battery cell 

is situated in an external medium. The specific heat capacity 

Cp during battery discharge is assumed constant over the 

relevant temperature range, with average values for nickel 

cadmium and lithium manganese dioxide assumed as 

1.131kJ/kg/K [22] and 0.823kJ/kg/K [23], respectively. The 

average specific heat capacity of a cell usually does not 

significantly vary with the weight, size of the cell considered, 

the capacity of the cell used and the direction of measurements 

[22]. Moreover, while considering the modeling of the lumped 

capacitance model, it is assumed as the physical and chemical 

properties of the body considered generally is assumed 

constant as they are independent of the temperature 

characteristics. The discharge duration t was experimentally 

determined, with the battery discharged from a full state of 

charge 4.2V to a cut-off voltage of 2.5V. During the 

experimental phase, the discharge duration of the battery was 

meticulously recorded. The depth of discharge was 

methodically measured in increments of 10%, ranging from 

100 to 0. This granular data collection was pivotal in the 

development of the theoretical models. The time variable ‘t’, 

corresponding to these depth of discharge values, was 

integrally factored into the model design process. The thermal 

conductivity of the lithium polymer and nickel cadmium 

batteries were assumed to be 8.9 W/(m K) [24] and 4.3 W/(m 

K) respectively, with a heat transfer coefficient in the range of 

10 W/(m2K) [25]. The calculated Biot numbers for lithium 

manganese dioxide and nickel cadmium batteries were 0.072 

and 0.053, respectively, validating the application of the 

lumped capacitance model for these batteries. As mentioned 

before, the lumped capacitance model assumes a uniform 

temperature distribution, which is valid when the Bi is less 

than 0.1. However, a value greater than 0.1 indicates non-

uniform temperature within the system, making the lumped 

system inappropriate for such scenarios.  

In this study, the estimation of the internal resistance of the 

battery was conducted based on an analytic method developed 

by Tremblay et al. [26]. This approach involved establishing a 

relationship that correlates the rated capacity and nominal 

voltage of the chosen battery with its efficiency parameter. 

This analytical relation emerged from extensive empirical 

testing, involving more than 30 trials on a standard 1.2V 

battery cell. The results of these tests led to the conclusion that 

the initial internal resistance R0 of the battery could be 

accurately determined using this relation. Crucially, this 

relation has been demonstrated to align the model's discharge 

curves with those provided in the datasheets by the battery 

manufacturers. From these empirical tests, the efficiency ƞ of 

the battery was deduced to be approximately 99.5%. 

Consequently, based on these assumptions, the internal 

resistance of the battery cell was calculated using the formula 

presented in Eq. (17). 

 

𝑅0 =  𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙(
1 − 𝜂

0.2 𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙

) (17) 

 
where, 𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙  refers to the nominal voltage of the battery 

cell in (V) and 𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙 refers to the nominal capacity of the 

battery cell in (Ah). The model is based on various 

assumptions as proposed by the authors. The internal 

resistance of the cell is considered constant both during the 

process of charging and discharging of the battery cells. The 

parameters of the model were estimated during the process of 

discharge and assumed to be similar even during charging. The 

temperature does not affect the model’s behavior. The self-

discharge and memory effect is absent. The Peukert’s effect is 

absent. 

 

 
4. NUMERICAL APPROACH BASED LUMPED 

CAPACITANCE THERMAL MODEL 

 
In this study, the thermal behavior of battery cells was 

assessed using the numerical approach, specifically employing 

the fourth order Runge-Kutta method. Recognized for its 

computational intensity, the numerical approach’s accuracy 

hinges significantly on the volume and precision of data input 

into the mathematical algorithm. This approach is adept at 

predicting and simulating the behavior of systems under 

various operational conditions. The fourth order Runge-Kutta 

method, selected for this analysis, stands out for several 

advantages over alternative methods. Notably, it obviates the 

need for computing higher-order derivatives, which is a 

requisite in Taylor’s series method [27]. Additionally, 

compared to Euler’s method [28], this method requires smaller 

step sizes to achieve accurate solutions, enhancing its 

computational efficiency. In terms of accuracy, the fourth 

order Runge-Kutta method demonstrates superior precision 

relative to its lower-order counterparts. The technique has 

quite several benefits as compared to its counterparts in terms 

of accuracy, as the thermal behavior of the battery is generally 

considered to be a complex characteristic and precision is 

highly considered to capture the subtle changes in temperature 

over time. The method is numerically stable, as it can be 

applied for various time steps and initial boundary conditions. 

The method is generally said to converge relatively quicker to 

the solution, this making it efficient and superior for solving 

differential equations. The application of this method for 

thermal analysis in the current study is encapsulated in Eqs. 

(18) to (22), which detail the step-by-step process of 
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temperature estimation during the battery discharge cycle. 

 

𝑘1 = 𝑓(𝑥𝑖, 𝑦𝑖) (18) 

 

𝑘2 = 𝑓 (𝑥𝑖, + 1 2 ℎ𝑠, 𝑦𝑖 + 1 2 𝑘1ℎ𝑠) (19) 

 

𝑘3 = 𝑓(𝑥𝑖, + 1 2 ℎ𝑠, 𝑦𝑖 + 1 2 𝑘2ℎ𝑠) (20) 
 

𝑘4 = 𝑓(𝑥𝑖, +ℎ𝑠, 𝑦𝑖 + 𝑘3) (21) 
 

𝑦𝑖+1 = 𝑦𝑖 + 1 6 (𝑘1 +2𝑘2 + 2𝑘3 + 𝑘4)ℎ𝑠 (22) 

 

where, ℎ𝑠 signifies the sampling time for iterations, set at 0.1 

for this analysis, and 𝑦𝑖+1 is the final estimated result which 

corresponds to the estimated temperature in the study, 𝑓 (𝑥𝑖, 
𝑦𝑖) represents the primary derivative of the temperature 

variable yi. 𝑥𝑖 denotes the time based on which the variable yi 

changes. The slope increments k1, k2, k3 and k4 are calculated 

at the beginning, middle, and end of the intervals during the 

iterations [29]. Although the Runge-Kutta method has been 

adopted in this study, the method must be chosen carefully 

considering few limitations such as when the system 

encounters discontinuities during the process, adaptive time-

stepping, accuracy trade-off and computational cost 

respectively. 

Differing from the analytic approach, this numerical 

methodology accounts for the variation in the internal 

resistance of the battery cell, which fluctuates in response to 

temperature changes during charging and discharging cycles. 

The model for estimating the change in internal resistance 

during the discharge process was adopted from study [30]. 

When current flows through the initial internal resistance R0, 

Joule's heating effect is observed, leading to an increase in the 

overall temperature of the battery. This temperature rise, 

coupled with the thermal mass, heat transfer coefficient, and 

heat dissipation to the external environment, forms the basis 

of a differential equation. The relationship between the change 

in internal resistance and the battery cell temperature is 

articulated in Eq. (23). 

 

𝑅(𝑇) = 𝑅0 𝑒𝑥𝑝 𝑏1𝑇 + 𝑏2𝑇2 ± 𝛾 (23) 

 

where, R(T) represents the thermal resistance, a function of 

temperature T, and 𝛾 signifies the offset parameter. 

 

 

5. TEST BENCH METHODOLOGY 

 

To evaluate the thermal responses predicted by the 

analytical and numerical approaches of the lumped 

capacitance model, an experimental setup was established. 

This experiment focused on the charging and discharging 

processes of two types of battery cells: a lithium manganese 

dioxide (LiMnO2) cell and a nickel-cadmium (Ni-Cd) cell. 

These specific cells were selected due to their prevalent use in 

EVs. The characteristics of these battery cells had huge 

applications in electric vehicles as compared to other different 

chemistries. The low self-discharge, no or less memory effect 

and better energy and power densities provided a better option 

to choose these cells over others. 

The experimental procedure involved charging and 

subsequently discharging the LiMnO2 and Ni-Cd cells at 

different C-rates. For the LiMnO2 cell, C-rates of 0.5C and 1C 

were applied, while for the Ni-Cd cell, the rates were set at 

0.4C and 0.65C. The charging and discharging processes were 

facilitated using an ITECH IT6054B-1500-120 regenerative 

power system, which functioned as both a source and a load. 

This system was connected to a computer via an IEEE 488 

GPIB bus. The lithium polymer-based battery was discharged 

for almost 2 and 1 hour respectively, whereas the nickel-

cadmium battery was discharged for 2.5 hours and 1.5 hours 

respectively. The battery was usually charged for two hours 

using 0.5C as the C-rate to reach the maximum voltage for 

both the chemistries of the battery cells. Voltage and current 

measurements were recorded using SIGLENT SDM-3055SC 

multimeters. The zero and span calibration of the instruments 

was done to improve the accuracy and sensitivity of the 

instruments. The dc voltage measurement range of these 

instruments are from 200 mV to 1000 V and the dc current 

measurement range varies between 200 µA to 10 A 

respectively. Temperature monitoring was performed by 

affixing a J-type thermocouple to the surface of each battery 

which was calibrated before the initialization of the 

experiment. These thermocouples, based on Seebeck's effect 

and composed of Iron and Constantan, operate within a 

temperature range of -40℃ to +750℃. They exhibit a high 

static characteristic sensitivity of approximately 50 µV/℃ [31]. 

Data acquisition for temperature readings was conducted 

through a NI-based DAQ system, integrated with the 

experimental setup. The measurements, along with the settings 

of the power system and multimeters, were remotely logged 

and controlled using LabVIEW software. The physical 

dimensions of the prototype cells, specifically volume and 

density, were determined using a vernier caliper. The least 

count of the vernier caliper was 0.1mm for the study. The 

vernier caliper was calibrated initially using different positions 

to accurately determine the parameters for the purpose of the 

study. The additional details of the battery prototypes, 

including their specifications, were sourced from their 

respective datasheets. The specifications of the batteries 

utilized in the experiment are presented in Table 1. 

 

Table 1. Specifications of the Batteries 
 

Battery Parameters 

Specifications of Different 

Chemistries 

LiMnO2 / Ni-Cd 

Battery type 
Efest IMR 18650 / Extracell-SC- 

NI-CD 

Nominal capacity (mAh) 3000/ 2000 

Nominal voltage (V) 3.7/ 1.2 

Maximum discharge 

current (A) 
20/10 

Item weight (g) 46.1/ 47 

Cell height (m) 0.0649/ 0.043 

Cell diameter (m) 0.0183/ 0.023 

Cut-off voltage (V) 2.5/ 1 

 

 

6. RESULTS AND DISCUSSION 

 

The study's findings align with the observations noted in 

researches [32, 33], indicating a significant decline in battery 

performance as the depth of discharge approaches 80% of 

capacity. This decline manifests as a fading life of the capacity 

in both LiMnO2 and Ni-Cd cells, confirming the phenomenon 

of capacity fading over time. Prior to life-cycle testing, the 

capacity of these battery prototypes was at its maximum, 

gradually decreasing with successive parametric checks, thus 
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evidencing a reduction in performance over the battery's 

lifespan. The discharge curves of the LiMnO2 and Ni-Cd 

prototype cells are depicted in Figure 1 and Figure 2, 

respectively. 

 

 
 

Figure 1. Discharge curve of LiMnO2 battery 

 

 
 

Figure 2. Discharge curve of Ni-Cd battery 

 

In the initial phase of analysis, the lumped capacitance 

thermal model's applicability was ascertained using the Biot 

number, with values in both cases being less than 0.1. 

Subsequently, the analytical and numerical approaches of the 

lumped capacitance model were implemented within the set 

constraints. 

For the numerical approach, internal resistance was 

estimated in accordance with Eq. (23). The Generalized 

Reduced Gradient (GRG) method of non-linear curve fitting 

was employed to determine the variation in internal resistance 

relative to the depth of discharge and voltage. The objective 

function, chosen for minimization in the GRG algorithm, was 

the sum of squared deviations between the model, derived 

using Eq. (24), and the experimental voltage readings. 

 

𝑉(𝑡, 𝑇) = 𝐸(𝑡) − 𝑖(𝑡) ∗ 𝑅(𝑇) (24) 
 

where, V represents the terminal voltage (V) obtained through 

the numerical approach, and E denotes the open circuit voltage 

(V). A smooth curve fitting facilitated the estimation of 

various parameters in Eqs. (23) and (24). The fourth order 

Runge-Kutta method was then applied in Matlab to predict the 

temperature corresponding to each depth of discharge. Figure 

3 illustrates the comparative temperature profiles of the 

numerical approach against the experimental models for both 

the lithium polymer and nickel-cadmium cells. Additionally, 

Figure 4 presents the comparison of voltages obtained from 

experimental tests with those predicted by the model using the 

GRG method. Figure 5 showcases the variation in internal 

resistance relative to the depth of discharge of the batteries. 
 

 

 
 

Figure 3. Comparison of thermal characteristics of 

Numerical approach models with the experimental models 

for different battery chemistries 
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Figure 4. Comparison of Voltage characteristics of 

Numerical approach models with the experimental models 

for different battery chemistries 

 

 

  
 

Figure 5. Estimation of internal resistances for different 

battery chemistries 
 

 

 
 

Figure 6. Comparison of thermal characteristics of 

Analytical approach models with the experimental models for 

different battery chemistries 

 

The internal resistance for the Analytical approach model 

was deduced using Eq. (17), while the battery cell 

temperatures were estimated with Eq. (16). It was assumed 

that the convective heat transfer coefficient during the 

discharge process remained within 10W/m2 K. Surface areas 

of the selected batteries were calculated to be 0.0042m2 for the 

LiMnO2 cell and 0.0039m2 for the Ni-Cd cell. Ambient 

conditions were maintained throughout the experiment, with 

the initial temperature set to ambient levels for both 

approaches. The specific heat capacities for the Lithium 

polymer and Nickel Cadmium batteries were determined to be 

0.823kJ/kg K and 1.13kJ/kg K, respectively. Upon analyzing 

the temperature responses from both the numerical and 

analytical approaches and comparing them with the 

experimental results, a notable correlation was observed. The 

numerical approach model showed a closer alignment with the 

experimental data compared to the analytical approach. This 

higher accuracy in the numerical approach can be attributed to 

the dynamic estimation of internal resistance throughout the 

discharge process, a factor considered critical in designing the 

lumped capacitance model of the batteries. As per existing 

literature [20, 22], the specific heat capacity was assumed to 

be constant, given its minimal variation during the discharge 

period. In contrast, the analytical approach model exhibited 

less precision in temperature prediction compared to the 
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numerical approach with the experimental results as shown in 

Figure 6, primarily due to the assumption of constant internal 

resistance. The accuracy of the Numerical model when 

compared with the experimental results, was relatively better, 

however the results were not perfectly accurate match with the 

experimental results, due to the various assumptions of the 

parameters as constants. Moreover, if in case the parameters 

are determined for various intervals based on experiments or 

using look-up tables, the results will have much better 

accuracy. To enhance the understanding of temperature 

analysis using both models, statistical methodologies were 

applied and discussed below in detail. 

 
6.1 Evaluation of the performances of two approaches 

based on statistical methodologies 

 
In evaluating the performance of the analytical and numerical 

approaches against experimental results, an extensive analysis 

was conducted using various statistical methodologies. These 

methodologies, represented by Eqs. (25) to (29) [34-36], 

included mean absolute error (MAE), root mean square error 

(RMSE), correlation ratio (H), Willmott's index of agreement 

(d), and relative error (RE). The following error criterion 

techniques were chosen because they serve as the objective 

function for the process of optimization. They can be hyper 

tuned and help in decision making process based on the 

decision variables. These techniques help in validating the 

model with the reference variables. On comparison, they 

provide a clear feedback loop on the data with respect to the 

reference variables thereby providing a clear understanding of 

the techniques studied. 

 

Mean Absolute Error (MAE) = ∑
|(𝑥𝑝−𝑥𝑜)|

𝑛

𝑛

𝑖=1
 (25) 

 

Root Mean Square Error (RMSE) = √∑
(𝑥𝑝−𝑥𝑜)2

𝑛

𝑛

𝑖=1
 (26) 

 

Correlation Ratio 𝐻 = √1 −
∑ (𝑥𝑜−𝑥𝑝)2

𝑛

𝑖=1

∑ (𝑥𝑖−𝑥)2𝑛
𝑖=1

 (27) 

 

Willmott’s index of agreement 

 

𝑑 = 1 −  
∑ (𝑥𝑝 − 𝑥𝑜)2𝑛

𝑖=1

∑ (|𝑥𝑝 − 𝑥| + |𝑥𝑜 − 𝑥|)2𝑛

𝑖=1

 (28) 

 

Relative Error 𝑅𝐸 =
𝑅𝑀𝑆𝐸

𝑥
 (29) 

 

where, xp corresponds to the estimated values using the two 

approaches, xo represents the observed experimental data, 𝑥 

denotes the mean of the experimental data and n represents the 

number of observations. 

From the data in Table 2, it is evident that the numerical 

approach model exhibits superior performance compared to 

the analytical approach model. The statistical indicators 

clearly indicate the enhanced accuracy of the Numerical model 

in aligning with the experimental data.  

 

Table 2. Comparison of the battery models using statistical indices 

 

Model 

Approach 
Battery Type & C-Rate 

Statistical Performance and Error Estimation 

MAE (K) 
RMSE 

(K) 

𝑯 

(%) 
d RE 

Numerical Approach 

LiMnO2 (1C) 0.32 0.46 0.99 0.99 0.001 

LiMnO2 (0.5C) 0.26 0.31 0.97 0.98 0.001 

Nickel-Cd (0.4C) 0.29 0.31 0.98 0.93 0.001 

Nickel-cadmium (0.65C) 0.30 0.36 0.98 0.98 0.001 

Analytical Approach 

LiMnO2 (1C) 0.68 0.80 0.98 0.97 0.002 

LiMnO2 (0.5C) 0.73 1.20 0.81 0.65 0.004 

Nickel-Cd (0.4C) 1.23 1.34 0.98 0.43 0.004 

Nickel-cadmium (0.65C) 1.32 1.58 0.94 0.60 0.005 

 

 

7. CONCLUSIONS 

 

This investigation has methodically explored two distinct 

approaches within the lumped capacitance parameter model 

for thermal management of cylindrical batteries, 

predominantly utilized in EVs: the analytical and numerical 

approaches. These methodologies were rigorously compared 

with experimental data to assess their efficacy. In the 

numerical approach, the internal resistance of the battery was 

dynamically estimated at varying depths of discharge, utilizing 

the GRG optimization algorithm. Conversely, the analytical 

approach, predicated on the assumption of static internal 

resistance, offered a less complex model but did not 

approximate the experimental data as closely as the Numerical 

approach. Despite the greater computational complexity of the 

numerical approach, its enhanced accuracy in aligning with 

experimental observations underscores its utility in battery 

thermal management modeling. While this study concentrated 

on two specific battery chemistries, it is recommended that 

future research extends to encompass a broader range of 

battery chemistries.  
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NOMENCLATURE  

 

 

Acronyms  

 

BMS Battery Management System 

DAQ Data Acquisition Card 

DOD Depth of Discharge 

EV Electric Vehicles 

GRG Generalized Reduced Gradient method 

Li-ion Lithium-ion 

MAE Mean Absolute Error, K 

Ni-Cd Nickel-cadmium 

RE Relative Error 

RMSE Root Mean Square Error, K 

SOC State of Charge 

 

Symbols 

 

A Surface area of battery, m2 

Bi Biot’s number, dimensionless 

cp Specific heat capacity of battery, kJ/kg K 

d Willmott’s index, dimensionless 

E(t) Open circuit voltage, V 

h Heat Transfer coefficient, W/ m2 K 

H Correlation coefficient, % 

ℎ𝑠 Sampling time during the iteration 

i Current flow, A 

K Thermal conductivity, W/ m K 

L Length of the system, m 

M mass of the battery, kg 

N Number of experimental data 

Qnominal Nominal capacity, V 

R0 Internal resistance, Ω 

T Time, s 

Tamb Ambient temperature, K 

Ti Initial Temperature, K 

Tm Temperature of medium, K 

V Volume of battery, m3 

Vnominal Nominal Voltage, V 

V(T) Terminal voltage, V 

xo Experimental values, K 

xp Predicted values using models, K 

 

Greek symbols 

 

α Inverse of time constant, s-1 

γ Offset parameter, mΩ 

η Efficiency, % 

ρ Density of battery, kg/ m3 

 

210




