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Time-series forecasting is challenging in the real world. Both short-term and long-term 

forecasting are important in various fields of research and industry. Most forecasting 

algorithms perform great in providing one-step predictions, i.e., predicting only the next 

value in the time series data, but do not perform well while predicting multiple steps into 

the future. On top of that, concept drift makes it more challenging. The aim of this paper is 

to develop a lightweight recurrent neural networks (RNN)-based model that can do 

forecasting in the short or long term with the ability to detect concept drift and adapt to it 

automatically using a recent window of the data stream. The suggested model performs 

better than current techniques, with the lowest Root Mean Square Error (RMSE) of 0.0701, 

demonstrating increased accuracy in adaptive time series forecasting for temperature 

control in smart homes. 
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1. INTRODUCTION

Time series forecasting finds wide applications across the 

world, such as in the financial domain, weather forecasting, 

microfluidic chip production [1], high- frequency stock price 

forecasting [2], transport energy demand [3], load forecasting 

[4, 5], etc. For a long time, data scientists across the world have 

developed many algorithms that can predict the future values 

of a time series. However, most time series forecasting models 

suffer from problems like high volume and concept drift as 

shown in Figure 1. A high volume of time series data streams 

is a significant challenge as it requires scalable and efficient 

methods to handle the large amounts of data. Analysing and 

processing large volumes of data can be time-consuming and 

resource-intensive, which can affect the accuracy and 

efficiency of forecasting models. Concept drift, on the other 

hand, is one of the most critical challenges in time series 

forecasting as it can lead to inaccuracies in forecasting models 

that are trained on historical data that no longer accurately 

represent the current data distribution. Accurately detecting 

and adapting to concept drift is crucial for reliable forecasting. 

Figure 1. Concept drift 

Retraining is a common technique used to tackle concept 

drift in time series forecasting. Retraining involves 

continuously updating the forecasting model based on the 

most recent data to adapt to changes in the underlying data 

distribution. By retraining the model on the most recent data, 

the model can adapt to changes in the underlying data 

distribution, including changes in the relationships between 

the variables in the time series. Retraining can help improve 

the accuracy and reliability of time-series forecasting models, 

particularly when concept drift is a significant factor in the 

data. However, retraining with all the historical data is 

infeasible due to the potential high volume of time series data. 

Time series forecasting is impacted by high volume and 

concept drift, which provide scalability and efficiency issues. 

Model accuracy is impacted by the resource-intensive nature 

of large-scale data analysis. Concept drift causes errors 

because models educated on old data do not match the 

distribution of new data, requiring adaptive methods like 

retraining. 

In this paper, we discuss a novel end-to-end model that is 

lightweight in nature, can detect concept drift in the data 

stream, and can adapt to it automatically. The model is based 

on RNN. Unlike existing RNN-based models such as AIS-

RNN [6], LSTM ensembles [7], or Ada-RNN [8], the proposed 

model focuses on dealing with concept drifts. In the proposed 

model, we used feature selection to feed only the important 

features of the data to the model to make it lightweight and 

faster. The proposed RNN model can retrain itself using only 

a defined window of recent data if concept drift is detected by 

itself. It also utilizes model versioning to reuse old models if 

suitable for the latest data stream. So, the proposed model can 
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provide end to end forecasting with adaptability and 

lightweight nature. We also compare the proposed model 

against a recent research work, DSTP-RNN [9], and the results 

shown that the proposed model performed significantly better 

and has the potential to outperform state-of-the art algorithms. 

 

 

2. RELATED WORK 

 

In recent years, many models have been developed to 

address time-series forecasting. Some of the slightly older 

approaches include distributed ML techniques [10], which 

utilize a distributed mode of learning from the data stream. 

Recurrent broad learning systems [11] were developed to 

extract patterns from time series data. Some of the more 

advanced approaches are adaptive XGBoost [12], where new 

trees replace old trees with new data arrivals. AdaRNN [8] 

tries to learn the common pattern in the data stream across 

different time periods. Adaptive SVR [2] elevates traditional 

SVR to be able to process high-speed data streams, and CNN-

LSTM [13] uses a grey wolf optimizer to control and update 

the hyperparameters of the model. 

DSTP-RNN [9] is a dual-stage, two-phase attention-based 

model that finds the influence of features on target to perform 

well for long- and short-term multivariate forecasting. Noise 

augmentation to reduce drift is also proposed in literature [14]. 

However, the existing models require a significant amount of 

data processing and lack a proper, easy-to- interpret drift 

detection and adaptation approach. To tackle the high volume 

of time series data, some techniques have been applied, such 

as feature selection, where only important features get fed into 

the model; segmentation [15], where the data is segmented 

into multiple segments to be processed parallelly; and 

stratification [16], where a heterogeneous time series is split 

into multiple homogeneous time series to speed up the learning 

process. Techniques like OASW [17] and ADWIN [12] are 

popular approaches to detecting concept drift in the data 

stream based on the sliding window approach. In OASW, they 

measure the performance of the model over a recent sliding 

window of size t (that holds t data points) and compare it with 

previous model performance over the data points in the sliding 

window at t time in the past. If the difference is greater than a 

threshold, concept drift is detected. ADWIN divides the data 

into two windows, dynamically adjusts the window size to 

adapt to changes in data distribution and detects drift by 

looking for significant differences between the two windows. 

Some other techniques to handle concept drift include 

matching new data with old, segmented data [15] and 

continuous adaptation [18] without explicit detection of drift. 

Despite all these developments addressing certain issues with 

time series forecasting, there is a lack of end-to-end models 

that can handle most of these problems together and provide a 

complete solution. That's our motivation to develop such an 

end-to-end model that can handle any time series data with its 

complexities and provide stable, robust forecasting for a 

prolonged period without much human intervention. The 

suggested model performs well because it provides a 

comprehensive answer to problems with time series 

forecasting. In contrast to previous models, it integrates 

concept drift detection, feature selection, and adaptive learning 

to guarantee interpretability and scalability. It is an end-to-end 

solution for consistent and robust forecasting in a variety of 

time series settings, as demonstrated by comparative studies 

that demonstrate superior performance. 

3. RESEARCH GAP  

 

After reviewing existing literature in the field of 

multivariate time series forecasting, we found some areas 

where improvements are much needed: 

•Generalized pre-processing of data before feeding it to 

models is heavily underutilized. Time series data can be huge 

in size as it is collected frequently over a long period of time. 

Building a model on this large amount of data takes a lot of 

time, and the biggest problem arises when we need to retrain 

the model later. It becomes simply infeasible to use all the past 

collected data with all the collected features as well. Thus, a 

well-defined pre-processing model to transform the data will 

be beneficial for building the forecasting model. 

•Addressing concept drift is still a big challenge for time 

series forecasting, though several studies have been done on 

this. There is no universally proven best method, and most 

methods have limitations.  

•A well-defined generalized methodology does not exist for 

retraining a forecasting model to adapt to changes in the data 

stream. The frequency and choice of different 

hyperparameters for retraining are two of the most important 

criteria when setting up a model retraining phase. 

The proposed model thus tries to address the current 

research gaps by incorporating the following techniques: 

•A pre-processing technique using feature selection to 

discard non-important features from the data to save storage 

and time consumption by the forecasting model, improve data 

quality, and make the model lightweight. 

•An Online adaptive version of an RNN-based model to 

detect any kind of concept drift in the data stream and adapt 

by retraining itself on only a defined window of recent data 

such that the model performance does not degrade and gets 

steady. By using only the recent window of data for retraining 

the proposed model, the retraining is faster, and there is also 

no need to store all past data. The proposed model is also 

capable of identifying concepts that have occurred before and 

utilize model versioning to use past trained models without the 

need of retraining every time, thus saving a significant amount 

of time and efficiency. 

The proposed time-series forecasting model is designed to 

provide businesses with the most accurate and up-to-date 

predictions possible. Unlike traditional models that require 

frequent total retraining to handle changes in the underlying 

data distribution, proposed lightweight model can detect 

concept drift and adapt to it in real-time automatically. The 

suggested model closes research gaps by presenting a feature 

selection pre-processing method for effective data use. It uses 

an online adaptive RNN to address concept drift, allowing for 

quick retraining on new data and real-time detection. The 

model provides an effective and flexible solution that 

addresses the shortcomings of generalised retraining 

approaches. It may be easily customised to meet changing 

business requirements. There will be a revolutionary effect if 

the gaps in multivariate time series forecasting are filled. The 

suggested adaptive RNN approach addresses the elusive idea 

of drift and simplifies retraining, while an improved pre-

processing model improves effectiveness and data quality. The 

end product is a forecasting tool that is portable, precise, and 

flexible, giving organisations access to trustworthy real-time 

data for well-informed decision-making. 
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4. THE PROPOSED METHODOLOGY 

 

As shown in Figure 2, the proposed methodology is an end-

to-end process consisting of several stages. It starts with the 

collection of time series data and then proceeds to a 

lightweight pre-processing phase that includes the essential 

step of feature selection. The subsequent phase involves 

building the RNN model, with careful attention given to 

training and hyperparameter tuning using HyperOpt. After 

generating forecasts using unseen data, a concept drift 

detection mechanism is introduced, which involves 

monitoring performance through a sliding error window of 

recent data. Once concept drift is detected by the model, the 

model adaptation phase is initiated, and the model is retrained 

on a retraining window of recent data to adapt to new data 

patterns if the pattern was not already seen by past tracked 

models. In the following sections, each phase is discussed in 

greater detail. 

 

 
 

Figure 2. End to end model architecture 

 

4.1 Lightweight method  

 

Time series data typically has a high volume; hence, model 

training and retraining can take a lot of time. Thus, making a 

model lightweight is beneficial. Existing techniques to make a 

model lightweight include down-sampling, feature selection, 

segmentation, and stratification. All these techniques have 

their own advantages and drawbacks. However, out of them, 

feature selection is what we found to be most impactful on the 

quality of forecasting. Feature selection is a technique to 

choose only those features from the data that have a high 

influence on the target feature. In other words, it discards 

redundant and useless features from the data before it is fed to 

the model. This allows the model to learn from the selected 

quality data and thus potentially improve the forecasting 

quality. 

 

 
 

Figure 3. Lightweight model architecture 

 

As shown in Figure 3, for the proposed model, we used a 

random forest-based feature selection technique to make the 

model lightweight. 

 

4.1.1 Random forest based feature selection 

Random forest-based feature selection is a popular 

technique used to select relevant features from data. The 

method works by constructing multiple decision trees based 

on a randomly selected subset of data and features. The 

algorithm assigns an importance score to each feature based 

on how well the feature separates the target variable. Features 

with higher importance are deemed more valuable. This 

process is carried out multiple times, and the average 

importance of each feature across the entire random forest is 

calculated and used to finally decide which features are going 

to be selected. By default, the algorithm selects those features 

with a higher feature importance than the average feature 

importance across all the features. The final selected features 

are fed to the forecasting model as input. 

The computation of importance is measured by the metric 

Mean Squared Error (MSE), MSE is calculated as follows, 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝜇)2

𝑁

𝑖=1

 (1) 

 

where, y is the value of target, N is the number of instances 

and u is the mean value of the target over all the data instances. 

For all the nodes of the trees in the Random Forest the MSE is 

calculated. Then the importance of each of the nodes is 

computed as follows. 

 

𝐼𝑚𝑝𝑗 = 𝑊𝑗𝐶𝑗 − 𝑊𝑙𝑗𝐶𝑙𝑗 − 𝑊𝑟𝑗𝐶𝑟𝑗 (2) 

 

where, Imp, stands for the importance of node j. W stands for 

weighted number of samples reaching node j. C is the MSE at 
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node j, j and rj subscripts stand for left and right child after the 

split at node j respectively. 

The importance of each individual feature is then calculated 

as follows. 

 

𝐹𝐼𝑖 =
∑ 𝐼𝑚𝑝𝑗𝑗:𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖

∑ 𝐼𝑚𝑝𝑘𝑘∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠

 (3) 

 

where, FIi stands for feature importance of ith feature and Impj 

is the importance of nodej. The feature importance is 

normalized in the range of 0 to 1. The feature importance is 

normalized in the range of 0 to 1 by dividing the feature 

importance values by the sum of all feature importance. 

 

𝑁𝑜𝑟𝑚𝐹𝐼𝑖 =
𝐹𝐼𝑖

∑ 𝐹𝐼𝑗𝑗∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

 (4) 

 

The average feature importance of each feature across all 

the trees in the Random forest is the final feature importance 

of the features, 

 

𝑅𝐹_𝐹𝐼𝑖 =
∑ 𝑁𝑜𝑟𝑚𝐹𝐼𝑗𝑗∈𝑎𝑙𝑙 𝑡𝑟𝑒𝑒𝑠

𝑇
 (5) 

 

where, RF_FIi is the feature importance of feature i for the 

entire random forest, NormFIj is the normalized feature 

importance at the jth tree and T is the total number of decision 

trees in the forest. 

By utilizing this feature selection process, the forecasting 

model gets only relevant and important features as input and 

not unwanted, noisy features, this helps improve the quality of 

the forecast and makes the model lightweight in nature. 

 

4.2 Recurrent neural networks as base model 

 

The base model algorithm is RNN. As shown in Figure 4, 

Recurrent neural networks are a kind of neural network that 

are capable of handling sequential data where the input data is 

a sequence of vectors.  

 

 
 

Figure 4. RNN algorithm flow 

 

It can be text, speech, or time-series data. Unlike traditional 

neural networks that process each input piece of data 

independently, RNNs maintain an internal memory state that 

allows them to process sequences of arbitrary length. In simple 

words, RNNs can predict future values based on both current 

and past values, i.e., they have memory. 

The RNN architecture consists of input X, hidden state h, 

and output Y. There are weights associated with each of them, 

namely, input weights Wx, recurrent or hidden layer weights 

Wh, and Output weights Wy, whereas bh and by are the biases 

corresponding to the hidden layer and output layer, 

respectively. At each time step 1, RNN takes the input vector 

Xt and the hidden state h(t-1) of the previous time step. The 

network then computes a new hidden state representation ht as 

a function of the current input and previous hidden state and 

generates an output Yt based on the new hidden state. Overall, 

RNNs and their more advanced versions like Long-Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU) are 

powerful tools for time series forecasting and have been used 

successfully in a wide range of applications. 

Mathematically, at each timestep, the computation of 

hidden state h and output Y is based on formulas as follows: 

 

ht=ƒ(Wx*Xt+Wh*ht-1+bn) (6) 

 

Y₁=f(Wy*ht+by) (7) 

 

where, ƒ denotes the activation function, which is used to 

apply non-linear transformations to the data, which helps with 

training the neural networks. We used the TensorFlow Keras 

framework to build the RNN model in our study. RNN, like 

any neural network model, has a lot of hyperparameters to be 

set before training it. The complete information on the 

different hyperparameters of a RNN is provided in Table 1 as 

follows: 

 

Table 1. Hyper-parameters of RNN 

 
Hyper-

Parameter 
Description 

Sequence 

length 

The number of time steps that the RNN 

processes in each forward pass. Longer 

sequence lengths can capture more context but 

increase computational costs and memory 

requirements. 

Number of 

hidden layers 
Number of hidden layers of the RNN model. 

Number of 

hidden units 

Number of neurons in the hidden layer of the 

RNN. A larger number of hidden units can 

allow the network to learn more complex 

patterns, but with an increased risk of 

overfitting. 

Activation 

The function used to compute the output of each 

hidden unit. Activations can have a significant 

impact of the training procedure. 

Batch size 

Defines the size of the hatch of data to be 

processed before updating the weights during 

RNN training. 

Epoch 
Defines the number of passes through the entire 

dataset during training. 

Learning rate 

The step size used to update the weights of the 

RNN during training. A higher learning rate 

increases speed of convergence but also 

increases the risk of overshooting the optimal 

solution. 

Optimizer 
The algorithm used for updating the weights of 

the RNN while training. 

Early 

stopping 

To stop the training when the model's 

performance does not improve over epochs. 
 

We train the model on a set of training data, and then to tune 

the hyperparameter, we use the Bayesian optimization 

algorithm. Bayesian optimization is a machine learning 

technique for tuning the hyperparameters of a given model. 

The idea behind it is to iteratively build a probability model of 

the objective function (RMSE of validation data). It then 

makes intelligent choices about where to sample the 

hyperparameter space next. Within predetermined parameters, 

the hyperparameter search space was defined. During 

optimisation, 50 trials were carried out in order to iteratively 
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improve the performance of the model. By using the 

probability estimates of the model, Bayesian optimization can 

balance the exploration of new regions of the search space 

with the exploitation of promising regions that have already 

been sampled. 

HyperOpt is a Python library that provides an 

implementation of Bayesian optimization for hyperparameter 

tuning. To use HyperOpt for hyperparameter tuning, the user 

defines a search space of possible hyperparameter values and 

an objective function (such as validation RMSE). HyperOpt 

then samples from the given search space, evaluates the 

objective function, and updates the probabilistic model. This 

process continues for a given number of trials. 

Finally, after hyperparameter tuning, we get the final trained 

model with the best possible hyperparameters, ready to predict 

on the unseen data. 

 

4.3 Concept drift detection 

 

To address the issue of concept drift, As shown in Figure 5, 

the proposed model monitors its performance over a window 

of recent data. The window is called Error Window W and 

holds the latest w data points from the data stream. The 

model's performance (Accuracy for classification and RMSE 

or other regression metrics) is measured against the error 

window W. A defined error threshold is set beforehand based 

on the model's performance on the training data itself, and 

when the model's performance crosses the threshold, concept 

drift is detected, indicating a significant change in the data 

pattern. Once drift is detected, the model needs to be updated 

to adapt to the new data pattern and improve its performance. 

Because of its susceptibility to changes in prediction errors, 

RMSE was selected as the method for detecting concept drift. 

When used, it guarantees efficient model performance 

monitoring, identifying patterns in data deviations and 

triggering timely adjustments for increased predicting 

accuracy. So, assuming RMSE as the error metric, the concept 

drift detection algorithm is as follows:  

 

Concept Drift Detection (ground_truth, pred, W, Th): 

ground truth: Actual values 

pred: predicted values 

W: error window of size w 

Th: Performance threshold 

START 

Running_error: RMSE over the latest window W, 

√
1

𝑤
∑ (pred𝑖 − ground_ruth𝑖)

2𝑤
𝑖=1 ; If (Running_error > Th): 

Concept drift is detected; 

Else: 

Get Next model prediction; 

Get next ground_truth from data stream; 

Update the error window W; 

Check for concept drift again; 

END 

 

 

 
 

Figure 5. Concept drift detection method architecture 

 

4.4 Adaptation to concept drift 

 

Once concept drift is detected by the model, the next step is 

to make the model adapt to the new data pattern so that the 

degrading model performance can be improved as soon as 

possible. As shown in Figure 6, we propose retraining as the 

method to adapt new data patterns to the model. The complete 

proposed model adapts to concept drift after detecting it in the 

following ways: 

•In the Online phase, the trained model forecasts the next 

values of the target feature as new data keeps coming from the 

data stream. 

•We set a Retraining window R, that holds the most recent 

R data points from the data stream and is constantly updated 

with each new incoming data. 

•As soon as Concept drift is detected, the model retraining 

phase starts. 

•Retraining cannot be done on entire data as streaming data 

can be huge in size. We define a retraining technique that uses 

985



 

only the data in Retraining Window R to retrain itself and 

improve its performance. The retraining window size can be 

adjusted based on the frequency of drift and the available 

computational resources. This window-based retraining 

allows the model to adapt to the changing data distribution and 

ensures that it maintains high performance and reliability over 

time.  

 

 
 

Figure 6. Adaptation to concept drift architecture 

 

•While retraining the model, the hyperparameter learning 

rate is chosen to be smaller than the original learning rate used 

during the initial training phase. This is because the model has 

already learned some useful features from the previous 

trainings and needs to fine tune its parameters to learn new 

concepts in the data stream. If the learning rate used during 

retraining is too high, the model's parameters will be updated 

too quickly, leading to overfitting on the new data. This can 

result in poor generalization performance on the new, unseen 

data. This phenomenon is known as catastrophic forgetting. 

Hence, we set the learning rate and epoch to be smaller than 

what they were during initial training so that the model's 

parameters are updated more gradually, allowing it to adjust to 

the new data patterns without forgetting the previously learned 

information. 

•During concept drift, it is not necessary that the old model 

hyperparameters are still the best hyperparameters. Hence, 

during retraining, we again utilize the HyperOpt 

hyperparameter tuning process. HyperOpt is a hyperparameter 

optimization tool chosen for its efficiency in fine-tuning model 

parameters. We split the retraining window into a 70-30% split 

and use the last 30% of the data as a validation set for the 

tuning process. We provide the search space for the necessary 

hyperparameters and set a trial number of 20 for speed and 

computation reasons. Once 20 trials are done, HyperOpt 

selects the best-performing set of hyperparameters, and finally 

the model is retrained on the entire retraining window using 

the best set of hyperparameters. However, it's important to 

note that the optimal set of hyperparameters may not be found 

within the defined number of trials, and it may be necessary to 

increase the number of trials for better results.So, the hyper-

parameters of the online phase are provided in Table 2. 

•As a retraining is completed, ideally the model 

performance should improve from before, but practically, if 

the data is noisy or if the concept drift is still going on, it may 

happen that even after one retraining session, the model 

performance is not better than the threshold. In that case, the 

model might go to another retraining session immediately, but 

the data for this retraining session will be almost the same as 

the last one, hence, it is redundant and not beneficial to do such 

retraining in quick succession. To address this, we make sure 

there is at least a difference of w data points between two 

retraining sessions. 

 

Table 2. Hyper-parameters of retraining phase 

 
Hyper-Parameter Significance 

Error Window size 

Size of the window in which model 

performance is monitored to chock for 

concept drift 

Retraining Window 

size 

Size of the window that is used for 

retraining the model 

Performance 

threshold 

Critical value of the model's performance 

beyond which concept drift is detected 

Retraining 

Learning rate 
The rate of learning during retraining 

Epoch 

Number of times the retraining window 

data is process during a single retraining 

session 

Batch Size 
Retraining the batch size of the data based 

on which model weights are updated 

Gap between two 

retraining sessions 

A minimum amount of new data that has 

to be seen by the model between two 

consecutive concept drift detections 

 

•Now as the retraining happen whenever the model detects 

concept drift, we save the versions of the model in memory. 

The benefit of this step is that whenever a concept drift is 

detected, if that newly detected concept has occurred before, it 

may happen that one of the previous versions of the model is 

capable of giving good predictions corresponding to this 

concept as that model has memorized that concept when it was 

trained. This will eliminate the unnecessary retraining process 

for this newly detected concept and thus save time. Also, it is 

way more efficient to save versions of models than to do a 

complete retraining. 

•In our experiments we saved the latest 10 versions of the 

model and whenever a concept drift is detected we evaluate 

the performance of those last 10 models on the most recent 

error window. If any of those past models produce 

performance metric better than the set threshold, we simply 

replace the current model with the best performing past model 

and do not initiate retraining for this instance of concept drift 

detection 

 

 

5. DATASET DESCRIPTION 

 

For evaluating the proposed algorithm and comparing it 

against DSTP-RNN [9], we used one of the datasets used in 

the DSTP-RNN paper. The dataset name is SMI 2010. The 

data contains readings of temperatures from a monitor system 

in a domestic house. The sampling frequency of the data is per 

minute, but it is smoothed by using a 15-minute mean. The 

timespan of the original data is 40 days and divided into two 

folders, out of which we only use the first folder containing 30 

days of data as the whole dataset. The room temperature is 

selected as the target the first 2000 data are used for training, 

and the rest of the 763 data are used as a holdout test set. The 

term "holdout test set" describes a subset of data that is only 

used to assess the performance of the model. In this instance, 

763 data points from the latter half of the 40-day period were 

kept aside in order to evaluate the resilience and generalisation 

capacity of the model. This method guarantees an objective 
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evaluation of the model on given data. 

Data availability: The SML2010 data can be found in UCI 

Machine Learning Repository. Link: 

https://archive.ics.uci.edu/ml/datasets/SML2010. The details 

are provided in below Table 3. 

 

Table 3. SML2010 data description 

 
Hyper-Parameter Significance 

Date Date: in UTC 

Time Time in UTC 

Temperature Comedor Sensor Indoor temperature (dining-room in A℃ 

Temperature Habitacion Sensor Indoor temperature (room), in A℃ 

Weather Temperature Weather forecast temperature, in Ã℃ 

CO2 Comedor Sensor Carbon dioxide in ppm (dining room) 

CO2 Habitacion Sensor Carbon dioxide in ppm (cm) 

Humedad Comedor Sensor Relative humidity (dining room), in % 

Humedad Habitacion Sensor Relative humidity (roam), in % 

Lighting Comedor Sensor Lighting (dining room), in Lux 

Lighting Habitacion Sensor Lighting (room), in Lux 

Precipitation Rain, the proportion of the last 

Meteo Exterior Crepusculo Sun dusk 

Meteo Exterior_Viento Wind, in m/s 

Merco Exterior Sol Oest Sun light in west facade in Lux 

Meteo Exterior Sol Est Sun light in cast facade, in Lux 

Metoo Exterior Sol Sud Sun light in south facade; in Lux 

Meteo Exterior Piranometro Sun irradiance, in W/m2 

Exterior Entalpic Enthalpic motor 1.0 or 1 (on-off) 

Exterior Entalpic 2 Enthalpic Motor 2.0 or 1 (on-off) 

Exterior Entalpic Turbo Enthalpic motor turbo. 0 or 1 (on-off 

Temperature Exterior Sensor Outdoor temperature, in AC 

Humedad Exterior Sensor) Outdoor relative humidity, in % 

Day of Wec Day of the week (computed from the date), 1=Monday, 7=Sunday 

 

 

6. RESULTS AND ANALYSIS 

 

In this section, we present a detailed analysis of the 

performance metrics and provide insights into the strengths of 

the proposed model. We start by describing the experimental 

setup and the evaluation criteria used in this study Next, we 

showcase the time and memory consumption analysis of the 

proposed model, followed by discussion on concept drift 

detection and adaptation to the drift. We show how feature 

selection is important for achieving better results. We also 

compare the performance of the proposed model with a recent 

research work DSTP-RNN [9] on the SML2010 dataset to 

show that the proposed model outperforms it comprehensively. 

 

6.1 Pre-processing and feature selection of data 

 

Pre-processing is a necessary step to prepare the data in a 

way that can be fed to the model training phase. At first, we 

combined the data and time columns and set them as indexes 

for visualization purposes Since the SML 2010 dataset did not 

have missing values and all the features were numerical, 

additional steps to impute missing values or categorical feature 

encoding were not required. 

We applied the random forest-based feature selection 

technique to the prepared data with a 70:30 split, 100 

estimators, and a random seed of 0 for reproducibility, and the 

results were provided in Table 4. 

Table 4. Results of random forest based feature selection 

 

Dataset 
Total Number of Features 

(Excluding Date and Time) 
Number of Features Selected Selected Features 

SML2010 22 2 
‘Temperature_Habitacion_ Sensor’ 

‘Temperature_Comedor_Sensor’ 

 

We checked for outlier in the dataset using Z score criteria 

(23) but the data does not contain any outliers. 

 

6.2 Train-test split 

 

To compare the results of the proposed model with those of 

the DSTP-RNN model, we set the train-test split the same as 

in that paper. The first 2000 instances are selected as the 

training set, and the last 763 data instances are selected as a 

holdout test set. During the training, 10% of the training set is 

used as a validation set for tuning the hyperparameters of the 

model. The RMSE is chosen as the evaluation metric for the 

experiments. For the purpose of evaluating the model, the 

choice to divide the data into training and test sets is essential. 

It makes evaluating the model's ability to generalise to new 

data possible. However, the robustness of the model may be 

limited by the use of just 763 data points for testing. Its 

performance in a variety of contexts would be better validated 

with a broader test set, reducing the possibility of overfitting 

to the particular holdout data. 

 

6.3 Model specifications 

 

A Recurrent Neural Network is used as the base model due 

to its effectiveness in time series forecasting and ability to find 

complex data patterns. The HyperOpt library is used for tuning 
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the hyperparameters using the Bayesian Optimization 

technique. The final RNN model used for the SML 2010 

dataset has one hidden layer with 12 units. The lag sequence 

parameter was chosen to be 12. An Adam optimizer with a 

learning rate of 0.001 is used for the training. The activation 

functions for the hidden and output layers are tanh and linear, 

respectively. A batch size of 256 is selected with 1500 epochs. 

L1 regularization of the value 0.0001 is used in the hidden 

layer to counter any possible overfitting. The model is trained 

to forecast the next 30 future values of the time series at every 

step. 

6.4 Memory and time consumption analysis 

To show the lightweight nature of the proposed model, we 

measured the time and memory consumption of the model in 

the training phase with and without the feature selection step. 

The results show that the feature selection step essentially 

helps the model run faster and requires less runtime memory. 

All the experiments were conducted on a machine with an 11th 

Gen Intel (R) Core (TM) i5-processor with a clock speed of 

2.60 GHz, 16 GB of RAM, and 4 Core(s). The results are 

provided in Table 5 and Table 6. 

Table 5. Memory consumption by the dataset with and without feature selection 

Dataset 

Name 

Dataset Size Before Feature Selection 

(KB) 

Dataset Size After Feature Selection 

(KB) 

Percentage Reduction of 

Size 

SML2010 496 64.8 86.9 

Table 6. Time consumption for training by the dataset with and without feature selection 

Dataset Name Time Without Feature Selection Time with Feature Selection Percentage Reduction of Time 

SML2010 1 min 20 sec 1 min 07 sec 16.2 

From the above results, we can see that the same RNN 

model takes more time and memory when all the features of 

the dataset are used compared to when only the important 

features selected by the Random Forest based feature selection 

algorithm are used. We see a huge 86.7% reduction in memory 

consumption, which can save a lot of memory as the time 

series data tends to have a high volume. Also, the reduction in 

time consumption is 16.2%, which, by intuition, we can say 

will increase significantly when the volume of the data 

increases. 

6.5 Model performance with and without feature selection 

analysis  

To show that feature selection helps the model learn from 

important relevant features and not get confused with 

redundant noisy features, we compared the results of the 

proposed model with and without feature selection with 

identical settings of hyperparameters. The result is provided in 

Table 7.  

Table 7. Model performance on test dataset with and without Feature Selection 

Dataset Name RMSE Without Feature Selection RMSE with Feature Selection Percentage Improvement of RMSE 

SML2010 0.433 0.0701 83.8 

Hence, we get about an 83.8% improvement in RMSE. The 

reason behind that could be that the features that were dropped 

using the Random forest-based feature selection algorithm 

were noisy and did not contribute much new information to 

modelling the target feature. Hence, dropping those features 

helps the model perform better. 

6.6 Concept drift detection and adaptation analysis 

As discussed, the proposed model detects concept drift by 

monitoring the model's performance over the defined error 

window. Whenever the model performance RMSE goes above 

a set threshold, concept drift is detected. The threshold is set 

based on the model performance on the training set itself, i.e., 

the training RMSE as provided in Table 8. 

Table 8. Training RMSE on the dataset 

Dataset Name Training RMSE 

SML2010 0.1397 

To have some flexibility in the drift detection, we set the 

RMSE threshold at 120% of the training RMSE as provided in 

Table 9. 

Table 9. Performance threshold for the dataset 

Dataset Name Performance Threshold 

SML2010 0.1696 

The error window size is chosen as follows based on 

intuition and trials as shown in Table 10. 

Table 10. Error window size for the dataset 

Dataset Name Error Window Size 

SML2010 120 

Because the SML 2010 dataset does not have any concept 

drift, we injected artificial drift into the test data to see how the 

proposed model detects it. We injected incremental drift of a 

magnitude of half the mean of the target from the 200th 

instance onwards. The test data before and after drift injection 

is as follows: 

As the model detects concept drift, the immediate next 

action should be to retrain the model so that it can adapt to the 

new concepts in the data stream. We define a retraining 

window R that holds the most recent R data points from the 

data stream. The retraining uses only the data within window 

R. During the retraining to tune some of the hyper-parameters,
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we employed HyperOpt again. We split the retraining window 

70:30 and use the last 30% as validation data for the tuning. 

Once tuning is done and the best-performing hyperparameters 

are found, we finally retrain the model for the entire retraining 

window using the best set of hyperparameters. To avoid too 

frequent retraining, we specify a minimum gap between two 

retraining equal to the size of the error window. Also after 

every drift detection we check if any of the past 10 saved 

models produce performance metric better than the threshold 

set. If yes, the best performing past model replaces the current 

model and there is no need for retraining for that particular 

concept drift detection instance. The retraining window size is 

selected as follows and is provided in Table 11. 

The selection of 256 batches and 1500 epochs was 

determined by computational performance as well as empirical 

findings. Through experimentation, these parameters were 

found, striking a balance between computational resources and 

model convergence. The model's performance and resource 

usage on the specified hardware are optimized while effective 

training is ensured by the chosen settings. Next, to see how 

retraining helps with concept drift adaptation. We measured 

the model performance in terms of RMSE, with and without 

retraining on the drift injected test data of the SML 2010 

dataset and the comparison is provided in Table 12. 
 

Table 11. Retraining window size for the datasets 
 

Dataset Name Retraining Window Size 

SML2010 120 
 

 

Table 12. Performance measure RMSE of the proposed model before and after drift addition, with and without drift detection and 

retraining 

 
Dataset Model Performance on Test Set 

Before Drift was Added 

Model Performance on Test Set Without 

Drift Detection and Retraining 

Model Performance on Test Set After 

Drift Detection and Retraining 

SML2010 0.0701 2.88 0.378 

 

As evident from the table above, retraining helps the model 

to quickly adapt to the concept drift in the data and thus 

making the model performance significantly better. Now it is 

to note that at the start of concept drift in the data, the model 

performance cannot be good due to fluctuations and thus the 

average RMSE is slightly higher than the RMSE without the 

concept drift added. This is clear if we look at the graphs of 

prediction vs actual values in both with and without retraining 

case. 

As shown in Figures 7 and 8, retraining helps the model 

adapt to the new data patterns quickly. We also show the actual 

values that we get as predictions from the model both with and 

without retraining on the test dataset. 

 

 
 

Figure 7. Prediction vs actual values on drift injected test set 

of SML2010 data without concept drift detection and 

adaptation 

 

 
 

Figure 8. Predictions actual values on drift injected test set of 

smi 2010 data after concept drift detection and adaptation 

As shown in Tables 13 and 14, we compare the predicted 

values with the actual ground truth values and see the 

difference in the quality of the prediction. Just so compare with 

the ground truth, here the predicted values are the first values 

of each prediction since the proposed model is trained to 

predict the next 30 values together. 

Next, we compare the RMSE curves of both the cases of 

model prediction, le, while retraining is done and while it's not 

done. The RMSE curve is formed by using the RMSE values 

on the error window ay the model predicts continuously on the 

test data. 

As shown in Figure 9, it is clear from the RMSE curves that 

with retraining, the RMSE of prediction stays low, which is 

ideal and means that the model is adapting according to the 

new data patterns. This proves our intuition and argument that 

retraining is indeed helping the model give better predictions 

even in the event of concept drift in the data stream. 

 

Table 13. Sample of actual vs predicted values on the drift 

injected sml2010 test set when concept drift detection and 

retraining is not done 

 
Date Prediction Original 

4/11/2012 1:45 27.4 31.8 

4/11/2012 2:00 27.3 31.7 

4/11/2012 2:15 27.3 31.6 

4/11/2012 2:30 27.2 31.5 

4/11/2012 2:45 27.1 31.5 

4/11/2012 3:00 27.1 31.3 

4/11/2012 3:15 27.0 31.3 

4/11/2012 3:30 27.0 31.2 

4/11/2012 3:45 26.9 31.1 

4/11/2012 4:00 26.8 31.0 

4/11/2012 4:15 26.8 30.9 

4/11/2012 4:30 26.7 30.8 

4/11/2012 4:45 26.6 30.7 

4/11/2012 5:00 26.5 30.6 

4/11/2012 5:15 26.5 30.5 

4/11/2012 5:30 26.4 30.4 

4/11/2012 5:45 26.3 30.3 

4/11/2012 6:00 26.3 30.1 

4/11/2012 6:15 26.2 30.1 

4/11/2012 6:30 26.1 30.0 
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Table 14. Sample of actual vs predicted values on the drift 

injected sml2010 test set with concept drift detection and 

retraining 

Date Prediction Original 

4/11/2012 1:45 32 31.8 

4/11/2012 2:00 31.9 31.7 

4/11/2012 2:15 31.8 31.6 

4/11/2012 2:30 31.7 31.5 

4/11/2012 2:45 31.6 31.5 

4/11/2012 3:00 31.5 31.3 

4/11/2012 3:15 31.4 31.3 

4/11/2012 3:30 31.3 31.2 

4/11/2012 3:45 31.1 31.1 

4/11/2012 4:00 31.0 31.0 

4/11/2012 4:15 30.9 30.9 

4/11/2012 4:30 30.8 30.8 

4/11/2012 4:45 30.7 30.7 

4/11/2012 5:00 30.5 30.6 

4/11/2012 5:15 30.4 30.5 

4/11/2012 5:30 30.3 30.4 

4/11/2012 5:45 30.2 30.3 

4/11/2012 6:00 30.0 30.1 

4/11/2012 6:15 29.9 30.1 

4/11/2012 6:30 29.8 30.0 

Figure 9. RMSE curves for SML2010 dataset with and 

without training. Red line indicates the RMSE threshold, and 

the green blobs indicate instances where drift was detected, 

and retraining happened 

7. COMPARISON

Now, benchmarking is very important in the field of 

machine learning. To validate the performance of the proposed 

model, we compared it against a recent research paper, DSTP-

RNN (9) DSTP RNN and DSTP-RNN. tl are dual stage 

attention-based RNN models that find the influence of non-

target series on target series and use that information to 

forecast. We compare the RMSE of the proposed model on the 

SML 2010 dataset with any drift injection against both 

versions of DSTP-RNN and other benchmark forecasting 

algorithms as provided in 19) All the algorithms were trained 

to predict the next 30 predictions at a time. The result is 

provided in Table 15. 

As we can see, the proposed model outperforms the 

previous best RMSE of DSTP-RNN by 28.9% and is clearly 

the best performing out of all the other algorithms involved. 

The suggested model performs better than the others, as 

evidenced by its lower RMSE, which shows that it is better 

able to capture complex time dependencies in the data. Its 

robustness is enhanced by its lightweight design and effective 

concept drift detection and adaptation, which distinguish it as 

the best-performing model among the compared methods. 

Table 15. Comparison of benchmark algorithms and DSTP-

RNN and the proposed model on the SML 2010 dataset with 

30 step ahead prediction criteria 

Method RMSE 

Arima 1.0631 

SVR 0.6843 

LSTM 0.7016 

GRU 0.7084 

Encoder-Decoder 0.2537 

Input Att RNN 0.2144 

Temp Att RNN 0.2406 

DARNN 0.2080 

GeoMAN 0.1310 

DeepAttn 0.1647 

DSTP-RNN 0.0987 

DSTP-RNN-II 0.0993 

The Proposed Model 0.0701 

8. CONCLUSION AND FUTURE WORK

In conclusion, this paper presented a lightweight time series 

forecasting model that incorporates concept drift detection and 

adaptation. The proposed model employs a combination of 

machine learning algorithms, which makes it easy to 

implement and computationally efficient. The concept drift 

detection mechanism based on a sliding window architecture 

allows the model to adapt to changing patterns in the data, 

ensuring accurate forecasts over prolonged periods of time. 

Retraining based on recent windows makes it efficient in terms 

of storage requirements to keep old data. 

Experimental results on the SML2010 dataset demonstrated 

the effectiveness of the proposed approach in detecting and 

adapting to concept drifts, leading to a significant 

improvement in forecasting quality over traditional 

approaches. Furthermore, the model's lightweight nature 

makes it suitable for deployment in resource- constrained 

environments. The proposed approach is suitable for time 

series forecasting in contexts with limited resources, which 

makes it useful in sectors like logistics, energy, and the 

Internet of things. The comparison against other established 

models clearly showcased the potential of the proposed model 

for time series forecasting. The future research scope includes 

utilizing more sophisticated techniques to improve the 

lightweight nature of the model and making new 

advancements in the concept drift detection approach to 

identify the type of drift and distinguish between noise and 

actual new data patterns. As the base model, the latest neural 

network-based algorithms can be tried out to see how they 

perform with more complex real-world time series data 

streams. 
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