
Lightweight RNN-Based Model for Adaptive Time Series Forecasting with Concept Drift

Detection in Smart Homes

Nitin B. Ghatage1* , Pramod D. Patil1 , Sagar Shinde2

1 Computer Engineering, Dr. D Y Patil Institute of Technology, Pune 411018, India
2 Computer Engineering, NMVPM’s Nutan College of Engineering and Research, Pune 410507, India

Corresponding Author Email: nitinbaghatage@gmail.com

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.560609 ABSTRACT

Received: 25 August 2023

Revised: 1 December 2023

Accepted: 15 December 2023

Available online: 28 December 2023

Time-series forecasting is challenging in the real world. Both short-term and long-term

forecasting are important in various fields of research and industry. Most forecasting

algorithms perform great in providing one-step predictions, i.e., predicting only the next

value in the time series data, but do not perform well while predicting multiple steps into

the future. On top of that, concept drift makes it more challenging. The aim of this paper is

to develop a lightweight recurrent neural networks (RNN)-based model that can do

forecasting in the short or long term with the ability to detect concept drift and adapt to it

automatically using a recent window of the data stream. The suggested model performs

better than current techniques, with the lowest Root Mean Square Error (RMSE) of 0.0701,

demonstrating increased accuracy in adaptive time series forecasting for temperature

control in smart homes.

Keywords:

time series, lightweight, recurrent neural

networks (RNN), concept drift detection,

adaption to concept drift

1. INTRODUCTION

Time series forecasting finds wide applications across the

world, such as in the financial domain, weather forecasting,

microfluidic chip production [1], high- frequency stock price

forecasting [2], transport energy demand [3], load forecasting

[4, 5], etc. For a long time, data scientists across the world have

developed many algorithms that can predict the future values

of a time series. However, most time series forecasting models

suffer from problems like high volume and concept drift as

shown in Figure 1. A high volume of time series data streams

is a significant challenge as it requires scalable and efficient

methods to handle the large amounts of data. Analysing and

processing large volumes of data can be time-consuming and

resource-intensive, which can affect the accuracy and

efficiency of forecasting models. Concept drift, on the other

hand, is one of the most critical challenges in time series

forecasting as it can lead to inaccuracies in forecasting models

that are trained on historical data that no longer accurately

represent the current data distribution. Accurately detecting

and adapting to concept drift is crucial for reliable forecasting.

Figure 1. Concept drift

Retraining is a common technique used to tackle concept

drift in time series forecasting. Retraining involves

continuously updating the forecasting model based on the

most recent data to adapt to changes in the underlying data

distribution. By retraining the model on the most recent data,

the model can adapt to changes in the underlying data

distribution, including changes in the relationships between

the variables in the time series. Retraining can help improve

the accuracy and reliability of time-series forecasting models,

particularly when concept drift is a significant factor in the

data. However, retraining with all the historical data is

infeasible due to the potential high volume of time series data.

Time series forecasting is impacted by high volume and

concept drift, which provide scalability and efficiency issues.

Model accuracy is impacted by the resource-intensive nature

of large-scale data analysis. Concept drift causes errors

because models educated on old data do not match the

distribution of new data, requiring adaptive methods like

retraining.

In this paper, we discuss a novel end-to-end model that is

lightweight in nature, can detect concept drift in the data

stream, and can adapt to it automatically. The model is based

on RNN. Unlike existing RNN-based models such as AIS-

RNN [6], LSTM ensembles [7], or Ada-RNN [8], the proposed

model focuses on dealing with concept drifts. In the proposed

model, we used feature selection to feed only the important

features of the data to the model to make it lightweight and

faster. The proposed RNN model can retrain itself using only

a defined window of recent data if concept drift is detected by

itself. It also utilizes model versioning to reuse old models if

suitable for the latest data stream. So, the proposed model can

Journal Européen des Systèmes Automatisés
Vol. 56, No. 6, December, 2023, pp. 981-991

Journal homepage: http://iieta.org/journals/jesa

981

https://orcid.org/0009-0003-9792-9616
https://orcid.org/0000-0002-4073-1428
https://orcid.org/0000-0003-1173-0511
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.560609&domain=pdf

provide end to end forecasting with adaptability and

lightweight nature. We also compare the proposed model

against a recent research work, DSTP-RNN [9], and the results

shown that the proposed model performed significantly better

and has the potential to outperform state-of-the art algorithms.

2. RELATED WORK

In recent years, many models have been developed to

address time-series forecasting. Some of the slightly older

approaches include distributed ML techniques [10], which

utilize a distributed mode of learning from the data stream.

Recurrent broad learning systems [11] were developed to

extract patterns from time series data. Some of the more

advanced approaches are adaptive XGBoost [12], where new

trees replace old trees with new data arrivals. AdaRNN [8]

tries to learn the common pattern in the data stream across

different time periods. Adaptive SVR [2] elevates traditional

SVR to be able to process high-speed data streams, and CNN-

LSTM [13] uses a grey wolf optimizer to control and update

the hyperparameters of the model.

DSTP-RNN [9] is a dual-stage, two-phase attention-based

model that finds the influence of features on target to perform

well for long- and short-term multivariate forecasting. Noise

augmentation to reduce drift is also proposed in literature [14].

However, the existing models require a significant amount of

data processing and lack a proper, easy-to- interpret drift

detection and adaptation approach. To tackle the high volume

of time series data, some techniques have been applied, such

as feature selection, where only important features get fed into

the model; segmentation [15], where the data is segmented

into multiple segments to be processed parallelly; and

stratification [16], where a heterogeneous time series is split

into multiple homogeneous time series to speed up the learning

process. Techniques like OASW [17] and ADWIN [12] are

popular approaches to detecting concept drift in the data

stream based on the sliding window approach. In OASW, they

measure the performance of the model over a recent sliding

window of size t (that holds t data points) and compare it with

previous model performance over the data points in the sliding

window at t time in the past. If the difference is greater than a

threshold, concept drift is detected. ADWIN divides the data

into two windows, dynamically adjusts the window size to

adapt to changes in data distribution and detects drift by

looking for significant differences between the two windows.

Some other techniques to handle concept drift include

matching new data with old, segmented data [15] and

continuous adaptation [18] without explicit detection of drift.

Despite all these developments addressing certain issues with

time series forecasting, there is a lack of end-to-end models

that can handle most of these problems together and provide a

complete solution. That's our motivation to develop such an

end-to-end model that can handle any time series data with its

complexities and provide stable, robust forecasting for a

prolonged period without much human intervention. The

suggested model performs well because it provides a

comprehensive answer to problems with time series

forecasting. In contrast to previous models, it integrates

concept drift detection, feature selection, and adaptive learning

to guarantee interpretability and scalability. It is an end-to-end

solution for consistent and robust forecasting in a variety of

time series settings, as demonstrated by comparative studies

that demonstrate superior performance.

3. RESEARCH GAP

After reviewing existing literature in the field of

multivariate time series forecasting, we found some areas

where improvements are much needed:

•Generalized pre-processing of data before feeding it to

models is heavily underutilized. Time series data can be huge

in size as it is collected frequently over a long period of time.

Building a model on this large amount of data takes a lot of

time, and the biggest problem arises when we need to retrain

the model later. It becomes simply infeasible to use all the past

collected data with all the collected features as well. Thus, a

well-defined pre-processing model to transform the data will

be beneficial for building the forecasting model.

•Addressing concept drift is still a big challenge for time

series forecasting, though several studies have been done on

this. There is no universally proven best method, and most

methods have limitations.

•A well-defined generalized methodology does not exist for

retraining a forecasting model to adapt to changes in the data

stream. The frequency and choice of different

hyperparameters for retraining are two of the most important

criteria when setting up a model retraining phase.

The proposed model thus tries to address the current

research gaps by incorporating the following techniques:

•A pre-processing technique using feature selection to

discard non-important features from the data to save storage

and time consumption by the forecasting model, improve data

quality, and make the model lightweight.

•An Online adaptive version of an RNN-based model to

detect any kind of concept drift in the data stream and adapt

by retraining itself on only a defined window of recent data

such that the model performance does not degrade and gets

steady. By using only the recent window of data for retraining

the proposed model, the retraining is faster, and there is also

no need to store all past data. The proposed model is also

capable of identifying concepts that have occurred before and

utilize model versioning to use past trained models without the

need of retraining every time, thus saving a significant amount

of time and efficiency.

The proposed time-series forecasting model is designed to

provide businesses with the most accurate and up-to-date

predictions possible. Unlike traditional models that require

frequent total retraining to handle changes in the underlying

data distribution, proposed lightweight model can detect

concept drift and adapt to it in real-time automatically. The

suggested model closes research gaps by presenting a feature

selection pre-processing method for effective data use. It uses

an online adaptive RNN to address concept drift, allowing for

quick retraining on new data and real-time detection. The

model provides an effective and flexible solution that

addresses the shortcomings of generalised retraining

approaches. It may be easily customised to meet changing

business requirements. There will be a revolutionary effect if

the gaps in multivariate time series forecasting are filled. The

suggested adaptive RNN approach addresses the elusive idea

of drift and simplifies retraining, while an improved pre-

processing model improves effectiveness and data quality. The

end product is a forecasting tool that is portable, precise, and

flexible, giving organisations access to trustworthy real-time

data for well-informed decision-making.

982

4. THE PROPOSED METHODOLOGY

As shown in Figure 2, the proposed methodology is an end-

to-end process consisting of several stages. It starts with the

collection of time series data and then proceeds to a

lightweight pre-processing phase that includes the essential

step of feature selection. The subsequent phase involves

building the RNN model, with careful attention given to

training and hyperparameter tuning using HyperOpt. After

generating forecasts using unseen data, a concept drift

detection mechanism is introduced, which involves

monitoring performance through a sliding error window of

recent data. Once concept drift is detected by the model, the

model adaptation phase is initiated, and the model is retrained

on a retraining window of recent data to adapt to new data

patterns if the pattern was not already seen by past tracked

models. In the following sections, each phase is discussed in

greater detail.

Figure 2. End to end model architecture

4.1 Lightweight method

Time series data typically has a high volume; hence, model

training and retraining can take a lot of time. Thus, making a

model lightweight is beneficial. Existing techniques to make a

model lightweight include down-sampling, feature selection,

segmentation, and stratification. All these techniques have

their own advantages and drawbacks. However, out of them,

feature selection is what we found to be most impactful on the

quality of forecasting. Feature selection is a technique to

choose only those features from the data that have a high

influence on the target feature. In other words, it discards

redundant and useless features from the data before it is fed to

the model. This allows the model to learn from the selected

quality data and thus potentially improve the forecasting

quality.

Figure 3. Lightweight model architecture

As shown in Figure 3, for the proposed model, we used a

random forest-based feature selection technique to make the

model lightweight.

4.1.1 Random forest based feature selection

Random forest-based feature selection is a popular

technique used to select relevant features from data. The

method works by constructing multiple decision trees based

on a randomly selected subset of data and features. The

algorithm assigns an importance score to each feature based

on how well the feature separates the target variable. Features

with higher importance are deemed more valuable. This

process is carried out multiple times, and the average

importance of each feature across the entire random forest is

calculated and used to finally decide which features are going

to be selected. By default, the algorithm selects those features

with a higher feature importance than the average feature

importance across all the features. The final selected features

are fed to the forecasting model as input.

The computation of importance is measured by the metric

Mean Squared Error (MSE), MSE is calculated as follows,

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝜇)2

𝑁

𝑖=1

 (1)

where, y is the value of target, N is the number of instances

and u is the mean value of the target over all the data instances.

For all the nodes of the trees in the Random Forest the MSE is

calculated. Then the importance of each of the nodes is

computed as follows.

𝐼𝑚𝑝𝑗 = 𝑊𝑗𝐶𝑗 − 𝑊𝑙𝑗𝐶𝑙𝑗 − 𝑊𝑟𝑗𝐶𝑟𝑗 (2)

where, Imp, stands for the importance of node j. W stands for

weighted number of samples reaching node j. C is the MSE at

983

node j, j and rj subscripts stand for left and right child after the

split at node j respectively.

The importance of each individual feature is then calculated

as follows.

𝐹𝐼𝑖 =
∑ 𝐼𝑚𝑝𝑗𝑗:𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖

∑ 𝐼𝑚𝑝𝑘𝑘∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠

 (3)

where, FIi stands for feature importance of ith feature and Impj

is the importance of nodej. The feature importance is

normalized in the range of 0 to 1. The feature importance is

normalized in the range of 0 to 1 by dividing the feature

importance values by the sum of all feature importance.

𝑁𝑜𝑟𝑚𝐹𝐼𝑖 =
𝐹𝐼𝑖

∑ 𝐹𝐼𝑗𝑗∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

 (4)

The average feature importance of each feature across all

the trees in the Random forest is the final feature importance

of the features,

𝑅𝐹_𝐹𝐼𝑖 =
∑ 𝑁𝑜𝑟𝑚𝐹𝐼𝑗𝑗∈𝑎𝑙𝑙 𝑡𝑟𝑒𝑒𝑠

𝑇
 (5)

where, RF_FIi is the feature importance of feature i for the

entire random forest, NormFIj is the normalized feature

importance at the jth tree and T is the total number of decision

trees in the forest.

By utilizing this feature selection process, the forecasting

model gets only relevant and important features as input and

not unwanted, noisy features, this helps improve the quality of

the forecast and makes the model lightweight in nature.

4.2 Recurrent neural networks as base model

The base model algorithm is RNN. As shown in Figure 4,

Recurrent neural networks are a kind of neural network that

are capable of handling sequential data where the input data is

a sequence of vectors.

Figure 4. RNN algorithm flow

It can be text, speech, or time-series data. Unlike traditional

neural networks that process each input piece of data

independently, RNNs maintain an internal memory state that

allows them to process sequences of arbitrary length. In simple

words, RNNs can predict future values based on both current

and past values, i.e., they have memory.

The RNN architecture consists of input X, hidden state h,

and output Y. There are weights associated with each of them,

namely, input weights Wx, recurrent or hidden layer weights

Wh, and Output weights Wy, whereas bh and by are the biases

corresponding to the hidden layer and output layer,

respectively. At each time step 1, RNN takes the input vector

Xt and the hidden state h(t-1) of the previous time step. The

network then computes a new hidden state representation ht as

a function of the current input and previous hidden state and

generates an output Yt based on the new hidden state. Overall,

RNNs and their more advanced versions like Long-Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU) are

powerful tools for time series forecasting and have been used

successfully in a wide range of applications.

Mathematically, at each timestep, the computation of

hidden state h and output Y is based on formulas as follows:

ht=ƒ(Wx*Xt+Wh*ht-1+bn) (6)

Y₁=f(Wy*ht+by) (7)

where, ƒ denotes the activation function, which is used to

apply non-linear transformations to the data, which helps with

training the neural networks. We used the TensorFlow Keras

framework to build the RNN model in our study. RNN, like

any neural network model, has a lot of hyperparameters to be

set before training it. The complete information on the

different hyperparameters of a RNN is provided in Table 1 as

follows:

Table 1. Hyper-parameters of RNN

Hyper-

Parameter
Description

Sequence

length

The number of time steps that the RNN

processes in each forward pass. Longer

sequence lengths can capture more context but

increase computational costs and memory

requirements.

Number of

hidden layers
Number of hidden layers of the RNN model.

Number of

hidden units

Number of neurons in the hidden layer of the

RNN. A larger number of hidden units can

allow the network to learn more complex

patterns, but with an increased risk of

overfitting.

Activation

The function used to compute the output of each

hidden unit. Activations can have a significant

impact of the training procedure.

Batch size

Defines the size of the hatch of data to be

processed before updating the weights during

RNN training.

Epoch
Defines the number of passes through the entire

dataset during training.

Learning rate

The step size used to update the weights of the

RNN during training. A higher learning rate

increases speed of convergence but also

increases the risk of overshooting the optimal

solution.

Optimizer
The algorithm used for updating the weights of

the RNN while training.

Early

stopping

To stop the training when the model's

performance does not improve over epochs.

We train the model on a set of training data, and then to tune

the hyperparameter, we use the Bayesian optimization

algorithm. Bayesian optimization is a machine learning

technique for tuning the hyperparameters of a given model.

The idea behind it is to iteratively build a probability model of

the objective function (RMSE of validation data). It then

makes intelligent choices about where to sample the

hyperparameter space next. Within predetermined parameters,

the hyperparameter search space was defined. During

optimisation, 50 trials were carried out in order to iteratively

984

improve the performance of the model. By using the

probability estimates of the model, Bayesian optimization can

balance the exploration of new regions of the search space

with the exploitation of promising regions that have already

been sampled.

HyperOpt is a Python library that provides an

implementation of Bayesian optimization for hyperparameter

tuning. To use HyperOpt for hyperparameter tuning, the user

defines a search space of possible hyperparameter values and

an objective function (such as validation RMSE). HyperOpt

then samples from the given search space, evaluates the

objective function, and updates the probabilistic model. This

process continues for a given number of trials.

Finally, after hyperparameter tuning, we get the final trained

model with the best possible hyperparameters, ready to predict

on the unseen data.

4.3 Concept drift detection

To address the issue of concept drift, As shown in Figure 5,

the proposed model monitors its performance over a window

of recent data. The window is called Error Window W and

holds the latest w data points from the data stream. The

model's performance (Accuracy for classification and RMSE

or other regression metrics) is measured against the error

window W. A defined error threshold is set beforehand based

on the model's performance on the training data itself, and

when the model's performance crosses the threshold, concept

drift is detected, indicating a significant change in the data

pattern. Once drift is detected, the model needs to be updated

to adapt to the new data pattern and improve its performance.

Because of its susceptibility to changes in prediction errors,

RMSE was selected as the method for detecting concept drift.

When used, it guarantees efficient model performance

monitoring, identifying patterns in data deviations and

triggering timely adjustments for increased predicting

accuracy. So, assuming RMSE as the error metric, the concept

drift detection algorithm is as follows:

Concept Drift Detection (ground_truth, pred, W, Th):

ground truth: Actual values

pred: predicted values

W: error window of size w

Th: Performance threshold

START

Running_error: RMSE over the latest window W,

√
1

𝑤
∑ (pred𝑖 − ground_ruth𝑖)

2𝑤
𝑖=1 ; If (Running_error > Th):

Concept drift is detected;

Else:

Get Next model prediction;

Get next ground_truth from data stream;

Update the error window W;

Check for concept drift again;

END

Figure 5. Concept drift detection method architecture

4.4 Adaptation to concept drift

Once concept drift is detected by the model, the next step is

to make the model adapt to the new data pattern so that the

degrading model performance can be improved as soon as

possible. As shown in Figure 6, we propose retraining as the

method to adapt new data patterns to the model. The complete

proposed model adapts to concept drift after detecting it in the

following ways:

•In the Online phase, the trained model forecasts the next

values of the target feature as new data keeps coming from the

data stream.

•We set a Retraining window R, that holds the most recent

R data points from the data stream and is constantly updated

with each new incoming data.

•As soon as Concept drift is detected, the model retraining

phase starts.

•Retraining cannot be done on entire data as streaming data

can be huge in size. We define a retraining technique that uses

985

only the data in Retraining Window R to retrain itself and

improve its performance. The retraining window size can be

adjusted based on the frequency of drift and the available

computational resources. This window-based retraining

allows the model to adapt to the changing data distribution and

ensures that it maintains high performance and reliability over

time.

Figure 6. Adaptation to concept drift architecture

•While retraining the model, the hyperparameter learning

rate is chosen to be smaller than the original learning rate used

during the initial training phase. This is because the model has

already learned some useful features from the previous

trainings and needs to fine tune its parameters to learn new

concepts in the data stream. If the learning rate used during

retraining is too high, the model's parameters will be updated

too quickly, leading to overfitting on the new data. This can

result in poor generalization performance on the new, unseen

data. This phenomenon is known as catastrophic forgetting.

Hence, we set the learning rate and epoch to be smaller than

what they were during initial training so that the model's

parameters are updated more gradually, allowing it to adjust to

the new data patterns without forgetting the previously learned

information.

•During concept drift, it is not necessary that the old model

hyperparameters are still the best hyperparameters. Hence,

during retraining, we again utilize the HyperOpt

hyperparameter tuning process. HyperOpt is a hyperparameter

optimization tool chosen for its efficiency in fine-tuning model

parameters. We split the retraining window into a 70-30% split

and use the last 30% of the data as a validation set for the

tuning process. We provide the search space for the necessary

hyperparameters and set a trial number of 20 for speed and

computation reasons. Once 20 trials are done, HyperOpt

selects the best-performing set of hyperparameters, and finally

the model is retrained on the entire retraining window using

the best set of hyperparameters. However, it's important to

note that the optimal set of hyperparameters may not be found

within the defined number of trials, and it may be necessary to

increase the number of trials for better results.So, the hyper-

parameters of the online phase are provided in Table 2.

•As a retraining is completed, ideally the model

performance should improve from before, but practically, if

the data is noisy or if the concept drift is still going on, it may

happen that even after one retraining session, the model

performance is not better than the threshold. In that case, the

model might go to another retraining session immediately, but

the data for this retraining session will be almost the same as

the last one, hence, it is redundant and not beneficial to do such

retraining in quick succession. To address this, we make sure

there is at least a difference of w data points between two

retraining sessions.

Table 2. Hyper-parameters of retraining phase

Hyper-Parameter Significance

Error Window size

Size of the window in which model

performance is monitored to chock for

concept drift

Retraining Window

size

Size of the window that is used for

retraining the model

Performance

threshold

Critical value of the model's performance

beyond which concept drift is detected

Retraining

Learning rate
The rate of learning during retraining

Epoch

Number of times the retraining window

data is process during a single retraining

session

Batch Size
Retraining the batch size of the data based

on which model weights are updated

Gap between two

retraining sessions

A minimum amount of new data that has

to be seen by the model between two

consecutive concept drift detections

•Now as the retraining happen whenever the model detects

concept drift, we save the versions of the model in memory.

The benefit of this step is that whenever a concept drift is

detected, if that newly detected concept has occurred before, it

may happen that one of the previous versions of the model is

capable of giving good predictions corresponding to this

concept as that model has memorized that concept when it was

trained. This will eliminate the unnecessary retraining process

for this newly detected concept and thus save time. Also, it is

way more efficient to save versions of models than to do a

complete retraining.

•In our experiments we saved the latest 10 versions of the

model and whenever a concept drift is detected we evaluate

the performance of those last 10 models on the most recent

error window. If any of those past models produce

performance metric better than the set threshold, we simply

replace the current model with the best performing past model

and do not initiate retraining for this instance of concept drift

detection

5. DATASET DESCRIPTION

For evaluating the proposed algorithm and comparing it

against DSTP-RNN [9], we used one of the datasets used in

the DSTP-RNN paper. The dataset name is SMI 2010. The

data contains readings of temperatures from a monitor system

in a domestic house. The sampling frequency of the data is per

minute, but it is smoothed by using a 15-minute mean. The

timespan of the original data is 40 days and divided into two

folders, out of which we only use the first folder containing 30

days of data as the whole dataset. The room temperature is

selected as the target the first 2000 data are used for training,

and the rest of the 763 data are used as a holdout test set. The

term "holdout test set" describes a subset of data that is only

used to assess the performance of the model. In this instance,

763 data points from the latter half of the 40-day period were

kept aside in order to evaluate the resilience and generalisation

capacity of the model. This method guarantees an objective

986

evaluation of the model on given data.

Data availability: The SML2010 data can be found in UCI

Machine Learning Repository. Link:

https://archive.ics.uci.edu/ml/datasets/SML2010. The details

are provided in below Table 3.

Table 3. SML2010 data description

Hyper-Parameter Significance

Date Date: in UTC

Time Time in UTC

Temperature Comedor Sensor Indoor temperature (dining-room in A℃

Temperature Habitacion Sensor Indoor temperature (room), in A℃

Weather Temperature Weather forecast temperature, in Ã℃

CO2 Comedor Sensor Carbon dioxide in ppm (dining room)

CO2 Habitacion Sensor Carbon dioxide in ppm (cm)

Humedad Comedor Sensor Relative humidity (dining room), in %

Humedad Habitacion Sensor Relative humidity (roam), in %

Lighting Comedor Sensor Lighting (dining room), in Lux

Lighting Habitacion Sensor Lighting (room), in Lux

Precipitation Rain, the proportion of the last

Meteo Exterior Crepusculo Sun dusk

Meteo Exterior_Viento Wind, in m/s

Merco Exterior Sol Oest Sun light in west facade in Lux

Meteo Exterior Sol Est Sun light in cast facade, in Lux

Metoo Exterior Sol Sud Sun light in south facade; in Lux

Meteo Exterior Piranometro Sun irradiance, in W/m2

Exterior Entalpic Enthalpic motor 1.0 or 1 (on-off)

Exterior Entalpic 2 Enthalpic Motor 2.0 or 1 (on-off)

Exterior Entalpic Turbo Enthalpic motor turbo. 0 or 1 (on-off

Temperature Exterior Sensor Outdoor temperature, in AC

Humedad Exterior Sensor) Outdoor relative humidity, in %

Day of Wec Day of the week (computed from the date), 1=Monday, 7=Sunday

6. RESULTS AND ANALYSIS

In this section, we present a detailed analysis of the

performance metrics and provide insights into the strengths of

the proposed model. We start by describing the experimental

setup and the evaluation criteria used in this study Next, we

showcase the time and memory consumption analysis of the

proposed model, followed by discussion on concept drift

detection and adaptation to the drift. We show how feature

selection is important for achieving better results. We also

compare the performance of the proposed model with a recent

research work DSTP-RNN [9] on the SML2010 dataset to

show that the proposed model outperforms it comprehensively.

6.1 Pre-processing and feature selection of data

Pre-processing is a necessary step to prepare the data in a

way that can be fed to the model training phase. At first, we

combined the data and time columns and set them as indexes

for visualization purposes Since the SML 2010 dataset did not

have missing values and all the features were numerical,

additional steps to impute missing values or categorical feature

encoding were not required.

We applied the random forest-based feature selection

technique to the prepared data with a 70:30 split, 100

estimators, and a random seed of 0 for reproducibility, and the

results were provided in Table 4.

Table 4. Results of random forest based feature selection

Dataset
Total Number of Features

(Excluding Date and Time)
Number of Features Selected Selected Features

SML2010 22 2
‘Temperature_Habitacion_ Sensor’

‘Temperature_Comedor_Sensor’

We checked for outlier in the dataset using Z score criteria

(23) but the data does not contain any outliers.

6.2 Train-test split

To compare the results of the proposed model with those of

the DSTP-RNN model, we set the train-test split the same as

in that paper. The first 2000 instances are selected as the

training set, and the last 763 data instances are selected as a

holdout test set. During the training, 10% of the training set is

used as a validation set for tuning the hyperparameters of the

model. The RMSE is chosen as the evaluation metric for the

experiments. For the purpose of evaluating the model, the

choice to divide the data into training and test sets is essential.

It makes evaluating the model's ability to generalise to new

data possible. However, the robustness of the model may be

limited by the use of just 763 data points for testing. Its

performance in a variety of contexts would be better validated

with a broader test set, reducing the possibility of overfitting

to the particular holdout data.

6.3 Model specifications

A Recurrent Neural Network is used as the base model due

to its effectiveness in time series forecasting and ability to find

complex data patterns. The HyperOpt library is used for tuning

987

the hyperparameters using the Bayesian Optimization

technique. The final RNN model used for the SML 2010

dataset has one hidden layer with 12 units. The lag sequence

parameter was chosen to be 12. An Adam optimizer with a

learning rate of 0.001 is used for the training. The activation

functions for the hidden and output layers are tanh and linear,

respectively. A batch size of 256 is selected with 1500 epochs.

L1 regularization of the value 0.0001 is used in the hidden

layer to counter any possible overfitting. The model is trained

to forecast the next 30 future values of the time series at every

step.

6.4 Memory and time consumption analysis

To show the lightweight nature of the proposed model, we

measured the time and memory consumption of the model in

the training phase with and without the feature selection step.

The results show that the feature selection step essentially

helps the model run faster and requires less runtime memory.

All the experiments were conducted on a machine with an 11th

Gen Intel (R) Core (TM) i5-processor with a clock speed of

2.60 GHz, 16 GB of RAM, and 4 Core(s). The results are

provided in Table 5 and Table 6.

Table 5. Memory consumption by the dataset with and without feature selection

Dataset

Name

Dataset Size Before Feature Selection

(KB)

Dataset Size After Feature Selection

(KB)

Percentage Reduction of

Size

SML2010 496 64.8 86.9

Table 6. Time consumption for training by the dataset with and without feature selection

Dataset Name Time Without Feature Selection Time with Feature Selection Percentage Reduction of Time

SML2010 1 min 20 sec 1 min 07 sec 16.2

From the above results, we can see that the same RNN

model takes more time and memory when all the features of

the dataset are used compared to when only the important

features selected by the Random Forest based feature selection

algorithm are used. We see a huge 86.7% reduction in memory

consumption, which can save a lot of memory as the time

series data tends to have a high volume. Also, the reduction in

time consumption is 16.2%, which, by intuition, we can say

will increase significantly when the volume of the data

increases.

6.5 Model performance with and without feature selection

analysis

To show that feature selection helps the model learn from

important relevant features and not get confused with

redundant noisy features, we compared the results of the

proposed model with and without feature selection with

identical settings of hyperparameters. The result is provided in

Table 7.

Table 7. Model performance on test dataset with and without Feature Selection

Dataset Name RMSE Without Feature Selection RMSE with Feature Selection Percentage Improvement of RMSE

SML2010 0.433 0.0701 83.8

Hence, we get about an 83.8% improvement in RMSE. The

reason behind that could be that the features that were dropped

using the Random forest-based feature selection algorithm

were noisy and did not contribute much new information to

modelling the target feature. Hence, dropping those features

helps the model perform better.

6.6 Concept drift detection and adaptation analysis

As discussed, the proposed model detects concept drift by

monitoring the model's performance over the defined error

window. Whenever the model performance RMSE goes above

a set threshold, concept drift is detected. The threshold is set

based on the model performance on the training set itself, i.e.,

the training RMSE as provided in Table 8.

Table 8. Training RMSE on the dataset

Dataset Name Training RMSE

SML2010 0.1397

To have some flexibility in the drift detection, we set the

RMSE threshold at 120% of the training RMSE as provided in

Table 9.

Table 9. Performance threshold for the dataset

Dataset Name Performance Threshold

SML2010 0.1696

The error window size is chosen as follows based on

intuition and trials as shown in Table 10.

Table 10. Error window size for the dataset

Dataset Name Error Window Size

SML2010 120

Because the SML 2010 dataset does not have any concept

drift, we injected artificial drift into the test data to see how the

proposed model detects it. We injected incremental drift of a

magnitude of half the mean of the target from the 200th

instance onwards. The test data before and after drift injection

is as follows:

As the model detects concept drift, the immediate next

action should be to retrain the model so that it can adapt to the

new concepts in the data stream. We define a retraining

window R that holds the most recent R data points from the

data stream. The retraining uses only the data within window

R. During the retraining to tune some of the hyper-parameters,

988

we employed HyperOpt again. We split the retraining window

70:30 and use the last 30% as validation data for the tuning.

Once tuning is done and the best-performing hyperparameters

are found, we finally retrain the model for the entire retraining

window using the best set of hyperparameters. To avoid too

frequent retraining, we specify a minimum gap between two

retraining equal to the size of the error window. Also after

every drift detection we check if any of the past 10 saved

models produce performance metric better than the threshold

set. If yes, the best performing past model replaces the current

model and there is no need for retraining for that particular

concept drift detection instance. The retraining window size is

selected as follows and is provided in Table 11.

The selection of 256 batches and 1500 epochs was

determined by computational performance as well as empirical

findings. Through experimentation, these parameters were

found, striking a balance between computational resources and

model convergence. The model's performance and resource

usage on the specified hardware are optimized while effective

training is ensured by the chosen settings. Next, to see how

retraining helps with concept drift adaptation. We measured

the model performance in terms of RMSE, with and without

retraining on the drift injected test data of the SML 2010

dataset and the comparison is provided in Table 12.

Table 11. Retraining window size for the datasets

Dataset Name Retraining Window Size

SML2010 120

Table 12. Performance measure RMSE of the proposed model before and after drift addition, with and without drift detection and

retraining

Dataset Model Performance on Test Set

Before Drift was Added

Model Performance on Test Set Without

Drift Detection and Retraining

Model Performance on Test Set After

Drift Detection and Retraining

SML2010 0.0701 2.88 0.378

As evident from the table above, retraining helps the model

to quickly adapt to the concept drift in the data and thus

making the model performance significantly better. Now it is

to note that at the start of concept drift in the data, the model

performance cannot be good due to fluctuations and thus the

average RMSE is slightly higher than the RMSE without the

concept drift added. This is clear if we look at the graphs of

prediction vs actual values in both with and without retraining

case.

As shown in Figures 7 and 8, retraining helps the model

adapt to the new data patterns quickly. We also show the actual

values that we get as predictions from the model both with and

without retraining on the test dataset.

Figure 7. Prediction vs actual values on drift injected test set

of SML2010 data without concept drift detection and

adaptation

Figure 8. Predictions actual values on drift injected test set of

smi 2010 data after concept drift detection and adaptation

As shown in Tables 13 and 14, we compare the predicted

values with the actual ground truth values and see the

difference in the quality of the prediction. Just so compare with

the ground truth, here the predicted values are the first values

of each prediction since the proposed model is trained to

predict the next 30 values together.

Next, we compare the RMSE curves of both the cases of

model prediction, le, while retraining is done and while it's not

done. The RMSE curve is formed by using the RMSE values

on the error window ay the model predicts continuously on the

test data.

As shown in Figure 9, it is clear from the RMSE curves that

with retraining, the RMSE of prediction stays low, which is

ideal and means that the model is adapting according to the

new data patterns. This proves our intuition and argument that

retraining is indeed helping the model give better predictions

even in the event of concept drift in the data stream.

Table 13. Sample of actual vs predicted values on the drift

injected sml2010 test set when concept drift detection and

retraining is not done

Date Prediction Original

4/11/2012 1:45 27.4 31.8

4/11/2012 2:00 27.3 31.7

4/11/2012 2:15 27.3 31.6

4/11/2012 2:30 27.2 31.5

4/11/2012 2:45 27.1 31.5

4/11/2012 3:00 27.1 31.3

4/11/2012 3:15 27.0 31.3

4/11/2012 3:30 27.0 31.2

4/11/2012 3:45 26.9 31.1

4/11/2012 4:00 26.8 31.0

4/11/2012 4:15 26.8 30.9

4/11/2012 4:30 26.7 30.8

4/11/2012 4:45 26.6 30.7

4/11/2012 5:00 26.5 30.6

4/11/2012 5:15 26.5 30.5

4/11/2012 5:30 26.4 30.4

4/11/2012 5:45 26.3 30.3

4/11/2012 6:00 26.3 30.1

4/11/2012 6:15 26.2 30.1

4/11/2012 6:30 26.1 30.0

989

Table 14. Sample of actual vs predicted values on the drift

injected sml2010 test set with concept drift detection and

retraining

Date Prediction Original

4/11/2012 1:45 32 31.8

4/11/2012 2:00 31.9 31.7

4/11/2012 2:15 31.8 31.6

4/11/2012 2:30 31.7 31.5

4/11/2012 2:45 31.6 31.5

4/11/2012 3:00 31.5 31.3

4/11/2012 3:15 31.4 31.3

4/11/2012 3:30 31.3 31.2

4/11/2012 3:45 31.1 31.1

4/11/2012 4:00 31.0 31.0

4/11/2012 4:15 30.9 30.9

4/11/2012 4:30 30.8 30.8

4/11/2012 4:45 30.7 30.7

4/11/2012 5:00 30.5 30.6

4/11/2012 5:15 30.4 30.5

4/11/2012 5:30 30.3 30.4

4/11/2012 5:45 30.2 30.3

4/11/2012 6:00 30.0 30.1

4/11/2012 6:15 29.9 30.1

4/11/2012 6:30 29.8 30.0

Figure 9. RMSE curves for SML2010 dataset with and

without training. Red line indicates the RMSE threshold, and

the green blobs indicate instances where drift was detected,

and retraining happened

7. COMPARISON

Now, benchmarking is very important in the field of

machine learning. To validate the performance of the proposed

model, we compared it against a recent research paper, DSTP-

RNN (9) DSTP RNN and DSTP-RNN. tl are dual stage

attention-based RNN models that find the influence of non-

target series on target series and use that information to

forecast. We compare the RMSE of the proposed model on the

SML 2010 dataset with any drift injection against both

versions of DSTP-RNN and other benchmark forecasting

algorithms as provided in 19) All the algorithms were trained

to predict the next 30 predictions at a time. The result is

provided in Table 15.

As we can see, the proposed model outperforms the

previous best RMSE of DSTP-RNN by 28.9% and is clearly

the best performing out of all the other algorithms involved.

The suggested model performs better than the others, as

evidenced by its lower RMSE, which shows that it is better

able to capture complex time dependencies in the data. Its

robustness is enhanced by its lightweight design and effective

concept drift detection and adaptation, which distinguish it as

the best-performing model among the compared methods.

Table 15. Comparison of benchmark algorithms and DSTP-

RNN and the proposed model on the SML 2010 dataset with

30 step ahead prediction criteria

Method RMSE

Arima 1.0631

SVR 0.6843

LSTM 0.7016

GRU 0.7084

Encoder-Decoder 0.2537

Input Att RNN 0.2144

Temp Att RNN 0.2406

DARNN 0.2080

GeoMAN 0.1310

DeepAttn 0.1647

DSTP-RNN 0.0987

DSTP-RNN-II 0.0993

The Proposed Model 0.0701

8. CONCLUSION AND FUTURE WORK

In conclusion, this paper presented a lightweight time series

forecasting model that incorporates concept drift detection and

adaptation. The proposed model employs a combination of

machine learning algorithms, which makes it easy to

implement and computationally efficient. The concept drift

detection mechanism based on a sliding window architecture

allows the model to adapt to changing patterns in the data,

ensuring accurate forecasts over prolonged periods of time.

Retraining based on recent windows makes it efficient in terms

of storage requirements to keep old data.

Experimental results on the SML2010 dataset demonstrated

the effectiveness of the proposed approach in detecting and

adapting to concept drifts, leading to a significant

improvement in forecasting quality over traditional

approaches. Furthermore, the model's lightweight nature

makes it suitable for deployment in resource- constrained

environments. The proposed approach is suitable for time

series forecasting in contexts with limited resources, which

makes it useful in sectors like logistics, energy, and the

Internet of things. The comparison against other established

models clearly showcased the potential of the proposed model

for time series forecasting. The future research scope includes

utilizing more sophisticated techniques to improve the

lightweight nature of the model and making new

advancements in the concept drift detection approach to

identify the type of drift and distinguish between noise and

actual new data patterns. As the base model, the latest neural

network-based algorithms can be tried out to see how they

perform with more complex real-world time series data

streams.

REFERENCES

[1] Lughofer, E., Pollak, R., Zavoianu, A.C., Pratama, M.,

Meyer-Heye, P., Zörrer, H., Eitzinger, C., Haim, J.,

Radauer, T. (2018). Self-adaptive evolving forecast

models with incremental PLS space updating for on-line

prediction of micro-fluidic chip quality. Engineering

Applications of Artificial Intelligence, 68: 131-151.

https://doi.org/10.1016/j.engappai.2017.11.001

990

[2] Guo, Y., Han, S., Shen, C., Li, Y., Yin, X., Bai, Y. (2018).

An adaptive SVR for high-frequency stock price

forecasting. IEEE Access, 6: 11397-11404.

https://doi.org/10.1109/ACCESS.2018.2806180

[3] Sahraei, M.A., Duman, H., Çodur, M.Y., Eyduran, E.

(2021). Prediction of transportation energy demand:

Multivariate adaptive regression splines. Energy, 224:

120090. https://doi.org/10.1016/j.energy.2021.120090

[4] Fekri, M.N., Patel, H., Grolinger, K., Sharma, V. (2021).

Deep learning for load forecasting with smart meter data:

Online Adaptive Recurrent Neural Network. Applied

Energy, 282: 116177.

https://doi.org/10.1016/j.apenergy.2020.116177

[5] Qiu, X., Suganthan, P.N., Amaratunga, G.A. (2018).

Ensemble incremental learning random vector functional

link network for short-term electric load forecasting.

Knowledge-Based Systems, 145: 182-196.

https://doi.org/10.1016/j.knosys.2018.01.015

[6] Munkhdalai, L., Munkhdalai, T., Park, K.H.,

Amarbayasgalan, T., Batbaatar, E., Park, H. W., Ryu,

K.H. (2019). An end-to-end adaptive input selection with

dynamic weights for forecasting multivariate time series.

IEEE Access, 7: 99099-99114.

https://doi.org/10.1109/ACCESS.2019.2930069

[7] Choi, J.Y., Lee, B. (2018). Combining LSTM network

ensemble via adaptive weighting for improved time

series forecasting. Mathematical Problems in

Engineering, 2018: 2470171.

https://doi.org/10.1155/2018/2470171

[8] Du, Y., Wang, J., Feng, W., Pan, S., Qin, T., Xu, R.,

Wang, C. (2021). Adarnn: Adaptive learning and

forecasting of time series. In Proceedings of the 30th

ACM International Conference on Information &

Knowledge Management, Virtual Event, Queensland,

Australia, pp. 402-411.

https://doi.org/10.1145/3459637.3482315

[9] Liu, Y., Gong, C., Yang, L., Chen, Y. (2020). DSTP-

RNN: A dual-stage two-phase attention-based recurrent

neural network for long-term and multivariate time series

prediction. Expert Systems with Applications, 143:

113082. https://doi.org/10.1016/j.eswa.2019.113082

[10] Mohapatra, U.M., Majhi, B., Satapathy, S.C. (2019).

Financial time series prediction using distributed

machine learning techniques. Neural Computing and

Applications, 31: 3369-3384.

https://doi.org/10.1007/s00521-017-3283-2

[11] Xu, M., Han, M., Chen, C.P., Qiu, T. (2018). Recurrent

broad learning systems for time series prediction. IEEE

Transactions on Cybernetics, 50(4): 1405-1417.

https://doi.org/10.1109/TCYB.2018.2863020

[12] Montiel, J., Mitchell, R., Frank, E., Pfahringer, B.,

Abdessalem, T., Bifet, A. (2020). Adaptive xgboost for

evolving data streams. In 2020 International Joint

Conference on Neural Networks (IJCNN), Glasgow, UK,

pp. 1-8.

https://doi.org/10.1109/IJCNN48605.2020.9207555

[13] Xie, H., Zhang, L., Lim, C. P. (2020). Evolving CNN-

LSTM models for time series prediction using enhanced

grey wolf optimizer. IEEE Access, 8: 161519-161541.

https://doi.org/10.1109/ACCESS.2020.3021527

[14] Fields, T., Hsieh, G., Chenou, J. (2019). Mitigating drift

in time series data with noise augmentation. In 2019

International Conference on Computational Science and

Computational Intelligence (CSCI), Las Vegas, NV,

USA, pp. 227-230.

https://doi.org/10.1109/CSCI49370.2019.00046

[15] Song, Y., Lu, J., Liu, A., Lu, H., Zhang, G. (2021). A

segment-based drift adaptation method for data streams.

IEEE Transactions on Neural Networks and Learning

Systems, 33(9): 4876-4889.

https://doi.org/10.1109/TNNLS.2021.3062062

[16] Lu, Y., Park, Y., Chen, L., Wang, Y., De Sa, C., Foster,

D. (2021). Variance reduced training with stratified

sampling for forecasting models. In Proceedings of the

38th International Conference on Machine Learning,

Online, pp. 7145-7155.

[17] Yang, L., Shami, A. (2021). A lightweight concept drift

detection and adaptation framework for IoT data streams.

IEEE Internet of Things Magazine, 4(2): 96-101.

https://doi.org/10.1109/IOTM.0001.2100012

[18] Read, J. (2018). Concept-drifting data streams are time

series; the case for continuous adaptation. arXiv preprint

arXiv:1810.02266.

https://doi.org/10.48550/arXiv.1810.02266

991

