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Permanent magnet synchronous motor-powered electric vehicles control is the subject of 

various research work. However, their global dynamic models are nonlinear and coupled. 

Therefore, to achieve efficient operation, an effective control system is crucial. In this 

study, we propose and compare linear H-Infinity and Galerkin approximation approach 

for Nonlinear H-Infinity control strategies to improve the durability and performance of 

post-driven speed in electric vehicles. In the case of linear systems, the linear H-Infinity 

controller is found by solving the algebraic equation known as the Riccati equation. On 

the other hand, the control problem based nonlinear H-Infinity poses challenges because 

it involves solving a nonlinear partial differential equation known as name of the 

Hamilton-Jacobi-Isaacs equation, which is difficult or even impossible to solve by using 

analytical methods. In these situations, the Galerkin approximation approach provides an 

approximation to the Hamilton-Jacobi equation solution. In order to evaluate the 

performance of Galerkin approximation approach and linear H-Infinity controllers, 

electric vehicle feedback simulations will be conducted, taking into account different 

constraints. The goal is to ensure efficient operation in different situations. The results 

demonstrate that the Galerkin approximation Approach for nonlinear H-Infinity controller 

reveals a similar performance and durability as the H-Infinity controller, and stands out 

for its ability to optimize the control system performance of the EV, providing a faster 

response, reducing undesirable ripples, and enhancing overall stability and precision. 

Generally, this comparative study brings to light the effectiveness of linear and Galerkin 

approximations for H-Infinity control in permanent magnet synchronous motor-powered 

electric vehicles. The results contribute to the advancement of control strategies and 

provide valuable information for the conception and employment of efficient electric 

vehicle control systems. 
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1. INTRODUCTION

An electric vehicle (EV) is, by definition, any vehicle that 

is propelled by an engine that runs entirely on electrical energy 

[1, 2]. All participants in the advanced automotive sector view 

electric vehicles as one of the greenest and most 

environmentally friendly forms of transportation. Given that 

the road transportation sector contributes more to atmospheric 

pollution than manufacturing does, it could potentially be a 

solution to this grave pollution scenario. However, electric 

vehicles are still in the experimental stage and are being 

modified or improved, despite substantial research on 

powertrains and batteries [1, 2].  

Researchers can now create driver assistance systems that 

automate specific tasks by adding new safety devices that 

increase the stability of electric vehicles, where systems must 

act on the electric vehicle's controllability so that it reacts more 

quickly to user requests to drive, thanks to advancements in 

automation, computing, telecommunications, and tool 

miniaturization. 

Unfortunately, despite advances in modern control theory 

and methods, there is no universally optimal solution for 

controlling electric vehicles. The complexity of the problem 

and the varying requirements of different applications make it 

difficult to determine a best control strategy. Various factors 

such as vehicle dynamics, drivetrain characteristics, operating 

conditions and control objectives contribute to complicating 

matters. Therefore, trade-offs between different control 

methods are often necessary to achieve the desired 

performance and meet specific requirements.  

In order to obtain excellent dynamic performance, many 

researchers have researched the design of electric vehicles 

powered by permanent magnet synchronous motors (PMSM) 

during the past several years. The literature is currently 

available and covers a wide range of control schemes. These 

include classical control laws [2, 3], more advanced 

algorithms such as nonlinear control [4, 5], fuzzy logic control 

[6-9], sliding mode control [10-13], backstepping control [14-

16], and 𝐻∞ control [17, 18]. Each of these strategies offers 

its own benefits and has been explored in various studies to 

optimize the performance of electric vehicles. 

Unfortunately, despite advances in modern control theory 
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and methods, there is no universally optimal solution for 

controlling electric vehicles. The complexity of the problem 

and the varying requirements of different applications make it 

difficult to determine a best control strategy. Various factors 

such as vehicle dynamics, drivetrain characteristics, operating 

conditions and control objectives contribute to complicating 

matters. Therefore, trade-offs between different control 

methods are often necessary to achieve the desired 

performance and meet specific requirements. Researchers 

continue to explore and develop new control techniques to 

further improve the control of electric vehicles. 

The problem treated in this article aim to find a globally 

optimal control solution for an EV powered by a PMSM, 

taking into account the complexity of vehicle dynamics, 

transmission characteristics, operating conditions, and diverse 

control objectives. It provides a fresh perspective by 

comparing linear and Galerkin approximation approaches for 

nonlinear H-Infinity controllers, offering valuable insights for 

the development of more effective control methods in the field. 

It is well known that the solution to the algebraic Riccati 

equation determines how to solve the linear H-Infinity control 

problem [19-23]. It is necessary to solve the Hamilton-Jacobi-

Bellman equation for the nonlinear H-Infinity controller [24, 

25]. However, finding a trustworthy and precise 

approximation to the solution of this partial differential 

equation is a challenging task, nevertheless. One such 

approximation technique is the Galerkin approximation. The 

generalized Hamilton-Jacobi-Bellman equation is derived by 

first reducing the Hamilton-Jacobi-Bellman equation to an 

infinite sequence of linear partial differential equations in 

order to obtain the approximation. The second stage is to 

utilize Galerkin's method to approximate the solutions of these 

linear equations. When both of these steps are combined, a 

control algorithm is created that converges to the best solution 

when the order of the approximation and the number of 

iterations approaches infinity [26-28]. 

Once the introductory part is completed, this work is 

structured as follows. Section 2 presents the electric vehicle 

that is the subject of the study, and then a state-space 

representation modeling follows. Section 3 discusses linear 

and nonlinear H-Infinity control design and Galerkin 

approximation approaches. The design strategy is examined in 

Section 4 along with its application to electric vehicles. To 

evaluate the effectiveness of the controller developed in this 

paper, an implementation and numerical simulation of the 

designed controller are illustrated in Section 5. The 

conclusions of this study are presented in Section 6. 

 

 

2. DESCRIPTION AND SYSTEM MODELLING 

 

According to Figure 1, an EV system dynamics primarily 

consists of two components: vehicle dynamics and motor 

system dynamics. A transmission unit, which also contains the 

transmission system, connects the engine system to the electric 

vehicle system. In a real electric vehicle, the driver sends 

command signals as an acceleration or deceleration via his 

accelerator/brake pedals to the drive system controller. A 

PMSM motor is used for propulsion of the considered electric 

vehicle system, and a gear unit with a gear system inside of it 

connects a PMSM motor system to the EV system. Therefore, 

one can control the PMSM motor's speed to control the actual 

EV system. 

 

2.1 Modeling of vehicle dynamics 

 

Gravitational, wind, rolling resistance, and inertial forces 

are some of the forces that the vehicle's electric engine must 

overcome. Figures 1 and 2 respectively illustrate the electric 

vehicle configuration and a representation of the forces acting 

on the vehicle, where these forces can also be seen. 

 

 
 

Figure 1. The EV's configuration 

 

 
 

Figure 2. Forces exerted on a vehicle 

 

The sum of all forces that act is the total resulting force and 

results from [29-33]: 

 

𝐹 = 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 + 𝐹𝑎𝑒𝑟𝑜𝑑 + 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔 +𝑀
𝑑𝑉𝐸𝑉

𝑑𝑡
  (1) 

 

Given that 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦  is the comprises gravitational force, 

𝐹𝑎𝑒𝑟𝑜𝑑  is the aerodynamic resistance force, 𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔  is the 

rolling resistance force, 𝑀  is the product of mass and the 

derivative of the linear speed is 
𝑑𝑉𝐸𝑉

𝑑𝑡
. 

where: 

(1) The expression of the gravitational force is given by: 

 

𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑀 𝑔 sin(𝛼)  (2) 

  

(2) As a function of vehicle speed 𝑉𝐸𝑉 , the aerodynamic 

resistance force is expressed as: 

 

𝐹𝑎𝑒𝑟𝑜𝑑 =
1

2
𝜌 𝐴𝑓 𝐶𝐷 𝑉𝐸𝑉

2  (3) 

  

(3) The primary cause of the rolling resistance force is the 

friction between the tires of the vehicle and the road, 

which can be represented as: 

 

𝐹𝑟𝑜𝑙𝑙𝑖𝑛𝑔 = 𝑀 𝑔 𝑓𝑟 cos (𝛼)  (4) 

 

The resulting force 𝐹𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔  causes the drive motor's 

counter torque. The following relation governs the torque: 

 

𝑇𝐿 = 𝐹𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 ×
𝑟𝑡𝑖𝑟𝑒

𝐺𝑔𝑒𝑎𝑟
  (5) 

 

where, the EV tire radius is noted by 𝑟𝑡𝑖𝑟𝑒 , 𝑇𝐿  represent the 

torque that the driving motor produces, and finally 𝐺𝑔𝑒𝑎𝑟  is the 

gear ratio. 
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2.2 PMSM model 

 

For drives, induction motors, permanent magnet 

synchronous motors, and switching reluctance motors are 

frequently used. For the "best" choice, compromises between 

price, mass, volume, reliability, efficiency, maintenance, and 

other factors must be considered, much like with many other 

components. However, the high power density and great 

efficiency of PMSM make it the preferred option. The rotor d-

q reference defines a permanent magnet synchronous motor, 

and the following equations can describe it [34, 35]: 

 

{
 
 

 
 
𝑑𝑖𝑑

𝑑𝑡
= −

𝑅

𝐿
 𝑖𝑑 + 𝑃 Ω𝑚 𝑖𝑞 + 

1

𝐿
 𝑢𝑑                    

𝑑𝑖𝑞

𝑑𝑡
= −

𝑅

𝐿
 𝑖𝑞 − 𝑃 Ω𝑚  𝑖𝑑 − 

𝑃Փ

𝐿
 Ω𝑚 + 

1

𝐿
𝑢𝑞

𝑑Ω𝑚

𝑑𝑡
=

3𝑃Փ

2𝐽
 𝑖𝑞 − 

𝐵

𝐽
 Ω𝑚 + 

𝑇𝐿

𝐽
                        

  (6) 

 

Within Eq. (6), 𝑢𝑑, 𝑢𝑞 and 𝑖𝑑, 𝑖𝑞  are respectively the stator 

voltages and currents in the d-q reference frame; 𝐿  is the 

inductance in the d-q reference frame, 𝑅 represent the stator 

resistance, 𝑃 is the pole pairs, Փ is the permanent magnet flux, 

𝐽  the motor inertia moment, 𝐵  is the coefficient of viscous 

friction and 𝑇𝐿  is the load torque. 

 

2.3 The EV's overall dynamic model 

 

The below equations yield the linear speed 𝑉𝐸𝑉 and traction 

power: 

 

𝑉𝐸𝑉 =
𝑟𝑡𝑖𝑟𝑒

𝐺𝑔𝑒𝑎𝑟
Ω𝑚  (7) 

 

𝑃𝑓 = 𝑉𝐸𝑉  𝐹𝑅 (8) 

 

So combing the vehicle dynamic model, the linear speed 

𝑉𝐸𝑉  and the model of PMSM, The entire EV system's 

dynamics can be expressed as: 

 

{
 
 
 
 

 
 
 
 �̇�1 = −

𝑅

𝐿
 𝑥1 +

𝑃𝐺𝑔𝑒𝑎𝑟

𝑟𝑡𝑖𝑟𝑒
 𝑥2 𝑥3 + 

1

𝐿
 𝑢𝑑                             

�̇�2 = −
𝑅

𝐿
 𝑥2 −

𝑃𝐺𝑔𝑒𝑎𝑟

𝑟𝑡𝑖𝑟𝑒
 𝑥1 𝑥3 −

𝑃Փ𝐺𝑔𝑒𝑎𝑟

𝐿 𝑟𝑡𝑖𝑟𝑒
 𝑥3 + 

1

𝐿
 𝑢𝑞

�̇�3 =
1

𝐽𝐸𝑉

[
 
 
 
 

3𝑃Փ𝐺𝑔𝑒𝑎𝑟

2
 𝑥2 −

𝐵𝐺𝑔𝑒𝑎𝑟

𝑟𝑡𝑖𝑟𝑒
 𝑥3 −

𝑟𝑡𝑖𝑟𝑒

𝐺
(
𝑀𝑔 sin(𝛼) + 𝑀 𝑔 𝑓𝑟 cos(𝛼) +

𝑟𝑡𝑖𝑟𝑒
2

2𝐺𝑔𝑒𝑎𝑟
2 𝜌 𝐴𝑓 𝐶𝐷 𝑥3

2 )
]
 
 
 
 

       

  (9) 

 

With: 𝐽𝐸𝑉 =
𝐽𝐺𝑔𝑒𝑎𝑟

2+𝑀𝑟𝑡𝑖𝑟𝑒
2

𝑟𝑡𝑖𝑟𝑒 𝐺𝑔𝑒𝑎𝑟 
 which represent the total inertia 

of the electric vehicle, considering the both of the inertia motor 

and the other component inertia. 

In this case, 𝑥  denotes the state vector and can have the 

following forms: 𝑥 = [𝑥1, 𝑥2, 𝑥3]
𝑇 = [𝑖𝑑 , 𝑖𝑞 , 𝑉𝐸𝑉]

𝑇
; the control 

input, denoted by 𝑢, is provided by 𝑢𝑑 and 𝑢𝑞. 

 

 

3. DESIGNING THE H-INFINITY CONTROL 

 

3.1 The H-Infinity linear controller 

 

The linear 𝐻∞  controller aims to find a corrector that 

achieves internal system stabilization while minimizing the 

𝐻∞ norm of the transfer matrix connecting the regulated 

outputs to exogenous inputs (disturbances), ensuring effective 

rejection of the latter. This linear 𝐻∞  control problem is 

considered suboptimal, as the predefined minimum target 

needs to be attained. 

By taking into account the following affine nonlinear 

continuous-time dynamical system: 

 
�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢 + 𝑘(𝑥)𝑤

𝑧 = [
ℎ(𝑥)
𝑢
]                                

  (10) 

 

where, 𝑥 ∈ ℜ𝑛 is the state variables vector of the system, 𝑢 ∈
ℜ𝑚  is the control inputs vector, 𝑤 ∈ ℜ𝑞  is the exogenous 

inputs vector, and the exogenous outputs vector noted 𝑧 ∈ ℜ𝑠 

characterize the control objective. The mappings  𝑓(𝑥) , 

𝑔(𝑥) ,  𝑘(𝑥)and  ℎ(𝑥)  are presumed to be nonlinear smooth 

functions and, for simplicity, 𝑓(0) = ℎ(0) = 0. 

The following is a representation of the linearized model of 

the nonlinear continuous-time dynamical system stated in (10): 

 

{
�̇�(t) = 𝐴𝑥(𝑡) + 𝐵𝑢𝑢(𝑡) + 𝐵𝑤𝑤(𝑡)

𝑦 = 𝐶 𝑥(𝑡)                                           
  (11) 

 

where: 

 

𝐴 =
𝜕𝑓(𝑥)

𝜕𝑥
|
𝑥=0

, 𝐵𝑢 = 𝑔(0), 𝐵𝑤 = 𝑘(0), 𝐶 =
𝜕ℎ(𝑥)

𝜕𝑥
|
𝑥=0

  

 

We can obtain these matrices by Taylor series expansion, 

around 𝑥 = 0 and considering only the first terms. 

A controller exists, if and only if a real, symmetric, positive-

definite matrix X satisfying the following Ricatti equation 

exists [19-23]: 

 

𝑍𝐴 + 𝐴𝑇𝑍 + 𝑍 (𝐵2𝐵2
𝑇 − 𝛾−2𝐵1𝐵1

𝑇)𝑍 + 𝐶1
𝑇𝐶1 = 0 (12) 

 

Moreover, the state-feedback controller is formed as: 

𝑢(𝑥) = 𝐾 𝑥(𝑡) 
 

3.2 The nonlinear H-Infinity controller 

 

Unlike the linear case, solving the nonlinear 𝐻∞ problem 

proves to be highly challenging, even analytically impossible. 

In such a scenario, the problem boils down to solving the 

partial differential equations known as Hamilton-Jaccobi-

Isaac equations. 

The aim of the nonlinear 𝐻∞ control problem is to find a 

controller 𝑢 = 𝑢(𝑥, 𝑡) which can stabilize the system (10) and 

have L2 gain ≤ 𝛾 from the exogenous input 𝜔 to the control 

output 𝑧 [24, 25]. To sum up: 

 

∫ ‖z‖2
2𝑑𝑡

∞

0
= 𝛾2 ∫ ‖w‖2

2𝑑𝑡
∞

0
  (13) 

 

When (13) is verified, a system is also known as a 

dissipative system with a supply rate 

 

𝑠(𝑧, 𝑤) =
1

2
𝛾2‖w‖2

2 −
1

2
‖z‖2

2  (14) 

 

The interpretation of Eq. (13) is to minimize the ratio of the 

energy of the exogenous inputs w  to the energy of the 

regulated output 𝑧. 

By considering the nonlinear system equation in (10) and a 
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real parameter  𝛾 > 0 . Suppose that the Hamilton-Jacobi-

Isaacs inequality provided by Eq. (15) has a smooth positive 

definite solution 𝑉(𝑥) > 0. 

 

𝐻(𝑥) =
𝜕𝑉

𝜕𝑥
(𝑥)𝑓(𝑥) +

1

2
ℎ𝑇(𝑥)ℎ(𝑥) −

1

2

𝜕𝑉

𝜕𝑥
(𝑥) (𝑔(𝑥)𝑔𝑇(𝑥) −

1

𝛾2
𝑘(𝑥))

𝜕𝑇𝑉

𝜕𝑥
(𝑥) < 0  

(15) 

 

Then, the closed-loop system using Eq. (16)'s feedback 

 

𝑢(𝑥) = −
1

2
𝑔𝑇(𝑥)

𝜕𝑉

𝜕𝑥
(𝑥)  (16) 

 

Has a locally L2 gain (from w to z) less or equal to 𝛾 and is 

asymptotically stable at the origin. Moreover, Eq. (17) 

provides the worst-case disturbance. 

 

𝑤(𝑥) =
1

𝛾2
𝑘𝑇(𝑥)

𝜕𝑉

𝜕𝑥
(𝑥)  (17) 

 

Solving such nonlinear Eq. (15) using analytical techniques 

is very difficult and sometimes impossible. Hence, we refer to 

numerical methods. We apply a Galerkin Approximation 

Approach to approximate this equation to get the following 

algorithm (Algorithm 1) [26-28]. 

Starting with the initial stabilization control law, we update 

the perturbations 𝑤(𝑖, 𝑗) in the inner loop until we find the 

optimal approach for the maximizing player. The outer loop 

then updates the control; the worst-case perturbations of the 

new control are computed repeatedly until the minimizing 

player optimal strategy is attained. 

 

Algorithm 1. Galerkin approximation algorithm 

 

Input: N a positive integer, 𝜀 a small positive real number 

Input: 𝑢(0)(𝑥) an initial stabilizing control law, Ω stability 

region 

Input: 

𝑋1, 𝑋2 (𝑢
(0)(𝑥)) , 𝑌1, 𝑌2 (𝑢

(0)(𝑥)) , {𝐺𝑖}𝑗=0
∞ , {𝐾𝑖}𝑗=0

∞ , 𝑖 =

0, …𝑁   
Input: Փ(𝑥) the basis functions 

1   set 𝛾 

2   set 𝑐𝑜𝑙𝑑1 , 𝑐𝑜𝑙𝑑2 ; 

3   for 𝑖 = 0 𝑡𝑜 ∞ 𝑑𝑜 

4   set 𝜔(𝑖,0) = 0 

5   if 𝑖 == 0 then 

6   𝑋(𝑖) = 𝑋1 + 𝑋2 (𝑢
(0)(𝑥)) 

7   𝑌(𝑖) = 𝑌1 + 𝑌2 (𝑢
(0)(𝑥)) 

8   else 

9  𝑋(𝑖) = 𝑋1 −
1

2
∑ 𝑐𝑘

(𝑖−1,∞)
𝐺𝑘

𝑁
𝑘=1  

10 𝑌(𝑖) = 𝑌1 −
1

4
∑ 𝑐𝑘

(𝑖−1,∞)
𝐺𝑘

𝑁
𝑘=1 𝑐𝑘

(𝑖−1,∞)
 

11 end 

12 for 𝑗 = 0 𝑡𝑜 ∞ 𝑑𝑜 

13 if 𝑗 == 0 then 

14 𝑋 = 𝑋(𝑖)  𝑌 = 𝑌(𝑖) 
15 else 

16 𝑋(𝑖) = 𝑋1 −
1

2𝛾2
∑ 𝑐𝑘

(𝑖,𝑗−1)
𝐺𝑘

𝑁
𝑘=1  

17 𝑌(𝑖) = 𝑌1 −
1

4𝛾2
∑ 𝑐𝑘

(𝑖,𝑗−1)
𝐺𝑘

𝑁
𝑘=1 𝑐𝑘

(𝑖,𝑗−1)
 

18 end 

19 solve for 𝑉(𝑖, 𝑗) from: 𝑐(𝑖,𝑗) = 𝑋−1𝑌 

20 𝑖𝑓 ‖𝑐(𝑖,𝑗) − 𝑐𝑜𝑙𝑑1‖ ≤ 𝜀 𝑡ℎ𝑒𝑛  

21 𝑗 = ∞ 

22 else 

23 𝑐𝑜𝑙𝑑1 = 𝑐(𝑖,𝑗) 
24 end 

25 end 

26 𝑖𝑓 ‖𝑐(𝑖,∞) − 𝑐𝑜𝑙𝑑2‖ ≤ 𝜀 𝑡ℎ𝑒𝑛 

27 𝑖 = ∞ 

28 else 

29 𝑐𝑜𝑙𝑑2 = 𝑐(𝑖,∞) 
30 update the disturbance: 

31 𝑤(𝑖, 𝑗 + 1) =
1

2𝛾2
𝑘𝑇(𝑥)∇Փ𝑇𝑐(∞,∞) 

32 end 

33 update the control: 

34 𝑢(𝑖 + 1) =  
1

2
 𝑔2
𝑇(𝑥)∇Փ𝑇𝑐(∞,∞) 

35 end 

36 if there is convergence of 𝑐, then reduce 𝛾 and go back to 

step 3 

 

The 𝐻∞  control design approach presented in this paper 

reveals the intricacies involved in both linear and nonlinear 

scenarios. The linear controller addresses system stabilization 

and disturbance rejection, while the nonlinear controller aims 

to achieve stability and minimize energy ratios using a 

numerical Galerkin approximation algorithm. The iterative 

nature of the algorithm highlights the complex steps required 

to find an optimal control strategy for the given dynamical 

system. 

 

 

4. APPLICATION 

 

The applications of linear 𝐻∞ and Galerkin approximation 

approaches for nonlinear 𝐻∞ controllers in an EV powered by 

a PMSM given in (9) is described in this section. The control 

aim is to create a controller for an EV that is asymptotically 

stable and allows the d-axis current and EV speed to follow 

the reference signals. Figure 3 illustrates the overall scheme of 

the suggested controller. 

 

 
 

Figure 3. The global EV driving system Block diagram 

 

It is critical to convert the original nonlinear model provided 

in Eq. (9) into the associated error dynamics in order to 

develop the H-Infinity controllers for an Electric Vehicle 

Driven by the Permanent Magnet Synchronous Motor. The 

desired q-axis current, the speed error, the d-axis current error, 

and the q-axis current error can all be defined as [34, 35]: 

 

𝑥𝑒1 = 𝑥1 − 𝑥1_𝑑 , 𝑥𝑒2 = 𝑥2 − 𝑥2_𝑑, 𝑥𝑒3 = 𝑥3 − 𝑥3_𝑑 (18) 
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𝑥2_𝑑 =
2𝐽𝐸𝑉

3 𝑃 Փ 𝐺𝑔𝑒𝑎𝑟
�̇�3_𝑑 +

𝑟𝑡𝑖𝑟𝑒
3𝜌𝐴𝑓𝐶𝐷

3𝐽𝐸𝑉𝑃 Փ 𝐺𝑔𝑒𝑎𝑟
4 𝑥3_𝑑

2 +

2𝐵𝐺𝑔𝑒𝑎𝑟

3 𝑃 Փ 𝐺𝑔𝑒𝑎𝑟𝑟𝑡𝑖𝑟𝑒
𝑥3_𝑑 +

𝑟𝑡𝑖𝑟𝑒

3𝐽𝐸𝑉𝑃 Փ 𝐺𝑔𝑒𝑎𝑟
2 (𝑀𝑔 sin(𝛼) +

𝑀𝑔𝑓𝑟 cos(𝛼))  

(19) 

 

where, 𝑥3_𝑑  is the desired speed, 𝑥𝑒3  is the speed error, 𝑥𝑒1 

and 𝑥𝑒2 are, respectively, current errors.  

𝑥1_𝑑  and 𝑥2_𝑑  are the desired q-axis and d-axis currents 

respectively. 

The control signals 𝑢𝑑_𝑠 and 𝑢𝑞_𝑠 can then be decomposed 

into the stabilizing and compensating terms listed below: 

 

𝑢𝑑 = 𝑢𝑑_𝑠 + 𝑢𝑑_𝑐 , 𝑢𝑞 = 𝑢𝑞_𝑠 − 𝑢𝑞_𝑐  (20) 

 

where, 𝑢𝑑_𝑐  and 𝑢𝑑_𝑠  are the d -axis compensating and 

stabilizing control terms, 𝑢𝑞_𝑐 and 𝑢𝑞_𝑠  are the q -axis 

compensating and stabilizing control terms, respectively. 

𝑢𝑑_𝑐 and 𝑢𝑞_𝑐, compensating control terms, are described as 

follows: 

 

𝑢𝑑_𝑐 = −
𝐿 𝑃 𝐺𝑔𝑒𝑎𝑟

𝑟𝑡𝑖𝑟𝑒
 𝑥2_𝑑  𝑥3_𝑑  (21) 

 

𝑢𝑞_𝑐 = −
𝐿 𝑃 𝐺𝑔𝑒𝑎𝑟

𝑟𝑡𝑖𝑟𝑒
 𝑥2 𝑥3  (22) 

 

The suggested linear and nonlinear 𝐻∞ controller is shown 

schematically in Figure 4. 

 

 
 

Figure 4. The suggested linear and nonlinear 𝐻∞ controller 

schematic diagram 

 

The following error dynamics can be used to express the 

vehicle dynamic model (18) to (22): 

 

{
 
 
 
 

 
 
 
 �̇�e1 = −

𝑅

𝐿
 𝑥𝑒1 + 

1

𝐿
 𝑢𝑑_𝑠                                               

�̇�e2 = −
𝑅

𝐿
 𝑥𝑒2 −

𝑃Փ𝐺𝑔𝑒𝑎𝑟

𝐿 𝑟𝑡𝑖𝑟𝑒
 𝑥𝑒3 + 

1

𝐿
 𝑢𝑞_𝑠                  

�̇�e3 =
1

𝐽𝐸𝑉

[
 
 
 
 
 
3𝑃Փ𝐺𝑔𝑒𝑎𝑟

2
 𝑥𝑒2 −

𝜌 𝐴𝑓 𝐶𝐷 𝑟𝑡𝑖𝑟𝑒
3

2𝐺𝑔𝑒𝑎𝑟
3  𝑥𝑒3

2 −

(

𝐵𝐺𝑔𝑒𝑎𝑟

 𝑟𝑡𝑖𝑟𝑒
+

𝜌 𝐴𝑓 𝐶𝐷 𝑟𝑡𝑖𝑟𝑒
3

𝐺𝑔𝑒𝑎𝑟
3  𝑥3_𝑑

)𝑥𝑒3

]
 
 
 
 
   (23) 

 

4.1 𝑯∞ linear controller design 

 

A linear system model is required for the Linear H-Infinity 

control design process. Therefore, in order to linearize the 

nonlinear Eq. (9) around its equilibrium point, Taylor's series 

expansion is used. The EV's linear state-space model is 

obtained as follows: 

 

{
�̇�(𝑡) = 𝐴𝑥𝑒𝑥(𝑡) + 𝐵𝑢_𝑠𝑢(𝑡) + 𝐵𝑤_𝑥𝑒𝑤(𝑡)

𝑦 = 𝐶𝑥𝑒𝑥(𝑡)                                                    
  (24) 

 

where, the state vector 𝑥𝑒  takes the forms of 𝑥𝑒 =
[𝑥𝑒1 , 𝑥𝑒2, 𝑥𝑒3]

𝑇 ; 𝑢_𝑠  represent the control input; 𝑤_𝑥𝑒 

represent the disturbance input of the system. The matrices 

𝐴𝑥𝑒 , 𝐵𝑢_𝑠 , 𝐵𝑤_𝑥𝑒  and 𝐶𝑥𝑒  of the state space model have the 

following definitions: 

 

𝐴𝑥𝑒 =

[
 
 
 
 
 
 −

𝑅

𝐿
0 0

0 −
𝑅

𝐿
−
𝑃Փ𝐺𝑔𝑒𝑎𝑟

𝐿 𝑟𝑡𝑖𝑟𝑒

0
1

𝐽𝐸𝑉

3𝑃Փ𝐺𝑔𝑒𝑎𝑟

2
 𝑥𝑒2 −

1

𝐽𝐸𝑉
(

𝐵𝐺𝑔𝑒𝑎𝑟

 𝑟𝑡𝑖𝑟𝑒
+

𝜌 𝐴𝑓 𝐶𝐷 𝑟𝑡𝑖𝑟𝑒
3

𝐺𝑔𝑒𝑎𝑟
3  𝑥3𝑑

)

]
 
 
 
 
 
 

,  

𝐵𝑢_𝑠 =

[
 
 
 
 
1

𝐿
1

𝐿
0]
 
 
 
 

, 𝐵𝑤_𝑥𝑒 = [
1
1
0
] , 𝐶𝑥𝑒 = [1 0 1] 

(25) 

 

By resolving the associated Riccati equation, the following 

stabilizing state feedback control is obtained: 

 
𝑢𝑑_𝑠𝐿(𝑥𝑒) = −0.6897𝑥𝑒1 − 0.6897𝑥𝑒2 + 5.8621𝑥𝑒3
𝑢𝑞_𝑠𝐿(𝑥𝑒) = −0.6897𝑥𝑒1 − 0.6897𝑥𝑒2 + 2.4138𝑥𝑒3

 

 

4.2 𝑯∞ nonlinear controller design 

 

The successive Galerkin approximation technique for the 

Hamilton-Jacobi Isaacs equation was employed to develop a 

nonlinear H-Infinity controller for the EV powered by a 

PMSM system. We employed the initializing parameters, 

which are: the stability region Ω, the basic functions Փ(𝑥) and 

an initial stabilizing linear 𝐻∞ control 𝑢(0)(𝑒).  
The choice of the domain Ω is guided by the following 

conditions: 

• The system �̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢(0)(𝑥) must be 

asymptotically stable. 

• The domain Ω must be closed, continuous, and 

encompass the equilibrium point of the system. 

In this paper, we used: 

 

Ω = [1.2, 1.2]3 

Փ = [𝑥𝑒1
2 , 𝑥𝑒2

2 , 𝑥𝑒3
2 , 𝑥𝑒1𝑥𝑒2, 𝑥𝑒1𝑥𝑒3, 𝑥𝑒2𝑥𝑒3]  

𝑢(0)(𝑒) = [𝑢𝑑_𝑠0(𝑥𝑒), 𝑢𝑞_𝑠0(𝑥𝑒)] 

 

where, 

 
𝑢𝑑_𝑠0(𝑥𝑒) = −0.6897𝑥𝑒1 − 0.6897𝑥𝑒2 + 5.8621𝑥𝑒3
𝑢𝑞_𝑠0(𝑥𝑒) = −0.6897𝑥𝑒1 − 0.6897𝑥𝑒2 + 2.4138𝑥𝑒3

 

 

𝛾  takes an initial value of 520, its reduced value which 

ensures the algorithm convergence is chosen equal to 53. To 

find a suboptimal 𝛾: Choose an initial control 𝑢(0)(𝑥) and set 

𝛾. If the nonlinear 𝐻∞ problem is solvable, decrease γ and set 

𝑢(0)(𝑒) = 𝑢∞(𝑒) (where 𝑢∞(𝑒) is the resulting control), then 

repeat step 1 (Algorithm 1). Otherwise, proceed to " Input: 

𝑢(0)(𝑥) an initial stabilizing control law, Ω stability region 

while increasing 𝛾. The nonlinear H-Infinity control law that 

was obtained is given by:  
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𝑢𝑑_𝑠_𝑁𝐿(𝑥𝑒) = −0.9917𝑥𝑒1 − 1.3104 𝑒 − 18 𝑥𝑒2 + 2.3701 𝑒 − 17𝑥𝑒3
𝑢𝑞_𝑠_𝑁𝐿(𝑥𝑒) = −1.3104 𝑒 − 18𝑥𝑒1 − 0.9917𝑥𝑒2 − 0.0191𝑥𝑒3

  

 

 

5. SIMULATION RESULTS AND DISCUSSION 

 

With the aim of evaluating the effectiveness of the EV 

powered by a PMSM, and to test the dynamic performance of 

linear H-Infinity control and Galerkin approximation approach 

for nonlinear H-Infinity control techniques. In this work, we 

adopt the NEDC (New European Driving Cycle) which is a 

standardized testing method developed by the European Union. 

It assesses vehicle fuel efficiency and emissions through a 

simulated driving profile that includes urban and extra-urban 

conditions. The cycle's structured approach, consisting of 

repeated driving phases, provides valuable data for comparing 

the environmental performance of different vehicles in 

controlled conditions. The NEDC is shown in Figure 5. 
 

 
 

Figure 5. The new European driving cycle 

 

The EV system's dynamic performances were compared 

using Matlab/Simulink. The tests are carried out under similar 

initial conditions to guarantee a fair and accurate comparison 

of the results using PMSM and EV parameters, which are 

shown in Tables 1 and 2 [36]. 

 

Table 1. Electrical parameters of the chosen PMSM 

 
The Parameter Symbol Value Unit 

d-axis Inductances 𝐿d 0.29 mH 

q-axis Inductances 𝐿q 0.29 mH 

Flux linkage Փ 0.071 wb 

Stator-winding resistance 𝑅 0.0083 Ω 

Number of poles P 8  

Moment of inertia J 0.089 Kg.m2 

Viscous friction 

coefficient 
B 0.005 Nm/rad/s 

 

Table 2. The vehicle's specifications utilized in the 

simulation 

 
The Parameter Symbol Value Unit 

Vehicle mass M 1450 Kg 

Frontal area of the 

vehicle 
𝐴𝑓 2.711 m2 

Wheel radius 𝑟𝑡𝑖𝑟𝑒 0.29 m 

Coefficient of 

aerodynamic drag 

 𝐶𝐷 0.29  

Air density 𝜌 1.204 Kg/m3 

Rolling resistance 

coefficient 

𝑓𝑟 0.013  

Total inertia  5.209 Kg.m2 

Total gear ratio 𝐺𝑔𝑒𝑎𝑟 8.75  

 
(a) Linear H-Infinity control 

 
(b) Galerkin approximation approach for nonlinear H-Infinity 

control 

 

Figure 6. Electric vehicle speed under different control with 

NEDC driving cycle 
 

 
(a) Linear H-Infinity control 

 
(b) Galerkin approximation approach for nonlinear H-Infinity 

control 

 

Figure 7. PMSM d-axis current with NEDC driving cycle 

under different control technique 

 

Figure 6 illustrates the EV speed when the NEDC driving 

cycle is applied while using various control strategies. It is 
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clearly visible that the vehicle’s speed tracking abilities are 

satisfactory; the vehicle reaches the reference speed with fast 

tracking performance, without any overshoot and zero steady 

state error. 

Figure 7 depicts the response of the PMSM d-axis current 

by using the both control methods. It can be observed that the 

d-axis current responses rapidly follow the reference d-axis 

current for the duration of all low or high speed trajectories. 

The two approaches presented remarkable performance of 

tracking. Nevertheless, significant d-axis current ripples are 

observed in the case of linear H-Infinity control while the 

approach based on Galerkin approximation for nonlinear H-

Infinity control strategies present unobservable ripples. That 

ripples in the d-axis current, particularly noticeable with the 

linear H-Infinity control approach, indicate a potential 

instability leading to undesirable variations in the motor's 

behaviour, there by affecting overall vehicle performance. 

These results show that the Galerkin approximation approach 

for nonlinear H-Infinity method gives better performance for 

the EV system during the NEDC cycle. 

Figures 8 and 9 show q-axis current responses and 

electromagnetic torque of PMSM in the electric vehicle 

system using various control strategies. The q-axis current 

component is proportional to the torque component required, 

giving in dynamic response an excellent performance. To 

reach the different stages of the speed reference, the PMSM 

motor develop the necessary electromagnetic torque. It can be 

noticed that during all high- or low-speed trajectories, the 

torque responses closely match the varied speed values. These 

results demonstrate the effectiveness of the H-Infinity 

technique in the PMSM control systems. 

 

 
(a) Linear H-Infinity control 

 
(b) Galerkin approximation approach for nonlinear H-infinity 

control 

 

Figure 8. PMSM q-axis current with NEDC driving cycle 

under different control technique 

 
(a) Linear H-Infinity control 

 
(b) Galerkin approximation approach for nonlinear H-Infinity 

control 

 

Figure 9. PMSM electromagnetic torque with NEDC driving 

cycle under different control technique 

 

The phase voltages, phase currents, Tractive force, stator 

voltage components and traction power during the period of 

operation under the NEDC driving cycle for the linear H-

Infinity and Galerkin approximation approach for nonlinear H-

Infinity strategies are shown in Figures 10-13, respectively. It 

can be noticed that the phase voltages and phase currents are 

perfectly sinusoidal, their behavior as well as the frequency 

adapt as a result of the speed variation. The dynamic variation 

of tractive force and traction power corresponds to the changes 

of speed; the behavior of the tractive force is the same as that 

of the electromagnetic torques and traction power is shown as 

positive while power recovered during regenerative braking is 

negative. The shape of the stator voltage components depend 

on the reference speed. 

Figures 14 and 15 illustrate the speed tracking error and d 

axis current error in the H-Infinity and the nonlinear H-Infinity 

control strategies with Galerkin approximation approach, for 

several values of speed. It is obviously observed that the 

Galerkin approximation approach for nonlinear H-Infinity 

control technique significantly reduces the speed tracking 

error and d axis current error compared to the linear H-Infinity 

technique. Significant errors in these parameters can result in 

unstable driving and subpar motor performance. However, the 

Galerkin approach for nonlinear H-Infinity control strategies 

demonstrates a notable reduction in these errors compared to 

the linear H-Infinity approach. This improvement implies 

increased accuracy in speed and d-axis current tracking, 

contributing to enhanced system responsiveness and a 

smoother driving experience. Figure 16 illustrates the 

propulsion power of an electric vehicle during the NEDC cycle, 

showing positive power during acceleration and negative 

energy recovery during braking, suggesting energy efficiency 

in the vehicle's operation. These results validate the efficiency 
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of the Galerkin approximation approach for nonlinear H-

Infinity control technique for reducing tracking error and d 

axis current error in the control of the electric vehicle. 

 

 
(a) Linear H-Infinity control 

 
(b) Galerkin approximation approach for nonlinear H-Infinity 

control 

 

Figure 10. PMSM phase voltages waveform with NEDC 

driving cycle under different control technique 

 

 
(a) Linear H-Infinity control 

 
(b) Galerkin approximation approach for nonlinear H-Infinity 

control 

 

Figure 11. PMSM phase currents waveform with NEDC 

driving cycle under different control technique 

 
(a) Linear H-Infinity control 

 
(b) Galerkin approximation approach for nonlinear H-Infinity 

control 

 

Figure 12. Tractive force with NEDC driving cycle under 

different control technique 

 

 
(a) Linear H-Infinity control 

 
(b) Galerkin approximation approach for nonlinear H-Infinity 

control 

 

Figure 13. PMSM stator voltage components with NEDC 

driving cycle under different control technique 
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(a) Linear H-Infinity control 

 
(b) Galerkin approximation approach for nonlinear H-Infinity 

control 

 

Figure 14. The speed tracking error with NEDC driving 

cycle under different control technique 

 

 
(a) Linear H-Infinity control 

 
(b) Galerkin approximation approach for nonlinear H-Infinity 

control 

 

Figure 15. d-axis current error with NEDC driving cycle 

under different control technique 

 
(a) Linear H-Infinity control 

 
(b) Galerkin approximation approach for nonlinear H-Infinity 

control 

 

Figure 16. Traction power with NEDC driving cycle under 

different control technique 

 

In summary, the tests carried out through this section 

confirm that the Galerkin Approximation Approach for 

Nonlinear H-Infinity control technique significantly reduces 

the speed tracking error and d axis current error while also 

enhancing the quality of the d axis current. This approach also 

provides a faster dynamic response. 

 

 

6. CONCLUSIONS 

 

This work investigated an analysis in detail and a 

comparative study of two-control technique for an Electric 

Vehicle Powered by a Permanent Magnet Synchronous Motor. 

These two control strategies are the Linear H-Infinity and 

Galerkin approximation approach for Nonlinear H-Infinity, all 

designed and developed to meet vehicle needs. The simulation 

results were validated using numerical simulations in 

MATLAB/Simulink. The obtained results show that the 

Galerkin Approximation Approach for Nonlinear H-Infinity is 

the most efficient control strategy used to control the 

permanent magnet synchronous motor in an electric vehicle. 

Comparing this strategy to the linear H-Infinity technique, 

it reduced the speed tracking error, decreased the PMSM's d 

axis current error, and gave a faster transient response. 

Therefore, the Galerkin Approximation Approaches for 

Nonlinear H-Infinity technique is a powerful candidate for 

electric vehicles powered by permanent magnet synchronous 

motor. 

In upcoming work, we plan to investigate the solution to the 

Hamilton-Jacobi-Isaacs inequality equation arising in the 

Nonlinear H-Infinity problem with the assistance of an 

artificial intelligence technique (Reinforcement Learning). 

959



ACKNOWLEDGMENT 

The DG RSDT (Direction Générale de la Recherche 

Scientifique et du Développement Technologique) supported 

this work. 

REFERENCES 

[1] Schaltz, E., Soylu, S. (2011). Electrical vehicle design

and modeling. Electric Vehicles-Modelling and

Simulations, 1: 1-24. http://doi.org/10.5772/20271

[2] Mi, C., Masrur, M.A. (2017). Hybrid Electric Vehicles:

Principles and Applications with Practical Perspectives.

John Wiley & Sons.

[3] Salem, F.A. (2013). Modeling and control solutions for

electric vehicles. European Scientific Journal, 9(15):

221-240.

[4] El Majdoub, K., Giri, F., Ouadi, H., Chaoui, F.Z. (2014).

Nonlinear cascade strategy for longitudinal control of

electric vehicle. Journal of Dynamic Systems,

Measurement, and Control, 136(1): 011005.

https://doi.org/10.1115/1.4024782

[5] Huang, Q., Huang, Z., Zhou, H. (2009). Nonlinear

optimal and robust speed control for a light-weighted all-

electric vehicle. IET Control Theory & Applications,

3(4): 437-444. https://doi.org/10.1049/iet-cta.2007.0367

[6] Makrygiorgou, J.J., Alexandridis, A.T. (2017). Fuzzy

logic control of electric vehicles: Design and analysis

concepts. In 2017 Twelfth International Conference on

Ecological Vehicles and Renewable Energies (EVER),

Monte Carlo, Monaco, pp. 1-6.

https://doi.org/10.1109/EVER.2017.7935881

[7] Al-Jazaeri, A.O., Samaranayake, L., Longo, S., Auger,

D.J. (2014). Fuzzy logic control for energy saving in

autonomous electric vehicles. In 2014 IEEE International

Electric Vehicle Conference (IEVC), Florence, Italy, pp.

1-6. https://doi.org/10.1109/IEVC.2014.7056100

[8] Tahami, F., Farhangi, S., Kazemi, R. (2004). A fuzzy

logic direct yaw-moment control system for all-wheel-

drive electric vehicles. Vehicle System Dynamics, 41(3):

203-221. https://doi.org/10.1076/vesd.41.3.203.26510

[9] Poornesh, K., Mahalakshmi, R., Jayadeep, S.R.V.,

Gunavardhan, R.N. (2022). Speed control of BLDC

motor using fuzzy logic algorithm for low cost electric

vehicle. In International Conference on Innovations in

Science and Technology for Sustainable Development

(ICISTSD), Kollam, India, pp. 313-318,

https://doi.org/10.1109/ICISTSD55159.2022.10010397.

[10] Haddoun, A., Benbouzid, M., Diallo, D., Abdessemed,

R., Ghouili, J., Srairi, K. (2006). Sliding mode control of

EV electric differential system. In ICEM'06, Chania,

Greece.

[11] Gair, S., Cruden, A., McDonald, J., Hredzak, B. (2004).

Electronic differential with sliding mode controller for a

direct wheel drive electric vehicle. In Proceedings of the

IEEE International Conference on Mechatronics,

Istanbul, Turkey, pp. 98-103.

https://doi.org/10.1109/ICMECH.2004.1364419

[12] Mecifi, M., Boumediene, A., Boubekeur, D. (2021).

Fuzzy sliding mode control for trajectory tracking of an

electric powered wheelchair. AIMS Electronics and

Electrical Engineering, 5(2): 176-193.

https://doi.org/10.3934/electreng.2021010

[13] Saidi, K., Boumediene, A., Massoum, S. (2020). An

optimal PSO-based sliding-mode control scheme for the

robot manipulator. Elektrotehniski Vestnik, 87(1/2): 53-

59.

[14] Roubache, T., Chaouch, S., Naït-Saïd, M.S. (2016).

Backstepping design for fault detection and FTC of an

induction motor drives-based EVs. automatika, 57(3):

736-748.

https://doi.org/10.7305/automatika.2017.02.1733

[15] Bensalem, Y., Abbassi, A., Abbassi, R., Jerbi, H., Alturki,

M., Albaker, A., Abdelkrim, M.N. (2022). Speed

tracking control design of a five-phase PMSM-based

electric vehicle: A backstepping active fault-tolerant

approach. Electrical Engineering, 104(4): 2155-2171.

https://doi.org/10.1007/s00202-021-01467-3

[16] Siffat, S.A., Ahmad, I., Ur Rahman, A., Islam, Y. (2020).

Robust integral backstepping control for unified model

of hybrid electric vehicles. IEEE Access, 8: 49038-

49052. https://doi.org/10.1109/ACCESS.2020.2978258

[17] Zhang, C.W. (2010). Experiment of H∞ driving control

system for electric vehicle. Applied Mechanics and

Materials, 20: 215-219.

https://doi.org/10.4028/www.scientific.net/AMM.20-

23.215

[18] Boukhnifer, M., Chaibet, A., Ouddah, N., Monmasson,

E. (2017). Speed robust design of switched reluctance

motor for electric vehicle system. Advances in

Mechanical Engineering, 9(11): 1687814017733440.

https://doi.org/10.1177/1687814017733

[19] Khalil, I.S., Doyle, J.C., Glover, K. (1996). Robust and

Optimal Control. Prentice Hall.

[20] Doyle, J., Glover, K., Khargonekar, P., Francis, B.

(1988). State-space solutions to standard H2 and H∞

control problems. American Control Conference, Atlanta,

GA, USA, pp. 1691-1696.

https://doi.org/10.23919/ACC.1988.4789992

[21] Duc, G., Font, S. (1999). Commande H Infini et μ-

Analyse des Outils Pour la Robustesse. Hermes Sciences

Publications, Paris.

[22] Glover, K., Doyle, J.C. (1988). State-space formulae for

all stabilizing controllers that satisfy an H∞-norm bound

and relations to relations to risk sensitivity. Systems &

Control Letters, 11(3): 167-172.

https://doi.org/10.1016/0167-6911(88)90055-2

[23] Skogestad, S., Postlethwaite, I. (2005). Multivariable

Feedback Control: Analysis and Design. John Wiley &

Sons.

[24] Van Der Schaft, A.J. (1992). L2-gain analysis of

nonlinear systems and nonlinear state feedback H∞

control. IEEE Transactions on Automatic Control, 37(6):

770-784. https://doi.org/10.1109/9.256331

[25] Van der Schaft, A. (2000). L2-Gain and Passivity

Techniques in Nonlinear Control. Berlin, Heidelberg:

Springer Berlin Heidelberg.

[26] Beard, R.W., Saridis, G.N., Wen, J.T. (1998).

Approximate solutions to the time-invariant Hamilton–

Jacobi–Bellman equation. Journal of Optimization

theory and Applications, 96: 589-626.

https://doi.org/10.1023/A:1022664528457

[27] Beard, R.W., Saridis, G.N., Wen, J.T. (1997). Galerkin

approximations of the generalized Hamilton-Jacobi-

Bellman equation. Automatica, 33(12): 2159-2177.

https://doi.org/10.1016/S0005-1098(97)00128-3

[28] Bea, R.W. (1998). Successive Galerkin approximation

960



algorithms for nonlinear optimal and robust control. 

International Journal of Control, 71(5): 717-743. 

https://doi.org/10.1080/002071798221542 

[29] Guzzella, L., Sciarretta, A. (2013). Vehicle Propulsion

Systems: Introduction to Modeling and Optimization.

Springer-Verlag Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-35913-2

[30] Adegbohun, F., Von Jouanne, A., Phillips, B., Agamloh,

E., Yokochi, A. (2021). High performance electric

vehicle powertrain modeling, simulation and validation.

Energies, 14(5): 1493.

https://doi.org/10.3390/en14051493

[31] Husain, I. (2021). Electric and Hybrid Vehicles: Design

Fundamentals. 3rd ed. Boca Raton: CRC Press.

https://doi.org/10.1201/9780429490927

[32] Genta, G. (1997). Motor vehicle dynamics: Modeling

and simulation. Series on Advances in Mathematics for

Applied Sciences, Vol. 43. World Scientific.

[33] Attia, M., Zaamouche, F., Houam, A., Daouadi, R.

(2022). Stability control modeling and simulation

strategy for an electric vehicle using two separate wheel

drives. European Journal of Electrical Engineering, 24(5-

6): 239-245. https://doi.org/10.18280/ejee.245-602

[34] Do, T.D., Choi, H.H., Jung, J.W. (2011). SDRE-based

near optimal control system design for PM synchronous

motor. IEEE Transactions on Industrial Electronics,

59(11): 4063-4074.

https://doi.org/10.1109/TIE.2011.2174540

[35] Do, T.D., Choi, H.H., Jung, J.W. (2015). θ-D

approximation technique for nonlinear optimal speed

control design of surface-mounted PMSM drives.

IEEE/ASME Transactions on Mechatronics, 20(4):

1822-1831.

https://doi.org/10.1109/TMECH.2014.2356138

[36] Oudjama, F., Boumediene, A., Saidi, K., Boubekeur, D.

(2023). Robust speed control in nonlinear electric

vehicles using H-infinity control and the LMI approach.

Journal of Intelligent Systems and Control, 2(3): 170-

182. https://doi.org/10.56578/jisc020305

NOMENCLATURE 

EV Electric Vehicle 

PMSM Permanent Magnet Synchronous Motor 

NEDC New European Driving Cycle 

961




