
Software Quality Assessment Technique for the Autonomous Power Plants Automated

Control Systems

Mahmoud M. S. Al-suod1* , Oleksandr Ushkarenko2 , Olha Dorohan2 , Abdullah Eial Awwad1 ,

Alaa Al-Quteimat1

1 Department of Electrical Power Engineering and Mechatronics, Tafila Technical University, Tafila 66110, Jordan
2 Department of Programmable Electronics, Electrical Engineering and Telecommunications, Admiral Makarov National

University of Shipbuilding, Mykolaiv 54050, Ukraine

Corresponding Author Email: m.alsoud@ttu.edu.jo

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.560614 ABSTRACT

Received: 4 September 2023

Revised: 8 November 2023

Accepted: 4 December 2023

Available online: 28 December 2023

The paper proposes further development of formal method for obtaining the values of

software quality attributes and assessing the quality of software used for controlling and

parameters monitoring of autonomous electric power systems. For this purpose, dynamic

software testing was used with the involvement of a group of experts. The results of the

conducted expert assessment were used as initial data. The attributes of software quality

indicators, such as functionality, practicality, maintainability, reliability, were calculated

using the method of summarizing and grouping the results of statistical observation that

allowed to check the software compliance with quality standards. Additional weighting

coefficients that describe the importance of individual software quality attributes were

introduced, and additive convolution is used to calculate the values of various software

quality indicators. Minimax criterion was used to find the best solution that maximizes the

quality of the software and minimizes possible losses due to errors. The technique

proposed in the paper makes it possible to obtain quantitative assessments of software

quality based on statistical processing of testing results and expert assessments. This

allows to select specific software characteristics for improvement without affecting others,

to predict software failureless time and to minimize the subjective factor during testing.

Keywords:

software quality, testing, user interface, peer

review technique, quality attributes

1. INTRODUCTION

Software for monitoring parameters and controlling

operating modes of autonomous electric power systems

(AEPS) is part of automated control systems (ACS) and plays

an important role in ensuring the process of energy-efficient

generation and distribution of electricity. The purpose of the

top-level software discussed in this paper is parameter

monitoring and remote control of AEPS. Such software, in a

sense, can be considered as a human-machine interface, and

the AEPS is controlled through user interaction with on-screen

controls. Therefore, to ensure reliable and uninterrupted

operation of the entire AEPS, an important factor is to ensure

reliable operation of the software and its compliance with

functional requirements, achieved by identifying and

correcting errors in the algorithms at the testing stage or

directly during operation. At the same time, in this process, an

important role plays the practicality of use and

understandability of the program interface for users, the

duration of training, the convenience of controlling the

operating modes of individual elements of the AEPS, the

accuracy of reading data about the operating mode of the

AEPS and the state of its individual elements from the monitor

screen using text or special graphical interface elements.

During the life cycle of the software, changes are made to

it, new functionalities are added, and appearance of both

individual graphic elements and the entire program interface

as a whole change. In particular, in the study [1], the influence

of different refactoring approaches on quality attributes of

software is demonstrated. And such changes, although they are

aimed at improving the software quality, can have an opposite

effect, namely bring errors into the work logic of the program,

worsen the usability, reduce understandability of the program

interface for users, which will have a negative impact on the

operation of the entire autonomous electric power system

(AEPS). The software testing process helps to prevent this, or

at least lessen the likelihood. But, despite the fact that there are

many successful examples, the problem of assessing the

quality of the SW itself has not been fully resolved to date and

still relevant [2]. In particular, there is a lack of formal

approach for assessing the usability of software for AEPS

control and parameters monitoring, which considers the

degree of importance of various software quality indicators,

while minimizing the subjective factor when using expert

evaluation. Analyzing all aspects of this issue, one can make a

conclusion that the problem may be caused both by the

existing understanding of the term "quality of software" itself,

and by the techniques that are used to calculate various quality

indicators [3, 4]. The authors come to such a conclusion not

only based on the analysis of regulatory documents and

Journal Européen des Systèmes Automatisés
Vol. 56, No. 6, December, 2023, pp. 1043-1051

Journal homepage: http://iieta.org/journals/jesa

1043

https://orcid.org/0000-0002-2025-9816
https://orcid.org/0000-0002-3159-330X
https://orcid.org/0009-0003-0483-0458
https://orcid.org/0000-0002-5336-4911
https://orcid.org/0000-0002-5345-6162
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.560614&domain=pdf

specialized literature [5, 6], but also based on repeated

participation in the acceptance-passing tests of ACS AEPS.

The software for AEPS control considered in this article is

a specialized SCADA system designed by the authors, taking

into account the requirements described in Lyaskovskiy et al.

[7]. The structure of the software in the form of a pattern

network for analysis of information flows for compliance of

the software with the requirements of operation and control of

the equipment in real time is given in Mahmoud et al. [8],

however, the issue of testing this software was not considered.

In Al-Suod et al. [9], the method of functional software testing

has been considered, which is only a separate aspect of

software quality analysis. In addition, the values of

quantitative indicators of other quality attributes, which would

allow a more formal evaluation of the quality of the software

under consideration, were not given. This is one of the

research gaps. Moreover, the presence of numerical values of

individual quality attributes allows using software quality

prediction methods, as shown in Hovorushchenko et al. [10].

Traditional testing approaches are manual testing [11] and

automated unit testing [12]. Manual testing involves testers

performing tests manually by interacting with the software,

while automated testing involves using software tools to

perform tests automatically. Usage of these approaches, of

course, allows you to detect errors in the operation of the

software, but it has its drawbacks. In general, testers are not

end users of the software and may not fully understand the

features of AEPS operation and evaluate the convenience and

understandability of the AEPS management process. In

addition, manual testing requires availability of a working

ACS AEPS, and the work of testers should take place on it.

However, in this case, the testing process itself will be

expensive from an economic point of view, because, firstly, it

requires availability of working equipment, and secondly,

creation of various emergency situations, and in case of

failures in operation of the tested software, this can lead to

damage to the equipment, and, as a result, significant

economic costs. The automated unit testing, as shown in [12],

does reduce the density of software defects, but only in some

cases provides 100% coverage of the software code with tests,

provided that the developed program is relatively simple, but

the SCADA systems are not simple. Also, the unit testing does

not provide information about such attributes of software

quality as ease of use, practicality, ease of learning, and some

others, as stated in the study [13]. Therefore, the peer review

technique is also used to assess the software quality. Although

this method is quite popular and, as shown in Eisty and Carver

[14], allows designers to conduct comprehensive testing of the

software code. However, in the study [14], we are talking

about expert verification of the code for compliance with the

best modern practices of software development. However, in

scientific publications, the peculiarities of using the peer

review technique for testing the software of the ACS AEPS,

namely, selection of quality attributes for testing and further

processing of the received data, are insufficiently described,

which is also a research gap. Thus, the research fills the gap of

the lack of methodology for a formal approach to assessing

software usability, which will allow developers to select

specific software characteristics for improvement without

affecting others, predict the trouble-free operation of the

software and minimize the subjective factor during testing.

2. MODELING AND ANALYSIS

The aim of the research is to develop the methodology for

determining software quality by using the peer review

technique to obtain data and calculate using statistical analysis

methods of quantitative values of the most important quality

attributes of specially designed software for monitoring

parameters and managing the autonomous electric power

system and studying its compliance with quality standards.

2.1 A general description of the software for monitoring

parameters and controlling of AEPS

The software as a component of ACS AEPS according to

the incremental model of development of a complicated

system at the initial stage can be considered as an independent

component. Then its creation is associated with the following

processes: definition of requirements, SW designing and

construction, quality assurance, documentation, and

configuration management.

As shown in Figure 1, the main window of software tools

for managing and monitoring AEPS parameters is presented.

Figure 1. The main window of the application for the autonomous electric power system control

1044

Software tools allows to display both the structure of the

system and the state of separate elements (subsystems) and

devices. Therefore, according to its structure, the software

tools for monitoring and control AEPS are multi dialog

application, in which the feature of quick access to additional

information has been implemented by opening additional

dialog windows. Using mnemonic schemes is a common

approach for dispatcher control panels that in modern systems

are executed on an industrial computer and provides for the

operator the information about the current state of the AEPS.

The purpose of the top-level software is remote monitoring

and control of AEPS. To implement these functions, the

software has the means to create a mnemonic scheme of AEPS,

parameters monitoring and control of AEPS in real time,

analysis the operating modes of power units. Software

requirements can be divided into three groups according to the

actors involved in individual stages of work - System Setup

Operator (creates a mnemonic scheme, configures and adjusts

the properties of its components), Power System Control

Operator (performs real-time monitoring and control of the

power system) and Analyst (performs analysis of operating

modes of software and AEPS in order to optimize them).

The main actor in the system is the Power System Control

Operator. The actions perform by them determine the

requirements for the component library and user interface and

are the basis for collecting data used to analyze the operation

of the whole system.

The preparatory stage before starting the process of

monitoring the parameters and controlling the AEPS in real

time is the creation of a mnemonic scheme of the electric

power system and setting the properties of its components.

The structure of mnemonics is based on a few principles that

should be followed in the process of developing the software:

the principle of brevity (the scheme should be simple and

without redundant elements, information must be shown

clearly and in a user-friendly form), the principle of

generalization (the most essential features of the managed

facilities are highlighted), the principle of emphasis (control

elements can be distinguished by their size, color, shape etc.),

the principle of dimensional correlation of control and

management elements, location of control and measuring and

indicator devices, the principle of using intimate associations.

To perform the necessary actions, the System Setup

Operator has the ability to interact with the library of

components to create them by moving components from the

library to the working field using Drag and Drop technique.

Each graphical component supports move (using the mouse

cursor and keyboard arrows) and delete operations. A common

property of the software environment at the stage of preparing

the system for operation in the AEPS control mode is the

ability to set the properties of components and the data

exchange channel for information interaction with automation

hardware, create connections between components to monitor

parameters in a form convenient for the Operator, change the

color scheme of the environment and capabilities

saving/restoring a created and configured mnemonic scheme.

When the software operates in the AEPS monitoring and

control mode, in addition to performing basic actions,

information is collected about the operation of the program

(load of the data exchange channel, content of information

packages) and power units for a certain time. The stored

information is then processed by the Analyst.

1. Verification of the previously calculated system response

time and decisions on the possibility of using protection for

diesel generator units (DGU) and controlling discrete signals

at the software level; for these purposes, information about the

communication channel load is used.

2. Identifying and eliminating malfunctions when

exchanging data with automation tools (data on the contents of

information packages is used).

3. Calculation of individual indicators of power quality

(average, minimum and maximum values and frequencies of

power dips and surges) based on information about the

operating modes of the DGUs.

4. Analysis of operating modes of generating units to

formulate a AEPS control strategy in which the amount of fuel

consumed by the diesel generator will be minimal, for example,

by reconfiguring the AEPS structure.

The Analyst's tasks also include conducting functional

software testing. Since using the software is a three-stage

iterative process (changing or creating mnemonic scheme of a

power plant and setting the properties of its components, using

the program in the main mode, analyzing the operation of the

system), both the first and third stages are visually identical

from the user’s point of view, and the process of using the

software can be divided into two modes: circuit designer mode

and AEPS monitoring and control mode.

Software quality requirements are regulated by the Square

software quality model, based on ISO/IEC (25000-25099)

standards [15, 16]. According to this model, software quality

assessment is carried out by considering its compliance with

requirements divided into six categories: functionality,

practicality, efficiency, reliability, maintainability and

mobility. In the studies [17-19] the methods for evaluating

various software quality characteristics are given, based on

which analysis for evaluation of quality of software for

monitoring and managing AEPS it is suggested to use testing

to evaluate functionality, expert survey to evaluate practicality,

and analytical methods to evaluate other characteristics.

2.2 The research of compliance of the software with the

quality standards

When designing the top-level software of the ACS AEPS,

one of the key issues is its quality. The Square software quality

model, based on ISO/IEC (25000-25099) standards, is

recognized as generally accepted. In accordance to this model,

quality assessment is a three-level and involve determining the

necessary characteristics for each type of software, for each of

the characteristics – attributes and for each of the attributes –

metrics. The standards also regulate the main characteristics

for all types of software: functionality, practicality, efficiency,

reliability, maintainability and mobility. Below are the

methods of calculating the main characteristics for the

designed software.

As attributes of the functionality of the software, it is

possible to distinguish the suitability and accuracy of the

performance of functions, the ability to interact with third-

party software and automation hardware [9]. In Dougherty et

al. [20], the methods of evaluating software functionality and

the justified effectiveness of using testing for this purpose are

presented.

The basis for software functionality testing is the

requirements it must meet. Since the software is an inalienable

part of the software-hardware complex, its testing requires the

presence of models simulating the behavior of the hardware

and the automation facility as a whole.

Functional tests are usually divided into several stages:

1045

modular, integration and system [21]. The testing procedure

consists in performing the following sequence of actions:

determination of the test fullness criterion; compilation of a

full set of test situations; drawing up a report with the test

results. The results of tests should be represented as the values

of the metrics of the attributes of functionality – suitability,

accuracy, and interoperability. Since software testing is a

multi-stage process, Table 1 was created, which was filled in

after passing each stage of testing.

In Table 1, the numbers in the first column correspond to

the following visual metaphors (components and means of

analysis).

The aim of unit tests is to determine the metric of the

separate software components functionality attributes. For

most software components, behavior in designer mode

significantly varies from behavior in power plant control mode

and is implemented (designed and coded) in the form of

separate finite-state machines. The automatic approach allows

you to isomorphically switch to an automaton that models

behavior of the component, and as a criterion for the

completeness of testing, use the coverage of its transitions [22].

Usage of two machines permits to detach the computation of

suitability metrics (fullness of the test coverage the machine

that simulates the behavior in the scheme designer mode) and

interoperability (for the behavior in the power system control

mode). A similar approach is acceptable only for components

involved into data exchange with automation hardware and do

not require mandatory information exchange with other

components (DGA, DGA Protection, Power Quality

Synchronization and Monitoring System, Control Button,

Automatic Switch, LED). For components that are used only

for the visual completeness of the mnemonic and do not

require communication with other components

(Asynchronous Motor, Transformer, All Display

Components), only suitability is determined. The value of

accuracy as the degree of compliance of device operation with

the set limit value at the stage of modular testing can be

calculated only for the DGA Protection component. Thus, as a

criterion for completeness of modular testing of all

components for which it is carried out, completeness of

coverage of automatic machine transitions is determined; a

complete set of test situations is created based on the transition

conditions of machines. Since this testing stage refers to the

stage of debugging, the transition to adding functionality and

conducting the further stage of testing occurs only under the

condition of 100% coverage of test situations.

The final stage of testing is a system test. The operation of

a power plant is a certain sequence of operation of the DGUs

and actuators in accordance with the technological process.

The purpose of system testing is to check the functionality of

the software when controlling a power plant, therefore, the

coverage of software requirements can be highlighted as a

criterion for the completeness of testing. Before compiling a

set of test cases, it is necessary to determine the classes of

nonequivalent situations. It is proposed to use the following

set of non-equivalent situations: using a component of each

type in the mnemonic scheme designer mode; start and stop of

DGU; connecting and disconnecting load from the main

switchboard buses; display of DGU parameters; activation of

each of the DGU protection functions; synchronization of the

DGU with the main switchboard buses; load sharing between

parallel operating DGUs. To fully test the software, the set of

situations must include all of the listed non-equivalent

situations.

Table 1. The results of functional software testing

Visual Metaphor

(Components and Means of Analysis)

Modular Testing Integration Testing
System Testing

Suitability Ability Precision

S
u

it
a
b

il
it

y

A
b

il
it

y

P
re

ci
si

o
n

S
u

it
a
b

il
it

y

A
b

il
it

y

P
re

ci
si

o
n

W
ei

g
h

t
F

a
ct

o
r

F
u

ll
 C

o
v

er
a

g
e

T
es

t
R

es
u

lt
s

W
ei

g
h

t
F

a
ct

o
r

F
u

ll
 C

o
v

er
a

g
e

T
es

t
R

es
u

lt
s

W
ei

g
h

t
F

a
ct

o
r

F
u

ll
 C

o
v

er
a

g
e

T
es

t
R

es
u

lt
s

Diesel- generator unit 1 1 − 1 1 − 1 1 1 0.5 1 1 − − −

Protection of the DGU 1 1 1 1 1 − 1 1 1 1 1 1 1 1 0.9

Synchronization system 1 1 − 1 1 − 1 1 1 1 1 1 − − −

Load sharing system − − − 1 1 1 1 0.7 1 1 1 1 0.8 1 0.7

Power quality monitoring system 1 1 − − − − 1 1 1 − − − − − −

Automatic switch 1 1 − 1 1 − 1 1 1 1 1 1 − − −

LED 1 1 − − − − 1 1 1 0.5 1 1 − − −

Latch button 1 1 − − − − 1 0 0 1 0 0 − − −

Non-latch button 1 1 − − − − 1 1 1 1 1 1 − − −

Indication components − − − 1 − − 1 1 1 − − − − − −

Induction motor 1 − − 1 − − 1 1 1 − − − − − −

Transformer 1 − − 1 − − 1 1 1 − − − − − −

Bus − − − 1 − − 1 1 1 − − − − − −

Data packets analysis

−

0.5 1 1

−
Communication channel load data 0.5 1 1

DGU operation modes data 0.5 1 1

Automation of testing 0.7 1 1

The purposes of system testing also include the functions of

checking the tools necessary for the Analyst to perform actions

– analyzing the content of data exchange packets, traffic

statistics of the information channel, operating schedules of

power units and electrical loads. Their verification is possible

only after a certain time of operation of the software in power

system control mode and the suitability is the only

functionality attribute that can be obtained as a result of this

1046

verification.

To interpret test results, all information messages and

control actions are recorded in a protocol file. After testing is

completed, the data from the protocol is analyzed, and on their

basis, suitability (the proportion of correctly executed

functions from all tested ones), interoperability (the proportion

of correctly sent and processed requests) and accuracy for each

component are calculated (the average value of the temporary

inconsistency in the operation of protections for DGU

protection). The obtained data is entered into the Table 1.

Weighting coefficients are determined for each component

to calculate numerical values for suitability, interoperability,

and accuracy. Next, using additive convolution and

normalization, attribute values are calculated:





=

=



=
15

1

15

1

i..i..

i

i

i

iтрпт kk

M





 (1)

where, M is the value of the attribute; km.n.i – the value of the

test coverage; kp.m.i – test results; i is the weighting factor of

the metric.

The next values of attributes were found for the software for

AEPS monitoring and control based on the test results:

suitability – 0.91; interoperability – 0.86; accuracy – 0.81.

Based on the analysis of the results of all testing stages (Table

1), the conclusion can be made that it is possible to increase

the value of the "suitability" and "interoperability" attributes

by strengthening the testing of the system, and increasing the

accuracy is associated with changing the software's work

algorithms.

The value of the functionality is calculated according to a

similar algorithm: attributes are assigned weighting factors

and with the help of convolution and normalization, a

numerical value is calculated. Setting the coefficients for

suitability and interoperability as 1 and for accuracy as 0.8

gives the calculated value of functionality equal to 0.86.

2.3 Evaluation of practicality of the software

The assessment of practicality of the software consists in

calculating of its three attributes: ergonomics,

understandability, and efficiency of designing. For each of the

attributes, sub-characteristics are also distinguished –

indicators that are evaluated numerically. The methods for

assessing practicality metrics were given in the study [23]. The

most widely used among them testing, peer review and survey

were identified. For the software of monitoring parameters and

control AEPS, a survey was chosen as a basis for assessing

practicality, an example for conducting which is given in

Table 2. In this case, it is assumed that users (experts) will use

the software by executing it to control the AEPS. This

approach is dynamic testing, which is a process of testing

software by running it to identify errors in production software

and verify its functionality. Also, the important attribute

indicators for this type of software are available in Table 2.

During software operation, errors can occur randomly, that

is, initially their number, the moment and frequency of

occurrence are uncertain. Error detections themselves

collectively represent a flow of software failures, and failure

information can in some sense be viewed as a flow of random

numbers. The expert's scores who have different experience

and expertise in a given subject area can also differ

significantly, and it is not known in advance what assessment

the expert will give to this or that attribute of practicality.

Therefore, the methods of statistical analysis can be used to

process the data obtained as a result of assessing practicality

and testing.

In the survey, 10 users were involved to determine the

practicality indicators. Based on the data obtained as a result

of the survey, using the method of summarizing and grouping

the results of statistical observation, the normalized average

statistical values of practicality indicators were determined:

mk
S

m

i

ji

j


== 11


(2)

where, k – normalization coefficient (maximum value is 10);

Sij – evaluation of the j-th indicator by the i-th user; mj –

number of surveyed users.

Next, with the help of the introduction of weighting

coefficients of importance and additive convolution, the

calculation of attribute values is made:

()()


=

=

=
j

j

m

i

n
jijim

i

ji

j pS

p

A
1

1

1

(3)

where, ()n
jip – the weight coefficient of the i-th indicator of the

j-th attribute; Sij – normalized average statistical value of the

i-th indicator of the j-th attribute; mj – the number of indicators

of the j-th attribute.

In a similar way (by entering importance coefficients and

using additive convolution) one can get the numerical value of

practicality attributes. The results of the calculations are

summarized in Table 2.

To visualize the calculation results, it is suggested to use a

linear bar chart [24], with which it is available to display the

"coverage" of the requirements for indicators (Figure 2).

For this purpose, it is necessary to select the attributes with

the most significant weights, and then among the selected ones

– with the smallest calculated values:

()a
jj

pA
pA

jj

,maxmin (4)

and then to choose the minimal in value of weight indicators

of the attributes that were chosen at the previous stage:

()n

jiji
pS

pS
jiji

,maxmin (5)

The minimax criterion, which is used here, is one of the

criteria for decision-making under conditions of uncertainty.

As noted earlier, the process by which software errors occur is

uncertain, and the moment of time of their occurrence can only

be approximately estimated. Therefore, this criterion is used to

make a decision, the aim of which is to find the best solution

that maximizes the quality of the software and minimizes

possible losses due to errors. This means that the decision

maker cannot face a worse outcome than the one being

oriented towards. Such approach weakens the influence of the

subjective factor that inevitably appears when using the expert

1047

assessment method (i.e., a survey).

Table 2. The results of data processing to calculate the practicality of the software

Attributes and Indicators

Average

Normalized

Score

Importance/Significance

Weighting
Attribute

Value

Augmented Values

Indicator Attribute Attribute Indicator

1. Ergonomics − − 1.00

0.84 0.84

−

1.1. Self-explanatory interface 0.82 0.90

0.84

0.90

1.2. Ease of performing frequent operations 0.84 1.00 0.84

1.3. Ease of complex operations 0.74 1.00 0.74

1.4. Acceptability of delays 0.92 0.90 1.01

1.5. Image of graphical components 0.84 0.80 1.01

1.6. The completeness of information on

secondary dialog windows 0.88 0.90 0.97

2. Clarity − − 0.90

0.81 0.89

−

2.1. Intuitiveness 0.82 1.00

0.90

0.82

2.2. Compliance of software behaviour with

expected 0.94 0.90 1.03

2.3. Ease of use of the component library 0.95 0.80 1.14

3. Learning Efficiency − − 0.90

0.76 0.83

−

3.1. Simplicity of mimic re-creation 0.88 1.00

0.84

0.88

3.2. Ease of recovery of software skills 0.84 0.90 0.92

3.3. Convenience of determining incorrect settings 0.80 1.00 0.80

Result 0.86

The outcome of the described series of steps will be a set of

indicators in the direction of which software improvement is

the crucial. To ease the calculations of the minimax criterium,

it is possible to calculate the values of attributes and indicators,

considering the "inverse" weight, calculated as an algebraic

complement of 2 "true" weights:

() jjj ApA −= 2* (6)

() jijiji SpS −= 2* (7)

Figure 2. "Covering" requirements for practicality indicators

(1 – indicators of the current version of the user interface; 2 –

ideal indicators)

Then the determination of the most critical indicators for

improving the practicality of the software will correspond to

the procedure for determining the smallest values of the

supplemented attributes, and then – among the smallest values

of the supplemented indicators:

 **,minmin jij
Ap

SA
jji

 (8)

Next, the calculation results analysis of the practicality of

the software for monitoring and managing the power system is

considered. After calculations, a diagram of "coverage" of the

requirements and a numerical value of practicality – 0.86 were

obtained. For example, this value and coverage were found to

be unsatisfactory, so it was decided to make changes in the

software. The scope of changes (more specifically,

practicability indicators) must be determined, considering the

importance of individual directions. To do this, the largest

attribute weight coefficient is selected – 1.00, which is

decoded as "ergonomics is the most important for this

software". Next, from the weigh coefficients of indicators that

are elements of ergonomics, the largest one is chosen – 1.00.

Two indicators match to the specified weight – "easiness of

performing regular operations" and "easiness of performing

complicated operations". From the latest, the one with the

lowest average statistical value obtained as a result of the

survey ("easiness of performing complicated operations") is

chosen – the changes of the software are most important in this

direction. However, to meet the requirements of practicality, it

is necessary to change a few interdependent indicators, so it is

possible, excluding the obtained indicator, to conduct the

given approach again. The result for the situation under

consideration will be the indicator "convenience of

determining incorrect data exchange settings" – modifications

in this regard will likewise have a substantial impact on

enhancing practicality.

The indicated series of steps can be streamlined by

performing calculations. the supplemented attribute and

indicator values (values are "supplemented" to minimize the

influence on the result of attributes and indicators having low

weights). After their calculation, the smallest supplemented

value of the attribute – 0.83 ("mastering efficiency" attribute)

and the smallest supplemented indicator value is 0.8 ("ease of

determining inaccurate data exchange settings" indicator) are

selected for the corresponding attribute. A similar procedure is

conducted to determine the second by the need for direction

changes, but with the exclusion of the attribute "effectiveness

of development". The outcome of the latter will yield the

indicator "ease of performing complicated operations".

After selecting the indicators in the direction of which

priority changes must be made, the interface of the software is

adjusted. Then the survey is carried out one more time, and its

1048

results are processed in the given way. This process is repeated

until the requirements and practicality values achieve a

satisfactory level of "coverage". Thus, the calculated values of

the metrics for various software quality attributes, obtained

using the peer review technique, complement the results

presented in the studies [25, 26] in terms of their use for

software quality assessment for the ACS AEPS.

 The attributes of mobility encompass adaptability,

flexibility in deployment and replaceability.

Software reliability comprises three key attributes: fault

tolerance, error tolerance, and ability to recover.

Indicators of the software failure tolerance are the mean

square deviation and mathematical expectation of the uptime

before the failure occurs, the conditional reliability function

(the probability that the random uptime before the next failure

will be greater than the specified one) [26]. The computation

of these indicators relies on the time intervals between

consecutive failures obtained as a result of functional testing

(Table 3).

Table 3. Software failure statistics

Failure

Number
1 2 3 4 5 6 7 8 9 10

Time

Between

Failures,

Hours

0.08 1 4 7 9 10 12 12 14 20

Mathematical expectation, root mean square deviation and

conditional reliability function are determined using statistical

estimates of numerical properties related to the random time

between failures:

908.808.89
10

11

1

)(* === 
=



nn

i

i

n

t t
n

m (h),

    75.375.33
9

1

1

1

1

2*)(*2 ==−
−

= 
=



нn

i

t
i

n

t mt
n



(9)

Mathematical expectation of the next (in this example, the

eleventh) failure:

58866908.8
2

)1(
=

+
= 

nn
mm ttn

 (10)

mean square deviation of the working time:

() () 37.57.775.321
6

1
==++=  nnnttn

 , (11)

conditional reliability function:

() 







−=


















−=





423.6

97.988-
5.0

-
5.0)(




 Ф

n

mn
Фp

t

tn , (12)

where,  is the specified earnings; Ф(u) is the probability

integral.

As an example of the use of the reliability function, we

consider a period of time, the probability of which is more than

85%.









−=

423.6

97.988-
5.085.0


Ф ; 3.91 (h). (13)

Hence, with a probability of 85%, it can be said that the

software will operate with no failures for over 91.3 hours. It is

possible to increase this value due to the further collection of

failures statistical data, which will lead to the reevaluation of

statistical quality metrics.

The software error tolerance pertains to its capability to

execute functions in abnormal conditions. In order to identify

abnormal conditions, it is essential to highlight cases that

require the use of third-party software and/or hardware. Table

4 presents the chosen instances, their requirements for the

third-party tool availability and the reaction of the software for

AEPS monitoring and control when errors occur.

Recoverability of the software for AEPS monitoring and

control consists in restoring the mnemonic scheme and

settings of its components. This requirement is a fundamental

criterion for the software, and it is evaluated during functional

testing.

Table 4. Software reaction to abnormal conditions

User Action

Software

or/and

Hardware

Software

Reaction to

Malfunctions

Precedents related to

data exchange

Automation

hardware

Indication of the

the lack of

communication

and request of

dequeuing

Predicting the result of

connecting the load

MATLAB

Engine

Informational

message and

automatic rejection

of an action

Saving/restoring the

mnemonic scheme and

software environment;

analysis of the

communication

channel congestion

Operating

system tools for

providing

access to files

Information

message

Accumulation and data

analysis of the DGU

modes and the loads

state

DBMS

PostgreSQL

Information

message: the

ability to change

settings; table

content atomicity

3. CONCLUSIONS

An analysis of methods for evaluating software quality

characteristics was conducted, based on which it was proposed

to use testing to evaluate functionality, an expert survey to

evaluate practicality, and analytical methods to evaluate the

remaining characteristics (supportability, portability,

reliability, and resource efficiency). A formal approach to the

determination of software quality indicators, particularly the

usability, allowed to obtain quantitative characteristics of

quality attributes that can be used throughout the entire

software life cycle to ensure its support and development and

serve as a kind of feedback during refactoring. Analytical

expressions were obtained, and the values of individual

characteristics and attributes of the software quality were

calculated, which allowed to draw the following conclusions:

1. Increasing functionality of the software is connected with

the enhancing system testing (increasing the suitability and

1049

ability to interact) and modernization of the interaction

algorithms of hardware and software automation tools

(increasing accuracy).

2. Increasing reliability of the software requires further

studies of the system for the occurrence of failures and faults.

The further direction of research aimed at increasing the

reliability of software, according to the author, lies in the

presentation of algorithms of functioning of the software

components in the form of digital finite state machines. The

use of an automatic approach and the apparatus of pattern

networks in the development and implementation of the

software makes it quite easy altering the behavior of system

components (by introducing new states, input and output

actions into automaton) and incorporating new components

(by constructing new constituents with the necessary

connection to the pattern network). In this case, the algorithms

can be described using state chart diagrams, in which all

possible states of the component and the conditions for

transitions between states are clearly identified. Such

description of a component represents its discrete-

deterministic model. This approach will allow developers to

present the software architecture for controlling AEPS in the

form of a network of digital finite state machines. Moreover,

at each moment of time, the state of the system will be

uniquely determined by the set of states of its elements. Using

the theory of digital automata to solve this problem will allow

developer to use the formal approach to software design, and

at the testing stage, cover all possible states and transitions

with tests, since their number will be finite. In addition, it

becomes possible to implement a software “observer” that

analyzes the current state of the system and compares it with

the required one, and if a discrepancy between these states is

detected, forcefully change the current state of the system (in

this case, software) or some of its components to avoid its

malfunctioning.

3. The practicality of the software can be increased by

modernizing the means of determining improper data

exchange settings and streamlining the sequence of user

actions when doing complicated operations (managing load

distribution during parallel operation of diesel generators,

analyzing information flows, etc.). Presenting the results of the

practicality assessment using a single number does not reveal

possible problem areas, but it allows at various stages of

development and implementation of the software to determine

the necessity for further changes and the results of their

implementation. It is possible to specify the direction of

priority changes in the software by considering the results of

calculations in the "reverse" direction. This will have a

positive impact on the development process of autonomous

power plant control systems and allows to improve the quality

of the software for AEPS.

4. Time efficiency of the software depends on the topology

and composition of the electric power system and the

intensities of data flows from the software components. When

the user interacts with the software, the components of the

mnemonic scheme, which are used to control the elements of

AEPS such as DGU and automation means, generate a data

flow that is transmitted in real time over the network.

Therefore, the congestion of the communication channel

directly depends on the topology of the AEPS and the number

of components used in the mnemonic scheme, and its

characteristics should be calculated separately for each ACS

AEPS control system.

REFERENCES

[1] Almogahed, A., Omar, M., Zakaria, N.H. (2019).

Categorization refactoring techniques based on their

effect on software quality attributes. International

Journal of Innovative Technology and Exploring

Engineering, 8(8S): 439-445.

[2] Vasilyevich, О.В. (2020). On the quality indicators of

automated control systems software. Software Systems

and Computational Methods, 2: 22-36.

https://doi.org/10.7256/2454-0714.2020.2.28814

[3] Izzat, S., Saleem, N.N. (2023). Software testing

techniques and tools: A review. Journal of Education and

Science, 32(2): 30-44.

https://doi.org/10.33899/edusj.2023.137480.1305

[4] Chevuturu, A., Mathur, D., Kumar, B., Charanya, R.

(2022). A comparative survey on software testing tools.

International Journal of Engineering and Advanced

Technology, 11(6): 32-40.

https://doi.org/10.35940/ijeat.F3664.0811622

[5] Kaur, A. (2020). A systematic literature review on

empirical analysis of the relationship between code

smells and software quality attributes. Archives of

Computational Methods in Engineering, 27: 1267-1296.

https://doi.org/10.1007/s11831-019-09348-6

[6] Ali, A.Q., Sultan, A.B.M., Ghani, A.A.A., Zulzalil, H.

(2019). Empirical studies on the impact of software

customization on quality attributes: A systematic review.

Journal of Theoretical and Applied Information

Technology, 97(6): 1747-1763.

[7] Lyaskovskiy, V.L., Bresler, I.B., Alasheev, M.A. (2021).

Methodological and software tools for selecting solutions

for the creation (development) of automated control

systems. H&ES Research, 13: 48-59.

https://doi.org/10.36724/2409-5419-2021-13-3-48-59

[8] Mahmoud, M.S., Ushkarenko, O., Dorogan, O. (2018).

Research on information channel characteristics of a ship

electric power system. Przeglad Elektrotechniczny, 94(6):

19-26. https://doi.org/10.15199/48.2018.06.04

[9] Al-Suod, M.M., Ushkarenko, A., Dorogan, O. (2018).

Marine electric generating plants control systems

software functional testing. International Journal of

Computers, 3: 81-84.

[10] Hovorushchenko, T., Medzatyi, D., Voichur, Y., Lebiga,

M. (2022). Method for forecasting the level of software

quality based on quality attributes. Journal of Intelligent

& Fuzzy Systems, 44(3): 3891-3905.

https://doi.org/10.3233/JIFS-222394

[11] Shin, K., Thant, K.S., Tin, H.H.K. (2023). The impact of

manual and automatic testing on software testing

efficiency and effectiveness. Indian Journal of Science

and Research, 3(3): 88-93.

[12] Tang, S., Zhang, Z., Zhang, Y., Zhou, J., Guo, Y., Liu,

S., Guo, S., Li, Y., Ma, L., Xue, Y., Liu, Y. (2023). A

survey on automated driving system testing: Landscapes

and trends. ACM Transactions on Software Engineering

and Methodology, 32(5): 1-62.

https://doi.org/10.1145/3579642

[13] Soares, M.M., Rebelo, F., Ahram, T.Z. (Eds.). (2022).

Handbook of Usability and User Experience: Methods

and Techniques. CRC Press, Boca Raton.

[14] Eisty, N.U., Carver, J.C. (2022). Developers perception

of peer code review in research software development.

Empirical Software Engineering, 27: 1-26.

1050

https://doi.org/10.1007/s10664-021-10053-x

[15] ISO/IEC 25010:2011. (2017). Systems and software

engineering – Systems and software Quality

Requirements and Evaluation (SQuaRE) – System and

Software Quality Models, 34.

[16] ISO/IEC 25040:2011. (2019). Systems and software

engineering – Systems and software Quality

Requirements and Evaluation (SQuaRE) – Evaluation

process. SC 7 System and Software Engineering, 45.

[17] Galin, D. (2018). Software Quality: Concepts and

Practice. 1st ed., Wiley-IEEE Computer Society Press,

Piscataway, NJ, 680.

https://doi.org/10.1002/9781119134527

[18] Botchway, I.B., Emmanuel, A.A., Solomon, N., Kayode,

A.B. (2021). Evaluating software quality attributes using

Analytic Hierarchy Process (AHP). International Journal

of Advanced Computer Science and Applications, 12(3):

165-173.

https://doi.org/10.14569/IJACSA.2021.0120321

[19] Munoz, D.J., Pinto, M., Fuentes, L. (2019). HADAS:

Analysing quality attributes of software configurations.

In Proceedings 23rd International Systems and Software

Product Line Conference, Paris, France, pp. 13-16.

https://doi.org/10.1145/3307630.3342385

[20] Dougherty, R.E., Kleine, K., Wagner, M., Colbourn, C.J.,

Simos, D.E. (2022). Algorithmic methods for covering

arrays of higher index. Journal of Combinatorial

Optimization, 45(1): 1-21.

https://doi.org/10.1007/s10878-022-00947-x

[21] Dhivya, D., Nirmala, K. (2018). Study on integration

testing and system testing. International Journal of

Creative Research Thoughts, 6(2): 794-798.

[22] Lotfi, Z., Khalifi, H., Ouardi, F. (2023). Efficient

algebraic method for testing the invertibility of finite

state machines. Computation, 11(125): 1-17.

https://doi.org/10.3390/computation11070125

[23] Bayomi, H., Sayed, N.A., Hassan, H., Wassif, K. (2022).

Application-based usability evaluation metrics.

International Journal of Advanced Computer Science and

Applications, 13(7): 84-91.

https://doi.org/10.14569/IJACSA.2022.0130712

[24] Waldner, M., Diehl, A., Gračanin, D., Splechtna, R.,

Delrieux, C., Matković, K. (2020). A comparison of

radial and linear charts for visualizing daily patterns.

IEEE Transactions on Visualization and Computer

Graphics, 26(1): 1033-1042.

https://doi.org/10.1109/TVCG.2019.2934784

[25] Almogahed, A., Omar, M., Zakaria, N.H., Muhammad,

G., AlQahtani, S.A. (2023). Revisiting scenarios of using

refactoring techniques to improve software systems

quality. IEEE Access, 11: 28800-28819.

https://doi.org/10.1109/ACCESS.2022.3218007

[26] Rawat, S., Rawat, R.S., Ram, M. (2015). A review on

software reliability: Metrics, models and tools.

Mathematics in Engineering. Science and Aerospace,

6(2): 135-156.

1051

