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Diabetic retinopathy (DR) is the major cause for blindness worldwide. Early DR detection 

is crucial for preventing severe vision loss. Timely interventions improves patient 

outcomes, hence clinicians advice diabetic patients to undergo periodic retinal screening 

using fundus cameras, where DR can be identified through distinct retinal biomarkers like 

hemorrhages, aneurysms and exudates. These biomarkers can be detected using Deep 

learning techniques like Convolutional-Neural-Networks (CNN), Vision Transformers and 

Mixer architectures. The objective of this paper, is to develop, investigate and identify the 

architectures and algorithms that relatively improves the detection of DR. In this paper, 18 

pre-trained state-of-the-art opensource models like ResNet, EfficientNet, BeiT, VOLO, 

TNT, DeiT, Visformer, CoAT-NET, CaiT, XCiT, Poolformer, Swin, Twin, PiT, MLP-

Mixer, ResMLP, ConvMixer were used for DR detection. A custom classification-head 

containing Global Average Pooling layer, Fully Connected layers, Dropout, Activation 

functions and Softmax layer were added to pre-trained models. The entire architecture was 

fine-tuned, evaluated and benchmarked on multiple opensource fundus datasets using 

NVIDIA-GeForce-GTX-1080 GPU. Different hyperparameters like batch-sizes, 

normalization, dropout, activation, optimizers and learning-rate-decay functions were 

evaluated to improve the performance of the models. Overall, around 71 different 

experiments were conducted to achieve state-of-the-art F1-scores of 99.3%, 88.7%, 

85.25%, 64.16%, 86.52% and 90.53% for APTOS-DR detection, APTOS-DR grading, 

Messidor,  IDRiD-DR, IDRiD-AMD and AREDS datasets respectively, which was around 

2% better than current state-of-the-art. Performance of Transformers was better than CNN 

and Mixer based architectures because of their ability to learn the global context and 

associate position of biomarkers with other anatomies of retina. F1-scores of Swin, PiT and 

Twin models were highest among all the Transformers because of their ability to encode 

fine as well as coarse-level details of biomarkers. 
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1. INTRODUCTION

More than 40 million individuals in the US alone suffer 

from serious eye related ailments that, if left untreated, can 

result in total blindness. A large number of these eye diseases 

affect the retina. Diabetic Retinopathy (DR), Age-Related 

Macular Degeneration (AMD) and Glaucoma are the most 

common retinal diseases. By 2014, diabetes had affected more 

than 422 million people. Nearly all individuals with type-1 

diabetes and 60% of those with type-2 diabetes are predicted 

to contact diabetic retinopathy within the first 20 years of 

having the disease.  

Ophthalmologists frequently suggest diabetic individuals to 

undergo periodic medical screening for an early diagnosis of 

DR. Lot of studies have exhibited that DR can be treated 

effectively if it is detected early. Conventional approaches to 

diagnose DR, required manual grading of the retina to detect 

the absence or presence of the disease. This kind of diagnosis 

is time consuming and expensive, as it requires human 

expertise. Automated disease detection makes disease 

diagnosis more accessible to a larger population. The ability 

of computer-aided systems to consistently and accurately 

grade DR has popularized them among researchers.  
Fundus cameras are the most popular devices for large scale 

population screening of retinal images because they are non-

invasive, accurate, consistent, easy to operate, cost effective, 

provides storage options for the images, and contain 

established biomarkers for DR detection. Major biomarkers 

for the detection of DR like Hemorrhages, Micro-Aneurysms, 

Hard Exudates and Soft Exudates as shown in the Figure 1, 

can be easily identified with fundus imaging. Clinicians have 

graded DR into 5 different stages based on the severity namely: 

Proliferative, Severe, Moderate, Mild and No DR.  
Traditionally, computer vision techniques like Haar, 

Histogram of Oriented Gradients (HOG), Local Binary 

Patterns (LBP), Scale Invariant Feature Transform (SIFT) 

were used for feature extraction and Support Vector Machine 

(SVM), Random Forest, AdaBoost based algorithms were 
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commonly used as classifiers for detection of DR. But the 

disadvantages of computer vision techniques were lower 

accuracy and requirement of handcrafted feature extractors, 

thereby leading to lower adaptability of the algorithms on 

different kinds of fundus images.  
Deep learning based approaches have been proposed to 

overcome these drawbacks of computer vision techniques. 

Few of the main advantages of deep learning based 

architectures are: 1) Automatic feature extractors without the 

requirement for hand-crafting, 2) Feature extractor and 

classifier are bundled into a single workflow, 3) Higher 

accuracy, 4) Model robustness to adapt to different fundus 

datasets. There are various deep learning architectures like 

CNN, Transformers and Mixer models that have been 

proposed in literature. Transformers and Mixer based models 

are the current state-of-the-art for ImageNet based image 

classification tasks, but they have not been evaluated and 

benchmarked extensively on fundus images for retinal disease 

detection. CNN based models are widely used for DR 

detection and image classification. 

 

 
 

Figure 1. DR biomarkers and grades 

 

CNNs are an extension of neural networks which have been 

optimized for images. The input images in a CNN model are 

usually streamed through multiple convolutional layers, 

activation layers, pooling layers, flattening and fully 

connected layers to obtain class probabilities. AlexNet [1], in 

2012 was the first CNN based model to outperform computer 

vision-based techniques in the ImageNet image classification 

competition. Subsequently, CNN-based models continued to 

win the ImageNet challenge until 2020. Since 2021, 

Transformer-based architectures exhibit superior performance 

compared to CNN models in the ImageNet challenge. Image 

transformers were first proposed by authors of ViT [2] in 2020, 

and they were inspired from NLP based transformers. In 

Vision Transformers, the input image is divided into patches 

and converted to a 1d array by a dense layer. Positional 

embeddings are added to each of the patches, and streamed 

through multiple transformer encoders which contain multiple 

normalization layers, Multi-head attention layers and dense 

fully connected layers. Finally the classification scores are 

derived using a final fully connected layer. Mixer based 

architectures [3] were first proposed in 2021, they suggest to 

replace convolutional layers in CNN and attention networks in 

Transformer with MLPs. Each of these architectures have 

varied features that are beneficial for different classification 

problems.  

In this paper, multiple pre-trained models based on CNN, 

Transformer and Mixer architectures were chosen for analysis. 

The models were chosen based on accuracy when trained on 

ImageNet dataset, and in order to allow for comparable 

depiction of various architectures. CNN architecture based 

ResNet and EfficientNet were chosen for evaluation. MLP-

Mixer, ResMLP and ConvMixer based on Mixer architectures 

were also evaluated, along with Vision Transformer (ViT) and 

its variants. The modification to the Transformer architecture 

included: 1) Dividing the patches in ViT model to sub-patches 

for extracting the finer features from the input image, 2) 

Attention network related changes in the ViT model, 3) 

Modification of Transformer architecture to include CNN 

based features, 4) Auto-encoder related design for 

Transformer network. Models containing a fusion of these 

modifications, like Pooling based Vision Transformer (PiT), 

Swin and Twin Transformer achieved the best performance 

when compared to all other architectures. 

The pre-trained models were coupled with a custom 

classification-head, which contained 2 fully connected layers, 

ReLU based activation function, AdamW optimizer, softmax 

activation and exponential multi-step learning rate decay 

function. Complete model was fine-tuned with APTOS dataset. 

The Key Performance Indicators (KPIs) used for 

benchmarking the models were: 1) F1-score to indicate the DR 

detection capability of the model, 2) Number of parameters of 

the model, and 3) Time required to train and infer from the 

models. APTOS dataset was chosen for extensive ablation 

study.  

The primary role of transformers architectures are attention 

mechanism and position encoding. The attention module and 

the position encoding captures global information of the image, 

thereby yielding global interaction between image patches and 

enables flexible modeling of image data beyond local 

interactions of convolutions (in CNN and Mixer models). 

Hence the F1-score for Transformer based models was higher 

than CNN and Mixer models. Transformer design requires 

fewer convolutional operations than CNN and Mixer models, 

which results in a smaller model size and shorter training and 

inference times. The Transformer based models have the 

capability to improve their performance when trained on larger 

datasets. This paper exhibits the comparative study of 

Transformers, CNN and Mixer Architectures for DR detection 

and their relative performance analysis. 

In the initial ablation study, 34 different experiments were 

conducted like: a) 3 different number of fully connected layers, 

b) 3 batch sizes, c) 7 variants of ReLU activation function, d) 

5 variants of Adam optimizer, e) 10 learning rate decay 

functions, f) 3 dropout function g) 2 normalization functions.  

2 fully connected layers, batch size of 32, ImageNet based 

normalization, dropout function, ReLU based activation, 

RAdam optimizer and “Multi-step Learning Rate (LR) decay” 

were found to be the most suitable hyperparameters for DR 

detection. With these settings, the selected models and 

techniques were tested on other opensource retinal datasets 

like Messidor, AREDS and IDRiD. The Transformer models 

resulted in F1-scores which were all better than results 

reported in the literature reviewed in this paper. 

The following sections of this paper is structured as follows: 

Section 2, provides a summary of the latest literature on retinal 

disease detection. Section 3, describes the methodologies used 

including a note on datasets, models and the architecture 
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proposed in this paper. Section 4 contains comprehensive 

experimental analysis. Finally Section 5 summarizes the 

paper’s content and provides conclusion and a discussion on 

future work. 

 

 

2. RELATED WORK 

 

Researchers favor computer-aided detection systems 

because of their ability to precisely identify the grades of DR. 

Over the past ten years, many studies have been undertaken to 

build computer-aided systems that can automatically diagnose 

DR using machine learning approaches. This section discusses 

the most recent research on retinal disease detection using 

different fundus datasets. A summary of the performance of 

various state-of-the-art techniques for retinal disease detection 

has been shown in Figure 2. 

 

 
 

Figure 2. Performance of state-of-the-art for DR detection 

 

Few of the authors propose to use custom CNN based 

architectures for detection of DR and AMD. Pasha et al. [4], 

Saleh et al. [5] and Dekhil et al. [6] suggest a CNN model 

which consists of a pre-processing stage, five stage custom 

convolutional layers, ReLU based activation followed by 

pooling layers and three fully connected layers. Liu et al. [7] 

developed a Graph Convolutional Network (GCN), Global 

average pooling (GAP) layer and fully connected layers. 

Zhuang et al. [8] propose a custom 9 layer architecture for 

processing input images of size 512x512. The custom layers 

include multiple 2d convolutional layers, activation layers, 

max-pooling and fully connected layers. Alyoubi et al. [9] 

suggests using a cascade of 3 CNN architectures containing 2 

custom CNNs (for 2 input resolutions) and 1 EfficientNetB0 

model. Porwal et al. [10] suggest a custom CNN network, 

which used the EyePacs dataset for pre-training and IDRiD 

dataset for fine-tuning, thereby increasing the learn-ability of 

the model. Seoud et al. [11] suggest the development of 

handcrafted feature extraction techniques based on the 

location, size and texture of the biomarkers and classified 

using random forest. González‐Gonzalo et al. [12] propose to 

stream input images with and without preprocessing to 6-

custom CNN models separately. The performance of custom 

CNN models is relatively lower compared to other 

architectures. 

There are many papers based on the usage of pre-trained 

networks like VGG-19, InceptionNet and ResNet. Singh et al. 

[13] propose to use a pre-trained VGG-19 with L-BFGS rather 

than ADAM optimizer. Pre-trained InceptionNetV3 with 

momentum based optimizer was suggest by Wang et al. [14]. 

Peng et al. [15] propose DeepSeeNet, which consists of 3 

Inception-v3 models to detect drusen (biomarker for AMD) in 

3 size categories, absence or presence of abnormalities and late 

AMD. Liu et al. [7] recommend 18-layer ResNet. Dondeti et 

al. [16] and Nasir et al. [17] suggest ResNet based model with 

deep layer aggregation.   

Few of the authors suggest to use DenseNet, XceptionNet, 

and MobileNet, which are extensions of VGG-19 and ResNet. 

Chaturvedi et al. [18] propose pre-trained DenseNet121, 

GlobalAveragePooling2D, dropout and Softmax. A pre-

trained DenseNet121 was used with augmentations like 

translation, rotation, horizontal flip, vertical flip, scaling, 

Gaussian noise, random blurring and shear by Sheikh et al. 

[19]. Porwal et al. [10] recommend a pre-trained DenseNet for 

AMD and DR grading. Kassani et al. [20] suggest a modified 

Xception architecture along with a deep layer aggregation to 

combine multi-level features from different CNN layers of 

Xception network. Wang et al. [21] and Patel et al. [22] 

suggest MobileNet architecture with GAP layer, fully 

connected layer and Softmax activations.  

EfficientNet, which is considered as an extension of models 

like ResNet, DenseNet, InceptionNet has been proposed by 

multiple authors. Dondeti et al. [16] suggest EfficientNet, ⱱ- 

SVM (Support Vector Machine) and t-SNE to avoid over-

fitting of models. Zhuang et al. [8] suggested a pretrained 

Efficientnet-B3 along with a 2D adaptive average pooling 

layer, dropout layer and a linear layer. Pour et al. [23], propose 

to stream equalization based pre-processed images through an 

Efficientnet-B5 model. Xie et al. [24] propose, three individual 

pre-trained EfficientNetB0, global average pooling layer, 

dropout, fully connected layer, softmax to detect each of AMD 

stage, drusen size and presence of pigmentary abnormalities.  

There are lot of papers, where the focus is on using cascades 

of state-of-the-art models. Bodapati et al. [25] suggest a 

composite deep neural network with gated-attention 

mechanism, where XceptionNet and VGG16 model are 

blended using multi-modal fusion. Fusion of AlexNet and 

GoogLeNet was proposed by Porwal et al. [10]. They also 

propose an ensemble containing pre-trained ResNets and 

DenseNets for the grading of DR. 

Image transformers have recently attracted a growing 

amount of interest in computer vision and medical image 

analysis, producing state-of-the-art results on a number of 

image classification applications. Mutava et al. [26], Wu et al. 

[27] and Matsoukas et al. [28] analyze ViT architectures for 

DR grading, and show that they are competitive alternatives to 

CNNs. Yao et al. [29, 30] propose Swin based transformers, 

which is a variant of ViT. Jin et al. [31] proposes a dual-path 

reasoning network based on transformers which can infer from 

appearance and geometric features based on the clues 

discovered by the detector. 

This paper intends to address the specific gaps in the 

existing literature by: 1) Training, evaluating and 

benchmarking 18 models based on CNN, Transformer and 

Mixer architectures to detect DR and AMD on multiple 

opensource datasets, 2) Determining the optimum 

hyperparameters like number of layers, batch-sizes, 

normalization factor, activation function, optimizers and 

learning rate schedulers. 

 

 

3. RESEARCH METHODS 
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This section contains a detailed description of: 1) Different 

deep learning model architectures which have been used in this 

paper, which includes multiple CNN, Transformer and Mixer 

models, 2) Retinal fundus datasets that have been considered 

for model evaluation and benchmarking, 3) Architecture of the 

overall model that has been proposed in this paper for retinal 

disease detection.  

 

3.1 Deep learning architectures (CNN vs. Transformers vs. 

Mixer) 

 

18 pre-trained models have been used in this paper for 

evaluation and benchmarking and determining the most 

appropriate model for the detection of DR. The models were 

selected based on the accuracy on ImageNet dataset and the 

model structure, so that different architectures have similar 

number of representations for benchmarking.  

CNN based models have translation equivariance. For 

example, an object can be rotated in the image, but CNNs can 

accurately detect the object. Leveraging translation 

equivariance and augmentation, CNNs can be trained with 

relatively less images compared to other architectures. ResNet 

proposed by He et al. [32], allows adding more number of 

layers to neural network through skip connections, thereby 

avoiding exploding and vanishing gradients and improving the 

accuracy of the model. In Efficient-Net, Tan et al. [33] propose 

progressive training for adaptively adjusting the regularization 

and Neural Architecture Search (NAS) to drastically reduce 

the time required for training the model and to improve the 

accuracy.  

ViT, vision transformers proposed in the study [2] was the 

first Transformer model, used for vision applications. Here the 

input image is divided into several patches and streamed 

through a dense linear layer, along with positional embeddings 

and class embedding (CLS Token). These are streamed 

through multiple normalization layers, attention layers, and 

dense layers which results in classification scores.  

BEiT (Bidirectional Encoder representation from Image 

Transformers) proposed in the study [34] introduced 

autoencoder based techniques to improve the performance of 

transformers and achieve the highest accuracy on ImageNet 

dataset. 

In ViT, the input images are divided into several local 

patches and their relationships and representations are 

calculated. But images have abundant color information and 

are highly complex. The original patch is not granular enough 

to extract adequate features of objects in different locations 

and scales. Hence, architectures like Vision Outlooker (VOLO) 

[35] and Transformer in Transformer (TNT) [36] have been 

proposed, where the patches are divided into smaller patches 

and these sub-patches are streamed to a stack of sub-

transformers for further processing. This results in efficient 

encoding of finer-level features and contexts into tokens.  

Few architectures like Data Efficient Image Transformer 

(DeiT) [37], Visformer [38] and CoATNET [39] use Vision 

Transformers as the base architecture and modify it based on 

CNN techniques. Distillation networks have been used in DeiT, 

attention layers have been replaced by convolutional layers 

and pooling layers by Visformer and CoATNET respectively. 

By fusing Vision Transformers and CNN, model capacity and 

generalization is proposed to improve.  

Self attention module in ViT leads to global interaction 

between tokens (image patches), but disadvantage is the 

quadratic complexity in time and memory. Hence it is not 

scalable to high resolution images. Authors propose to modify 

the attention module of the transformers to improve the 

performance. Few of the models based on this alteration are: 

XCiT [40], CaiT (Class attention in image transformers) [41] 

and PoolFormer [42]. In XciT, attention has been proposed 

over the channels, hence the model has faster inference for 

high resolution images. Apart from self attention in ViT, class 

attention was also proposed in CaiT. In PoolFormer, attention 

block in DeiT is replaced with normalization, pooling and 

MLP layers.   

Few transformer based architectures use a fusion of various 

features on the base ViT model like: 1) Dividing the image 

patches to sub-patches for obtaining finer as well as coarse-

level details of the images, 2) Using CNN based 

improvisations on the transformer module and 3) Altering the 

attention layer to achieve better performance. Few of these 

models are Swin, PiT (Pooling based Vision Transformer) and 

Twin transformer. In Swin and Twin transformers, the number 

of channels is increased while the resolution of the input image 

is decreased similar to CNN models. Attention has been 

calculated for a patch with respect to all other patches in the 

entire image as well as a smaller window. This leads to 

extraction of finer as well as coarse-level features. Twin 

transformer introduces Spatially Separable Self Attention, as 

an optimization technique for Swin transformer. PiT model 

downsizes the input image and increases the number of 

channels. It uses pooling layer to reduce the spatial size of the 

input image, thereby improving the generalization and 

expressiveness of the model.  

Mixer based architectures use the idea of convolutions with 

small kernels. It reduces the kernel size to 1*1, thereby turning 

convolutions into standard dense matrix multiplications. 

These are applied independently to each spatial location 

(channel-mixing MLPs) and to each feature (token-mixing 

MLPs). The different Mixer architectures that have been used 

in this paper are MLP-Mixer [3], Res-MLP [43] and 

ConvMixer [44]. In MLP-Mixer architecture, token mixing 

and channel mixing has been proposed without CNNs or 

attention mechanisms. Only MLPs based on matrix 

multiplications, non-linearities, normalization, skip 

connections are proposed. Res-MLP is similar to MLP-Mixer 

with the addition of an affine layer. ConvMixers is a hybrid 

between ViT and MLP-Mixer. 

 

3.2 Dataset 

 

Among the various opensource fundus datasets that are 

available for DR detection, APTOS dataset was used for 

model benchmarking and extensive ablation study for the 

following reasons: 1) Dataset was released as part of an open 

competition, hence there are benchmarks available in the 

public leader-board, for researchers to compare their 

algorithms, 2) Volume of dataset, 3) Numerous publications 

that use the APTOS dataset for benchmarking. The images are 

graded for 5 classes to detect DR. The best performing models 

on APTOS dataset, were shortlisted and evaluated for 

robustness on other retinal datasets like Messidor, IDRiD-DR, 

IDRiD-AMD and AREDS for DR and Age-Related Macular 

Degeneration (AMD) detection. IDRiD-DR and IDRiD-AMD 

datasets also have public leader-board, hence it is convenient 

for researchers to benchmark their results. Messidor and 

AREDS are other popular opensource retinal datasets, which 

have been used for model evaluation. The dataset distribution 

is shown in the Table 1. In order to avoid model overfit, images 
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in the dataset were shuffled and distributed into training set, 

validation set and test set. 

 

Table 1. Dataset distribution 

 
Dataset APTOS: DR Unbalance / Balance Messidor DR IDRiD DR/AMD AREDS AMD 

Image Size 1050*1050 1440*960 4288*2848 2240*1488 

No Disease 1800/1800 546 168/221 974 

Mild 368/1545 153 25 / 51 75 

Moderate 988/1779 247 168 / 0 0 

Severe 191/1425 946 93 / 243 151 

Proliferative 293/1231 0 62 / 0 0 

Total Images 3640/7780 1892 516/515 1200 

 

3.3 DR detection model architecture 

 

For benchmarking, 18 pre-trained models were selected in 

this paper based on the model structure and F1-score on 

ImageNet dataset. Final classification layer of the pre-trained 

models were removed, hence the pre-trained models were used 

as feature extractors and they were coupled to a base 

classification-head. The extracted features are streamed 

through a classification-head, which predicts the grade of DR. 

The base classification-head consists of 2 fully connected 

layers with dropout, ReLU based activation, AdamW 

optimizer, multi-step learning rate decay function, batch-size 

of 32 and ImageNet based normalization function. The 

architecture of the proposed network is shown in Figure 3. 

 

 
 

Figure 3. Architecture of proposed DR detection network 

 

The input image resolution for all the models was 224*224, 

to maintain consistency in benchmarking. The dimensions of 

the extracted features were reduced to 256-d when they were 

passed through the first fully connected layer in the 

classification head. To introduce non-linearity, ReLU based 

activation layer was used. After the activation layer, another 

fully connected layer that reduces the dimension from 256-d 

to 5-d (corresponds to the number of classes) was used. To 

derive the probability of the classes, softmax layer was used. 

Dropout with a probability of 30% was added to the fully 

connected layers to improve the model robustness and reduce 

the model overfit. Using dropout, certain neurons in the fully 

connected layer are randomly blocked, thereby reducing the 

reliance on certain activations. Hence the model will be able 

to learn more significant features.  

At the start of the training process, the weights of the 

classification-head were initialized randomly and used to 

convolve with the activations. During forward propagation, a 

batch of input images were streamed through the different 

layers, to eventually result in the probabilities of DR grade for 

each of the input images. After the output probability values 

were determined from the softmax layer, it was compared with 

the ground-truth labels and error was estimated using log 

likelihood loss function. The primary objective of the model 

training process was to minimize this error, hence the weights 

of the fully connected layers were updated. During back-

propagation, the error was estimated and the weights were 

updated. 

The process of forward and backward propagation was 

executed over multiple iterations for different batches of input 

images, till there was a satisfactory decrease in the error. Over 

different iterations, the weights were updated using AdamW 

optimizer, and multi-step learning rate decay function. Input 

images were streamed in batches of 32. To maintain 

consistency during the benchmarking of 18 pre-trained models, 

the classification-head and the dataset distribution were used 

without any modifications. 

 

 

4. RESULTS AND DISCUSSIONS 

 

This section contains: 1) Detailed analysis of the results 

when the 18 different models based on CNN, Transformer and 

Mixer architectures were fine-tuned on APTOS dataset, 2) 

Extensive ablation study on the 3 models with highest F1-

scores to select the optimum methods and hyper-parameters 

including batch size, normalization function, activation 

function, optimizer and learning rate decay function, 3) 

Comprehensive performance analysis of the selected models 

and methods on other opensource retinal datasets. 

 

4.1 Performance analysis of deep learning architectures on 

APTOS dataset 

 

Table 2 shows the performance of 18 state-of-the-art pre-

trained models when trained on APTOS dataset. The 

parameters that were considered for evaluating the model 

performance were F1-score, size of the model, time required 

for training and inferring from the model. The models were 

trained on a NVIDIA GeForce GTX 1080 GPU, 64 bit Ubuntu 

18.04.6 LTS, 31.2 GiB internal memory and Intel® Core™ i9-

8950HK CPU @ 2.90GHz × 12 processor. 

The F1-score of CNN based ResNet and EfficientNet 

models was lower compared to Transformer and Mixer based 

architectures as they do not capture global information and 

have lower capacity to learn from larger datasets. Inference 

time required for CNN based models was higher due to the 

number of convolutional computations. The training time per 

epoch for ResNet was the highest compared to all other state-

of-the-art models. Architectural improvements made by 

EfficientNet, led to faster model training time compared to 

ResNet. 

The training time required for Transformers is lower than 

CNN and Mixer based architectures. In biomedical 
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applications, the number of training images will increase with 

time, hence model robustness is a key performance indicator. 

Compared to CNN and Mixer based models, Transformer have 

higher learning capacity when trained on larger datasets. Main 

building blocks of transformers are attention module and 

position information. Attention module and position encoding 

captures global information of the image, thereby enabling 

flexible modeling of image data beyond local interactions of 

convolutions (in CNN and Mixer models). The disadvantage 

of attention module is the quadratic complexity in time and 

memory, hence it is not scalable to high resolution images.  

The disadvantage of global receptive field is that, even if the 

image is rotated or flipped, it does not cause any issue to the 

transformer. Hence transformers tend to overfit the data very 

easily and some augmentation techniques might not actually 

improve the accuracy. There are various alternatives to ViT, 

which optimize the model for better performance. 

BEiT, is an autoencoder based transformer architecture. 

Pre-trained BEiT model achieved the highest accuracy on 

ImageNet dataset, but the model under-performed when fine-

tuned on APTOS dataset. The model initially learns to 

reconstruct the input image, and then to classify it to different 

classes. During reconstruction, model might add noises to the 

reconstructed image which can be misinterpreted as 

biomarkers by the classifier, leading to lower F1-score. 

Performance of BEiT model would be better, if the classes are 

distinct (like ImageNet dataset on which it is pre-trained and 

benchmarked). But if the classes are not distinct enough, then 

the F1-score would be low. 

One of the main disadvantages of ViT architecture was the 

low efficacy in encoding fine-level features into token 

representations. Modifications of ViT transformers like TNT 

and VOLO, where the patches were divided into sub-patches 

(similar to how sentences are divided into words) have been 

evaluated. This enables the transformers to learn finer details 

from the fundus images, thereby improving the F1-score of 

TNT and VOLO compared to ViT. In VOLO, as the patches 

are divided into sub-patches, and these sub-patches are used 

for training, hence the training time is higher compared to ViT 

model. Inner transformer architecture proposed by TNT model, 

performs better than VOLO in terms of lower model size (as 

the parameters within the inner transformer are shared), higher 

F1-score and lower training time. F1-score of VOLO and TNT 

is lower compared to other transformers based architectures. 

Fusion of Transformer and CNN based techniques achieve 

better performance. Few models that belong to this category 

are DeiT, Visformer and CoATNET. The addition of 

distillation token, has improved the F1-score of DeiT model. 

The training time required for this model is also comparable to 

few of the fastest transformer architectures. The model size is 

also significantly smaller than ViT. Visformer is a transition 

from DeiT towards ResNet based model, where the positional 

embeddings are removed from DeiT model and replaced with 

feed forward network. This change seems to have degraded the 

F1-score, thereby signifying the importance of positional 

embeddings for DR detection. Visformer has the fastest 

training times compared to all other state-of-the-art models. 

CoATNET is a combination of transformer and CNN models 

stacked together. Because of multiple training heads, the 

overall training time was higher compared to other transformer 

based models. The resolution of the input image was 

progressively reduced throughout the model, but the attention 

module was computed only on the patches, rather than the sub-

patches. This led to loss of information especially with regards 

to biomarkers, thereby leading to slightly lower F1-score 

compared to best performing model for the detection of DR. 
 

Table 2. Results of 18 state-of-the-art models when trained on APTOS dataset 
 

Batch 32, ImageNet norm, ReLU, AdamW, multi-step LR decay, 20 epochs, cross entropy loss, LR 3e-4 

Model Category Model 
Model Size 

(MB) 

Test F1-Score 

(%) 

Train Per Epoch 

(min) 

Infer Time 

ms 

CNN based architectures 

CNN 
ResNet 468 83.3 41.1 124 

Efficient-Net 9.11 81.1 5.8 88 

Transformer based architectures 

Original Transformer ViT 304.3 83.9 12.4 42 

Transformer + Autoencoder BEiT 304.4 80.3 12.8 53 

Patches into sub patches 
VOLO 295.4 84.8 20.4 23 

TNT 23.7 85.3 4.9 22 

Transformer + CNN 

DeiT 87.34 86.2 3.9 23 

Visformer 40.2 85.9 2.5 21 

CoAT-NET 10.3 86.1 8.4 22 

Transformer, Attention changes 

CaiT 46.9 85.3 4.4 24 

XCiT 188.9 85.4 39.8 12 

Pool-Former 73.4 86.2 4.6 23 

Transformer, sub-patch, CNN, 

Attention  

Swin 196.5 88.1 8 53 

Twin 43.8 87.0 3.4 21 

PiT 74.7 86.9 3.6 22 

Mixer based architectures 

Mixer 

MLP-Mixer 59.8 81.5 3.2 27 

ResMLP 129.1 84.0 18.3 74 

Conv-Mixer 51.6 80.7 20.3 63 

 

Changes to attention network in transformer based 

architectures were proposed by CaiT, XCiT and PoolFormer 

models. In CaiT model, 2 different stages have been proposed, 

namely: class attention and self attention. During self attention 

(wherein, attention within sub patches was calculated), class 

embeddings were not considered. Hence the F1-score of CaiT 

model was lower than DeiT, though these class embeddings 

were reintroduced during class attention. In XCiT, instead of 

attention over image patches, attention is proposed over the 

channels. This modification has made the network faster in 

terms of inference time, though it takes longer for training. 

This network is ideal for high resolution images. Though the 
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F1-score is comparable to most of the transformer models, it 

is slightly lower than the best performing models. PoolFormer 

is a modification of DeiT, where attention module is replaced 

by a pooling layer. Most of the parameters like F1-score of the 

model, training time, inference time are almost similar 

between DeiT and PoolFormer. This shows that there is very 

little difference between attention module and PoolFormer 

layer. The number of parameters in PoolFormer has been 

reduced compared to DeiT, because attention block was 

replaced by pooling and the pooling layer does not require any 

learnable parameters. 

Swin, Twin and PiT transformer are Transformer based 

architectures which are a fusion of multiple techniques like 

patch resizing, attention related changes and CNN based 

modifications. These models had the highest F1-score among 

all the state-of-the-art models that have been reviewed in this 

paper. PiT model is similar to PoolFormer architecture, where 

the attention module is replaced by a pooling layer. But the 

accuracy of the PiT is better than PoolFormer because of the 

dimensionality related changes proposed in PiT (similar to 

CNNs). Here, the number of channels is increased as the layer 

progresses and the resolution of input image is reduced. 

Because of these changes to the dimensionality of the image, 

PiT has faster inference and training times compared to 

PoolFormer based model. Swin Transformer utilizes CNN 

based spatial reduction techniques. Similar to VOLO and TNT, 

the attention in Swin Transformer is calculated with respect to 

all the patches within a given window and shifted window as 

well as with the patches in the entire image. Hence Swin 

Transformer achieved the highest F1-score, when fine-tuned 

on APTOS dataset for DR detection, but the training and 

inference time was relatively higher compared to other 

transformer models. Twin Transformer is similar to Swin 

Transformer. The architectural changes to the Swin, made the 

Twin model lighter, easier and faster to train and infer. Twin 

model has the 2nd best F1-score when fine-tuned on APTOS 

dataset. 

3 state-of-the-art Mixer architectures namely MLP-Mixer, 

ResMLP and Conv-Mixer, were evaluated and benchmarked. 

MLP-Mixer and ResMLP have similar architecture. ResMLP 

has an affine layer added to the MLP-mixer architecture, 

thereby improving the F1-score of the model. Vector handling 

in MLP-Mixer, decreased the training and inference time 

compared to ResMLP. Conv-mixer is a hybrid of ViT and 

MLP-Mixer, where images are divided into patches and passed 

through MLP-Mixer layers. F1-score achieved by Mixer 

models were lower than Transformer based architecture as the 

attention layer was replaced by MLP Layers and loss of global 

context. The training and inference times were also higher 

compared to other transformer based architectures. The 

performance of Mixer architectures was comparable to CNN 

based architectures in terms of F1-score, model size and 

training and inference times. 

In summary 18 different state-of-the-art pre-trained models 

were fine-tuned and evaluated on APTOS dataset. These 

models included CNN, Transformers and Mixer based 

architectures. Global context results in higher F1-score, as it 

associates position of biomarkers with other anatomies of 

retina. Usually the biomarkers would be present in only 1% of 

the entire image, therefore capturing finer details is essential 

to improve the performance of the model. Certain transformer 

based models used global context as well as captured finer 

details, hence they yielded the best performance in terms of 

faster training speed, inference speed, better F1-score and 

smaller model size. The highest F1-score on APTOS dataset, 

as recorded in public leader-board and documented in 

literature was 85.6%. Most of the transformer based models 

consistently out-performed the state-of-the-art results. Among 

the Transformer based architectures Swin, Twin and PiT based 

models resulted in best performance. Hence, these three 

models were used for further evaluation. Swin model had the 

highest F1-score of 88.1%, but training time was almost 2.5 

times more than the training time for Twin and PiT, Hence 

Swin model was not used for extensive ablation study. PiT was 

chosen for extensive ablation study as, it had similarities with 

both Swin and Twin models. Figure 4, indicates the F1-score 

for CNN, Transformer and Mixer architecture represented by 

ResNet, Swin and Res-MLP model respectively, with respect 

to the epochs. 

 

 
 

Figure 4. F1-scores CNN, Transformer and Mixer models 

 

4.2 Ablation study 

 

The PiT baseline model considered for extensive ablation 

study contained. Different experiments were conducted on the 

baseline model to identify the optimum hyperparameters. 

Table 3 shows the performance of the PiT model when the 

number of fully connected layers, normalization factors, 

dropout functions and batch sizes were experimented as part 

of ablation study. 2 fully connected layers seems to be 

optimum for APTOS dataset, as increasing or decreasing the 

number of fully connected layers in the classification-head 

decreases the F1-score. Changing the ImageNet normalization 

factor to default normalization factor to 0.5 also decreases the 

F1-score. Alpha dropout and Feature Dropout reduces the F1-

score, when compared with the original dropout function with 

a probability of 30%. Batch size of 32, was the maximum 

value that could be considered because of the GPU capacity 

and the input image resolution. This was the batch size that 

was considered for the baseline PiT model. The other two 

batch sizes that were considered for evaluation were 16 and 8. 

It can be observed from the results that, a batch size of 32 leads 

to highest F1-score. The F1-score of the algorithm reduces as 

the batch size reduces, because when more examples are 

considered as a batch, the model generalizes better, thereby 

leading to a smoother gradient curve and faster inference. 

Time required for training is less, for higher batch sizes. 2 FC 

layers with ImageNet based normalization factor, normal 

dropout with probability of 30% and a batch size of 32 results 

resulted in the highest F1-score for APTOS dataset. 

Different variants of ReLU based activation functions were 

experimented on the base PiT model and the results 

documented in Table 4. ReLU based activation function adds 
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non-linearity as well as behaves like a natural dropout layer, 

hence it achieved the highest F1-score when compared to all 

other variants of ReLU for DR detection on APTOS dataset. 

RReLU is a variant of ReLU, where for the negative values of 

the input, the activations have a small negative slope rather 

than making it to zero. The value of the slope is chosen 

randomly, hence the performance of the algorithm also 

depends on the value of slope that has been initialized. 

Continuously Differentiable Exponential Linear Unit (CELU) 

and Scaled Exponential Linear Unit (SELU) have similar 

activation functions, and therefore F1-score is also similar. 

SiLU / Swish is a hybrid of sigmoid and ReLU based 

activations. Sigmoid based activation functions usually result 

in lower classification accuracy, hence the F1-score of SiLU 

is the least compared to all other activations. Gaussian Error 

Linear Unit (GELU) and Mish activation are similar to SiLU, 

but instead of sigmoidal function GELU utilizes Gaussian 

distribution and Mish uses the Tanh computations, thereby 

leading to higher F1-score. 

 

Table 3. Initial ablation study on PiT model 

 
32 batch, ImageNet norm, 2 FC, 30% dropout, ReLU, AdamW, no 

scheduler 

PiT Experiments 
Test F1-Score 

(%) 

Train Time 

(min) 

Original PiT model 86.95 55.2 

1 FC layer 86.11 54.5 

3 FC layers 85.71 57.8 

Normalize: 0.5 86.56 54.9 

Alpha dropout 85.85 54.8 

Feature Alpha Dropout 86.4 54.9 

Batch 8 85.61 60.3 

Batch 16 86.05 58.4 

 

Table 4. PiT Transformer with different activations 

 

PiT Experiments: 32 Batch, ImageNet Norm, 2 

FC, Dropout, AdamW 

Test F1-

Score 

(%) 

Rectified Linear Units, ReLU, (x)=max(0,x) 86.95 

𝑅𝑅𝑒𝐿𝑈(𝑥) = {
𝑥 , 𝑖𝑓 𝑥 > 0

𝑎𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 86.68 

𝑆𝐸𝐿𝑈(𝑥) = 𝜆 {
𝑥  𝑖𝑓 𝑥 > 0 

𝛼𝑒𝑥 −  𝛼, 𝑖𝑓 𝑥 < 0
 85.85 

𝐶𝐸𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) + 𝑚𝑖𝑛(0, 𝛼

∗ (𝑒𝑥𝑝 (
𝑥

𝑎
) − 1)) 

85.85 

𝑆𝐼𝐿𝑈(𝑥) = 𝑥 ∗
1

1 + 𝑒−𝑥 85.3 

𝐺𝐸𝐿𝑈(𝑥) = 𝑥 ∗  𝜙(𝑥) 85.85 

𝑀𝑖𝑠ℎ(𝑥) = 𝑥 ∗ 𝑇𝑎𝑛ℎ(𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)) 86.81 

 

Different optimizers were evaluated with the baseline PiT 

model with ReLU activations as shown in Table 5, to establish 

the most optimum optimizer for APTOS dataset. Learning rate 

for each of these optimizers was kept constant. Adam 

optimizer is a fusion of RMSprop and Momentum related 

concepts. Learning Rate (LR) in Adam is adaptive because of 

the component associated with RMSprop. Because of 

Momentum related components in Adam optimizer, it can 

accelerate and decelerate the learning process. Hence the 

performance of Adam optimizer is better than RMSprop. 

Nadam, AdamW, Adamax and Radam are updated versions of 

Adam optimizer, to enable better performance. Nadam is 

Adam optimizer with Nesterov momentum, thereby leading to 

better F1-score compared to Adam. In AdamW, the weight 

decay is decoupled from the gradient based update, thereby 

leading to better regularization and model generalization and 

performance compared to Adam optimizer. Adam's bad 

convergence is because, the adaptive learning rate has an 

undesirably large variance in the early stage of model training 

due to the limited amount of training samples used. RAdam is 

a variant of the Adam optimizer that seeks to tackle Adam's 

bad convergence problem by introducing a term to rectify the 

variance of the adaptive learning rate. RAdam optimizer leads 

to best F1-score compared with all other optimizers. 

 

Table 5. PiT Transformer with different optimizers 

 
PiT, 32 batch, ImageNet norm,2 FC, dropout, no scheduler,ReLU 

RMS-Prop Adam NAdam AdamW RAdam 

86.12 86.26 86.67 86.95 87.64 

 

Table 6. PiT experiments with different schedulers 

 
32 batch, ImageNet norm, 2 FC, dropout, AdamW, ReLU 

PiT 

Experiments 

Test F1-

Score 

(%) 

PiT Experiments 
Test F1-

Score (%) 

Constant 86.54 Linear 85.86 

Cos annealing 86.68 
Cos annealing: 

warm restart 
82.83 

Multiplicative 86.81 Lambda 86.2 

Exponential 86.81 No scheduler 86.95 

Step 87.225 Multistep 87.36 

 

Various learning rate schedulers were evaluated on the base 

PiT, to identify the best decay technique for DR detection, as 

shown in Table 6. The initial learning rate considered was 3*e-

5. LR was increased using techniques like Constant LR 

scheduler and Linear LR scheduler. But the F1-score was 

lower because for image classification tasks, LR has to be 

decreased rather than increased. With cosine annealing 

scheduler techniques, LR decreases for first 10 epochs and 

then increases, in a cosine manner. Because the current model 

converged within the first 10 epochs, hence the performance 

was comparable to other techniques. But if the model would 

not have converged within the first 10 epochs, then the F1-

score would have degraded. A modification of Cosine 

annealing scheduler was cosine annealing with warm restarts, 

where the LR increased initially and then dropped to zero 

(rather than in cosine fashion) and started to increase again. As 

the LR increased with this technique, the performance 

degraded. Lambda and multiplicative LR scheduler drastically 

reduces LR till it reaches saturation towards zero. But as the 

model converged by 5th epoch, hence the effect of learning 

rate drop was not reflected in the F1-score, otherwise it would 

have degraded the F1-score. Using step and multi step learning 

rate decay, the LR was reduced in steps and they have the best 

performance for DR detection on APTOS dataset.  

In summary, for DR detection using APTOS dataset and PiT 

model, the best configuration was with a batch size of 32, 

ImageNet based normalization, 2 fully connected layers with 

dropout in the classification-head, ReLU activation, RAdam 

optimizer and “Multistep” based learning rate scheduler. 

 

4.3 Performance on multiple opensource datasets 

 

3 Transformer based models namely PiT, Swin and Twin 

were further evaluated and benchmarked on other opensource 

retinal fundus datasets as shown in Table 7. All the three 
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models had a batch size of 32, ImageNet based normalization, 

2 fully connected layers with dropout, ReLU activation, 

RAdam optimizer, dropout and MultiStep LR decay function. 

It can be observed from Table 7, that all the 3 models that were 

considered for evaluation, consistently out-performed the 

state-of-the-art. For APTOS disease grading dataset, the state-

of-the-art model (SOTA) [18] had the best F1-score of 86%, 

but all the models that were trained and evaluated in this paper, 

had an F1-score of above 86%. Swin model had the best F1-

score of 88.7%. Using the selected methods on the base PiT 

model, seems to have increase the F1-score of PiT model to 

87.95%. 

 

Table 7. Experiments on various opensource fundus datasets 

 

32 batch, ImageNet norm, 2 FC, dropout, AdamW, ReLU, 

multi-step 

Datasets Sl Model 
Test F1-

Score (%) 

Train / 

Epoch-Min 

APTOS Disease 

Grading Dataset 

1 PiT 87.95 8.7 

2 Swin 88.7 23.6 

3 Twin 87.79 5.5 

4 
SOTA: 

[18] 
86% - 

APTOS Disease 

Detection Dataset 

5 PiT 99.16 8.7 

6 Swin 99.30 22.3 

7 Twin 99.30 5.9 

IDRiD-AMD 

8 PiT 86.52 35.5 

9 Swin 85.52 61.4 

10 Twin 84.57 28.6 

11 
SOTA: 

[10] 
84 - 

IDRiD-DR 

12 PiT 64.16 35.6 

13 Swin 63.17 73.0 

14 Twin 63.25 31.8 

15 
SOTA: 

[10] 
63 - 

AREDS 

16 PiT 88.86 51.6 

17 Swin 90.53 103.3 

18 Twin 89.97 31.9 

19 
SOTA: 

[12] 
86 - 

Messidor 

20 PiT 84.87 25.6 

21 Swin 83.12 62.0 

22 Twin 85.25 19.1 

23 
SOTA: 

[11] 
73 - 

 

Certain applications require the model to only detect if a 

patient has DR or not, in such cases it becomes a binary 

classifier. Hence the dataset is divided into two classes: normal 

class and disease class. For binary classification, the dataset 

contains almost similar number images. Swin, PiT and Twin 

Transformer models were fine-tuned and evaluated for binary 

classification.  The results indicate very good F1-scores for all 

the three models, with more than 99% on the test dataset. 

Apart from the APTOS dataset, the models were 

benchmarked on other opensource retinal fundus datasets like 

IDRiD-AMD, IDRiD-DR, AREDS and Messidor for the 

detection of DR and AMD. The state-of-the-art models for 

each of these datasets were reviewed and documented in Table 

1. For IDRiD-AMD dataset, the state-of-the-art model [10] 

had the best F1-score of 84%, but all the models that were 

trained and evaluated in this paper, had an F1-score of above 

84%. PiT model had the best F1-score of 86.5%. The state-of-

the-art model [10] for IDRiD-DR dataset had the best F1-score 

of 63% when trained on IDRiD-DR and Eyepacs dataset and 

evaluated using IDRiD-DR dataset. But all the 3 models which 

were trained and evaluated in this paper, had an F1-score of 

above 63% when trained only on IDRiD-DR dataset without 

EyePacs dataset. PiT model had the best F1-score of 64.16%. 

For AREDS dataset, the state-of-the-art model [12] had an F1-

score of 86%, where an ensemble of 6 models was created. But 

in this paper, each 3 of the individual models evaluated had 

F1-score of above 89% without the need to use an ensemble of 

models. Swin Transformer had the best F1-score for AREDS 

dataset of 90.53%. The state of the art model [11] for Messidor 

dataset achieved an F1-score of 73%. All the 3 models which 

were fine-tuned in this paper, had F1-score of above 83%, with 

Twin Transformer having the highest F1-score of 85.25%. 

In summary, the models considered in this paper out-

performed the state-of-the-art papers for all the datasets. 

 

 

5. CONCLUSIONS AND FUTURE SCOPE 

 

18 state-of-the-art pre-trained models based on CNN, 

Transformers and Mixer architectures were evaluated in this 

paper. The pre-trained models were coupled with a 

classification-head which contained 2 fully connected layers 

with dropout, activation layer and softmax layer. 6 datasets, 18 

models, 7 activations, 5 optimizers and 10 LR decay methods 

were experimented. Overall a comprehensive analysis of over 

71 experiments was conducted and a detailed analysis has been 

presented in this paper to select the most optimum models and 

methods for the detection of DR. The performance of 

Transformer based models outperformed CNN and Mixer 

based models for the detection of DR, because of the ability of 

the transformer to learn the global context and associate 

position of biomarkers with other anatomies of retina. Swin, 

Twin and PiT Transformers outperformed all other 

Transformer based models as well as state-of-the-art, because 

of their ability to encode fine as well as coarse-level details of 

biomarkers. Batch size of 32, ImageNet based normalization, 

ReLU activation, RAdam optimizer and multi-step LR decay 

were the most optimum methods for retinal disease detection. 

Few of the potential applications of proposed DR detection 

framework includes early disease detection, eye screening 

using mobile health apps, screening for health insurance 

companies, educational tools for health care professionals and 

telemedicine. 

Some of the limitations of the current study are: 1) To 

ensure uniformity in benchmarking the different models, 

augmentation techniques were not used to improve the 

performance of the model, 2) Cascade of models for detection 

of different retinal anatomies were not evaluated, because of 

the limited GPU capacity, 3) Models were not optimized and 

benchmarked for porting into edge device, 4) Real-time fundus 

capture and validation was not performed. 

For improving the performance and usability of the 

proposed techniques, this research work can be extended to: 1) 

Implement augmentation techniques to increase the volume of 

the dataset, 2) Use ensemble of high performing classification 

models, 3) Fuse DR grading classifier, blood vessel and 

biomarker segmentation techniques into a single framework, 

4) Validate on real-world fundus images, 5) Port the developed 

model onto edge device (Eg. mobile phones). 
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