
Simple Hash Based Symmetric Encryption Mechanism for Dynamic Groups

Redamalla Rekha1 , Medi Sandhya Rani2* , Kura Shailaja3 , Nagaraju Krishna Chythanya4

1 Department of Computers and Informatics, University College of Engineering & Technology, MGU, Nalgonda

508254, India
2 Department of Information Technology, Bhoj Reddy Engineering College for Women, JNTUH, Hyderabad 500059,

India
3 Department Computer Science and Engineering, Vasavi College of Engineering, Hyderabad 500031, India
4 Department of Computer Science and Engineering, Gokaraju Rangaraju Institute of Engineering and

Technology, Hyderabad, Telangana 500090, India

Corresponding Author Email: sandhyarani.medi@slv-edu.in

https://doi.org/10.18280/ijsse.130610 ABSTRACT

Received: 1 September 2023

Revised: 25 October 2023

Accepted: 8 November 2023

Available online: 25 December 2023

Security in Dynamic Groups is an open research problem in Mobile Adhoc Networks

(MANETs) as users join/leave a group with insecure open wireless networks. To avoid

information leakage in multicast communication during group dynamics, forward secrecy,

and backward secrecy primitives to be ensured. In this context, a proper and secure group

key is to be derived and updated whenever users join or leave the group. An efficient,

simple, and secure symmetric multicast group encryption mechanism for group-oriented

communications in MANETs is proposed and implemented with the derived group key.

In this paper, the encryption mechanism for the “Multicast Symmetric Secret Key

Management Scheme (MC-SSKMS)” is illustrated. This protocol provides O(1)

computational overhead which is less than the other existing approaches and the results

for both join and leave events are provided.

Keywords:

decode, encipher, group controller, group

encryption, join, leave, security

1. INTRODUCTION

Mobile Ad-hoc Networks are an unstructured collection of

Mobile Hosts (MHs) that can also act as routers and are linked

by wireless networks to form a communication network.

Physical security risks like snooping, phishing, and denial-of-

service attacks are common on mobile wireless networks.

Security is the most important concern in MANETs to prevent

attacks, especially in multicast applications where a single user

transmits a message to a group of users. To provide security in

such an environment, a secure group key must be derived

which is used to encrypt the message by the sender and only

intended group members must decrypt that message. The same

group key is used by both sender and recipients for the

transmission of messages, which is called the Symmetric

Group Encryption mechanism. Group Encryption key can be

calculated and disseminated based on the specific multicast

key agreement approach.

The categories of Group communication Key Agreement

protocols are as follows: (i). Group Key Agreement protocols

with centralized control, (ii) Decentralized Group Key

Agreement protocols and (iii) Distributed Group Key

Agreement protocols. Distributed key management methods

tend to have little computational complexity during rekeying

than centralized and decentralized group key agreement

protocols because in distributed protocols each user

individually calculates the rekey [1]. In Centralized and

Decentralized methods there is a problem of a single point of

failure which is not there in Distributed key agreement

mechanisms. Due to less computational overhead and

flexibility in key calculation, we developed a distributive

group key management scheme for secure group

communication in dynamic groups. In this distributive

environment, each user contributes a secret share to prepare a

shared key which is used for both encryption and decryption.

To compute a shared secret group key in startup phase, a

secure hash technique known as MD5 is used. During updation

phase of secret key calculation, a rekey needs to be computed.

Rekeying is the process of creating a new shared Secret Group

Key during a user join or quits a multicast group. We designed

and developed a symmetric distributive Group Key

Encryption protocol for MANETs in which a common secret

group key is safely disseminated to each user in the group.

With that Group Key the sender encrypts the message and the

remaining group members decipher the encrypted message to

retrieve the original information.

The remaining part of the paper is organized as follows:

Section 2 describes related work, Section 3 presents the

methodology of the proposed protocol, Section 4 demonstrates

the Results and performance analysis of proposed protocol and

Section 5 presents the conclusion.

2. RELATED WORK

Many studies have been done on various Group key

management strategies. An effective and secure protocol for

group communication in MANETS was devised after a survey

of the literature on multicast communication methods. A

centralized method based on a tree structure, the Logical Key

Hierarchy (LKH), was created by Wallner et al. [2], provides

linear initial keying performance and improved logarithmic

International Journal of Safety and Security Engineering
Vol. 13, No. 6, December, 2023, pp. 1077-1082

Journal homepage: http://iieta.org/journals/ijsse

1077

https://orcid.org/0009-0002-7959-0439
https://orcid.org/0009-0007-1474-988X
https://orcid.org/0000-0001-7641-6828
https://orcid.org/0000-0001-5991-2600
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.130610&domain=pdf

rekey performance. Key storage requirements at each user is

d+1 keys while the group controller must store all Key

Encryption Keys (KEKs) and the Group Traffic Encryption

Keys (GTEKs).

Like LKH, One Way Function (OFT) proposed by Sherman,

and McGrew [3] is a centralized technique for group key

management mechanism which reveals how each key in the

OFT scheme functions about the others. The number of keys

stored by group members, the number of keys broadcast to the

group when new members are added or evicted, and the

computational efforts of group members, are logarithmic in the

number of group members. Among the hierarchical methods,

OFT is the first to achieve an approximate halving in broadcast

length, an idea on which subsequent algorithms have built.

Splitting a large group into smaller subgroups is a

decentralized GKM method in which group coordinator is

selected for each subgroup that was demonstrated in IOLUS

[4]. Protocols based on Iolus can be used to achieve a variety

of security objectives and may be used either to directly secure

multicast communications or to provide a separate group key

management service to other "security-aware" applications.

Tree Based Group Diffie Hellman (TGDH), a technique for

Decentralized group key management that combines the

effectiveness of the tree structure with the contributing

characteristic of DH, was created by the authors of Kim et al.

[5] in which key distribution to the local members of each

subgroup is handled by a subgroup controller. N-party Diffie-

Hellman key agreement was suggested for group

communication by Amir et al. [6], Burmester and Desmedt [7].

In these schemes, there is no need for a group controller whose

cost is more than the other participants. And furthermore, users

have a public key and authenticate their messages using an

appropriate authentication scheme.

Huang and Mishra [8] demonstrated a fully distributed

scheme that has the advantage of configuration flexibility.

However, it lacks any trusted security anchor in the trust

structure. Many certificates need to be generated. Every node

should collect and maintain an up-to-date certificate repository.

Certificate chaining is used for authentication of public keys.

The certificate graph, which is used to model this web of trust

relationship, may not be strongly connected, especially in the

mobile ad hoc scenario. In that case nodes within one

component may not be able to communicate with nodes in

different components. A variety of Distributed group key

management systems have been proposed for SGC in wireless

networks [9, 10]. SEKM is based on the secret sharing scheme,

where the system secret is distributed to a group of server

nodes [9]. The server group creates a view of a CA. The

advantage of SEKM is that it is easier for a node to request

service from a well-maintained group rather than from

multiple ‘‘independent’’ service providers which may be

spread in a large area.

A cluster-based technique was proposed by Renuka and

Shet [11], is hierarchical and fully distributed with no central

authority and uses a simple rekeying procedure which is

suitable for large and high mobility mobile ad hoc networks.

The rekeying procedure requires only one round in this scheme.

Authors reduced the energy consumption during

communication of the keying materials by reducing the

number of bits in the rekeying message. They demonstrated

through analysis and simulations that the developed scheme

has less computation, communication and energy

consumption compared to the DLKH and GDH schemes. But

the limitation is uncasing the rekeying messages which lead to

a greater number of messages in the network. And this scheme

does not provide forward and backward secrecy.

The distributed group key is computed in the Simple and

Efficient Group Key (SEGK) management strategy for

MANETs is presented by Wu et al. [12], where each node

stores two logical trees in its local memory and group

maintenance role is transmitted from one member to other.

The advantage of this work is sharing the load and maintaining

forward and backward secrecy. To update the key O(n2) exp

computational complexity required during join and leave

events. Double multicast tree maintenance and high

computational complexity are the limitations in this work.

Another distributive GKM system that permits dynamic

group membership was introduced by Kang et al. [13] by

Sukin Kang et al and demonstrated group key secrecy,

backward and forward secrecy, key independence, and

implicit key authentication under the decisional Diffie-

Hellman (DDH) assumption. In this work group dynamics are

also considered for calculating Group key. To update the key,

each node has to perform only 1 modular exp operation i.e.,

O(1) exp. But the limitation of this work is Initial phase

consists of two rounds for computation of Group key and

Group master has additional computational complexity.

Vaishnavi and Upadhay [14] demonstrated Symmetric

management schemes, Asymmetric management schemes,

Group key management schemes and Hybrid management

schemes. Each scheme is explained with one or two protocols

with the merits and demerits in it. Vanathy and Ramakrishnan

[15] proposed Escrow based Elliptic Curve Cryptographic

group key management scheme in MANETs. It is a public key

based cryptographic approach where efficient encryption

mechanism is used. In this work two secure group key schemes

are proposed: one is within the subgroup another is external to

the group. Authors analyzed the Quality-of-Service metrics

like storage cost, throughput and communication overhead

with simulation environment and demonstrated that ECC-

based asymmetric cryptographic group communication

outperformed previous Group key mechanisms in terms of

metrics. But the drawback of this work is group dynamics are

not considered which is more important in MANETs.

Sandhya Rani et al. [16] proposed symmetric group key

management mechanism and measures for service quality such

as Key Delivery Ratio, Battery consumption and End-to-end

Delay are assessed. These metrics use symmetric GKM to

offer both forward and backward security. NS2 tool is used for

experimental set up in which the above metric values are

recorded. The authors compared these values with two

contemporary methods and proved that their scheme possesses

better Quality of Service than other methods. But they ignored

computational overhead of group key calculation and key

updation.

In summary, there are many researchers who developed and

analyzed different key management schemes as key

management is the base for Encryption especially in multicast

nature of MANETS. In our work we addressed the limitations

of above literature by broadcasting the rekeying messages to

group members, using simple and secure hash-based algorithm

to provide less computational complexity in initial phase as

well as key updation phase by maintaining forward secrecy

and backward secrecy.

1078

3. METHODOLOGY OF THE PROPOSED PROTOCOL

In a symmetric group key agreement, each group member

has access to a shared key that is used to encipher the data and

the same key is used to decipher the data by all the members

in the group [13]. If key management is centralised, TTP may

calculate this key. In Distributed key management, each user

provides their share value to compute the group key. The

following two security primitives are ensured in multicast

communication especially in highly dynamic MANET

environments:

• Forward secrecy: The member who evicts from the group

cannot access the further messages with old key.

• Backward secrecy: A new user cannot decrypt or access

the past messages with newly calculated key.

Secure Hash Function, a mathematical operation performed

at the sender's side and added to the original message, is the

foundation upon which group keys are calculated. The receiver

performs the same calculation and compares the tag value to

confirm authenticity. Secure hash function generates Message

Digest without the need for a key. In our proposed work, we

employed the one-way secure hash function MD5 to compute

the Group key.

The MD5 method generates a 128-bit message digest from

an input of any length. It has a hexadecimal representation of

8 digits. Blocks of 512 bits from the input are processed. To

break the message digest it takes 2128 operations, which is

complicated in this work because it requires knowing the hash

value of n users. The MD5 algorithm's benefit over other

secure hashing algorithms like SHA-256, SHA-512 is its fast-

processing speed. On the other side of the coin SHA-3, SHA-

256, SHA-512 are more secure than MD5 because of its output

i.e. double the length of MD5. However, in our protocol we

used hash algorithm at individual users and also at Group

Leader which leads to n+1 hash operations. This requirement

leads to high computation with SHA algorithms. To

compensate the computation time with sufficient security we

employed MD5 for calculation of group key.

Figure 1. Process flow of simple and hash based symmetric

group key encryption

To generate a Group key, each user gives a share that is a

hash of the random integer in our distributed key management

protocol. The Group Leader/Group Controller creates a

common Group Key by using the safe MD5 hash technique on

shared values that have been received. This is done during

initialization, and the created Group key needs to be sent

separately through a secure unicast message to each user. Any

team member can encode a message with the help of the shared

Group.

Only group members can decipher the information using the

key that has been sent to the group. Additionally, our work

offers backward and forward secrecy for user join and

departure events. In other words, a new user cannot decode

older communications using a newly calculated key, and a

person who leaves the group cannot access later messages

using a previously calculated key.

We extended and implemented a simple Hash based

symmetric encryption mechanism based on design (Figure 1)

and development of MC-SSKMS (Multicast Symmetric Secret

Key Management System). Every node in this protocol

contributes its own part to compute the Group key that is

utilized for both encoding and decoding.

Each group member executes the Group Key Calculation

and Distribution Algorithm. It consists of two stages:

A) Group encryption key calculation and distribution

algorithm

Step 1: The first step is for nodes (Mi) that want to participate

in multicast communication have to broadcast their ID and a

"hello" message. The one with the least ID in the group is the

group leader. To recognize its members, the group head

broadcasts the phrase "I am Group head."

Mi Gn: (i є [1, n])

Step 2: Using the MD5 algorithm, each member of the group

Mi, generates a random number Ri and computes its hash HRi

and transmits the computed hash value to GL.

 Mi GL: (i є [1, n], i ≠ GL)

Step 3: The group key is then generated by the group

administrator using the one-way hash function.

GEK = f (HR1, HR2, HR3, …, HRn)

where, HRi is a Hash of the random value and f is the MD5

one-way hash function.

Step 4: GL sends this group key to all participants in the

multicast connection using Key Encryption Key (KEK).

B) Group encryption key updation

Step 1: If updation = “Join event”, each joined member

chooses a share Rj,, calculates hash of the chosen value and

sends to GL.

 (HRj,IDj)

Mj GL: (j Є [n+1, n+m])

Step 2: GL calculates Group key by applying MD5 one way

hash function.

GK=f (GK, HRn+j): (j Є [1, m])

Step 3: GL distributes refreshed Group key to all users in the

group.

Id

(HRi , Idi)

1079

 E [KEK, GK]

GL Gn

Step 4: Else//Assume that m members are leaving from the

group Gn.

GL generates the group key by applying MD5 one-way hash

function on existing members.

GKꞋ=f(HRi): (iЄ[1, n-m]

Step 5: GL distributes refreshed group key to all users in the

group.

 E [KEK, GK’]

GL Gn

3.1 Multicast group communication (encryption and

decryption)

Each user acquires GEK during set up phase or updates the

key during updation phase. Whenever a user transmits a

multicast data in the group, it encrypts the data and sends in a

multicast secure transmission environment. In this proposed

protocol Advanced Encryption Standard algorithm is used for

enciphering the data while maintaining group secrecy. Only

the group members who know GEK can decrypt the data by

that forward secrecy and backward secrecy is maintained.

Advanced Encryption Standard (AES) is a symmetric

cryptographic algorithm employs a block size of 128 bits and

input of any arbitrary length. The computational overhead of

AES based on key size. For instance, the number of rounds is

10 for a key size of 128, number of rounds is 12 for a key size

of 192, and 14 for a key size of 256 bits. In AES although

longer keys are harder to crack, the problem is computation

time. But compared to exponentiations in asymmetric

cryptographic approaches AES leads to less computational

overhead.

3.2 Illustration of the proposed method

A) Group encryption key calculation

1) Suppose the group has 4 users.

2) Each one of them select a random number between

1 and 1000, which is then hashed using MD5 secure

hash algorithm.

▪ R1=165 and H(R1):

9766527f2b5d3e95d4a733fcfb77bd7e

▪ R2=72 and H(R2):

32bb90e8976aab5298d5da10fe66f21d

▪ R3=431 and H(R3):

66368270ffd51418ec58bd793f2d9b1b

▪ R4=674 and H(R4):

0d7de1aca9299fe63f3e0041f02638a3

3) The above hash values of 4 random numbers are

concatenated and the result as follows:

9766527f2b5d3e95d4a733fcfb77bd7e32bb90e8976aab5298d

5da10fe66f21d

66368270ffd51418ec58bd793f2d9b1b0d7de1aca9299fe63f3e

0041f02638a3

4) Group Encryption Key

(GEK)=64266a3af1856b2d3b6e00638113bf4e (By

applying MD5 on step3 result).

B) Group encryption key updation

For Join Event:

1) Suppose 3 members joined the group.

2) Each one of them selects a random number between

1 and 1000 which is then hashed using MD5 secure

hash algorithm.

▪ R6=854 and H(R6):

2303bee891431336538b2b4c0bb756db

▪ R7=357 and H(R7):

24f281b4d6a9688a3cc37292f7c75e90

▪ R8=625 and H(R3):

50e06e8355e9ba35fd49fc08de8b0347

3) Concatenation of the hashes is Res =

2303bee891431336538b2b4c0bb756db24f281b4d6

a9688a3cc37292f7c75e9050e06e8355e9ba35fd49f

c08de8b034.

4) Updated Group Encryption Key (UGEK) =

 MD5(GEK,Res).

UGEK=51634b65cf970f372684d4bb518aa774.

These 3 members can not decrypt the past messages with

this UGEK thus achieved backward secrecy. In the same way

if any user leaves, from this group a new key is calculated and

with the old key the evicted user can not access further

messages of the group.

C) Multicast group communication

Encryption: Suppose user2 wants to transmit a message in

the group, it performs encryption using GEK.

 If GEK = 64266a3af1856b2d3b6e00638113bf4e

(which is calculated in Group Encryption Calculation

stage in (B) and sample original message in

Hexadecimal is 6A2C000000000000.

 Then the generated cipher text using Advanced

Encryption Standard (AES) algorithm is

42BDDD2DBE787C9174C6604D34655449274FDF6

D5A8786797E349A733F8BC7EB.

 User2 transmits this cipher text in the group.

Decryption: When all group members in the group receive

the above cipher text, each user begins the decryption

procedure as follows:

 Each user applies AES decryption algorithm with

GEK=64266a3af1856b2d3b6e00638113bf4e and

cipher text

42BDDD2DBE787C9174C6604D34655449274FDF6

D5A8786797E349A733F8BC7EB, and original plain

text 6A2C000000000000 is retrieved by all the

members.

By the above illustration, it is understood that only group

members who knows GEK can decrypt the message. Hence it

is proved that our protocol provides Forward and Backward

secrecy

4. RESULTS AND PERFORMANCE ANALYSIS

Our suggested approach is implemented in Java with varied

user counts (Intel Core i5 processor, 8GB RAM, Windows 10

1080

Operating System). We estimated the computation time of

Group Encryption Key calculation in this environment. Group

Encryption Key calculation computational complexity is

compared to that of existing key management techniques such

as Simple and Efficient Group Key Management (SEGK) and

Collaborative Diffie Hellman (CODH) techniques.

In contrast to the two mentioned protocols SEGK [12] and

CODH [13], we used the MD5 secure hash technique in our

proposed work to calculate the Group Key. The computational

complexity of SEGK is O(n2), whereas the computational

complexity of CODH is O(n) exponentiations to calculate

Group Encryption Key. Our suggested approach requires O(1)

computational overhead to calculate the group key during

initialization than the other two protocols since it employs a

one-way hash function, as illustrated in Table 1 and Figure 2.

Table 1. Group Key computation time with varying Number

of nodes

Group Key Computation Time (sec)

 Number of Nodes

Protocols 20 40 60 80 100

SEGK 4.27 6.32 7.98 9.63 11.45

CODH 3.89 5.46 6.82 8.12 9.68

MC-SSKMS(Proposed) 3.13 3.98 4.28 5.72 5.92

Figure 2. Group Encryption Key calculation time

Table 2. Rekey computation time for join event with a

variable number of nodes

Rekey Computation Time (sec) for Join Event When p=10%

 Number of Nodes

Protocols 20 40 60 80 100

SEGK 1.25 1.75 2.25 2.80 3.41

CODH 1.60 3.20 4.85 6.50 7.70

MC-SSKMS (Proposed) 0.85 0.89 1.21 1.56 1.62

Figure 3. Key updation time (Join)

SEGK and CODH computation time values for Join events

are taken with membership changes (p=10%) and compared

with our protocol. Table 2 and Figure 3 show that CODH

requires more time to compute the rekey for the Join event than

SEGK does, as in SEGK, only new members compute the

group key, while existent members refresh the group key with

the blinded key of the new members. In contrast, CODH

prepares a fresh lock list for each member after a new member

enters the group, adding to the overhead. By executing a one-

way hash function of the old Group key with that of the new

Member's concatenated hash value, our MC-SSKMS lowers

the join rekey cost.

The calculation time of our protocol compared to SEGK and

CODH for the leave event where membership changes

(p=10%) are shown in Table 3 and Figure 4. SEGK and CODH

require more time for rekey computation for Leave events than

our protocol due to their use of modular exponentiations in

rekey computation that are like group key calculations

performed at the initial phase. Our protocol computes the fresh

Group key using a one-way hash function reduces the time

required to rekey.

Table 3. Rekey computation time for leave event with a

variable number of nodes

Rekey Computation Time (sec) for Leave Event When

p=10%

 Number of Nodes

Protocols 20 40 60 80 100

SEGK 3.23 4.92 5.89 7.89 9.29

CODH 2.88 4.12 5.24 7.23 8.72

MC-SSKMS (Proposed) 1.82 2.56 3.28 3.57 3.36

Figure 4. Key updation time (Leave)

5. CONCLUSIONS

Secure and effective key management is crucial for group

communication in MANETs because they support a greater

range of secure multicast applications like video conferencing,

military applications etc. In our proposed work, we created a

secure and effective symmetric Group Key Management

technique by reducing the computation complexity of the

rekey time when membership changes. Each user of this

protocol contributes to the calculation of the group key in a

distributive environment. Here, the group key was determined

using a one-way hash function during the initialization phase

and key is updated during join and leave events. In this work,

we used MD5 secure hash algorithm to calculate the group key

which leads to less computational burden. Due to maintenance

1081

of double multicast tree in SEGK and DH calculations in

CODH leads to more computations in SEGK and CODH

protocols respectively. The findings in the aforementioned

section make it clear that our protocol has less computational

complexity than the SEGK and CODH protocols. And it also

proved that our protocol ensures backward and forward

secrecy. We can extend our work to simultaneous join and

leave events in calculating rekey computation time.

REFERENCES

[1] Bouassida, M.S., Chrisment, I., Festor, O. (2008). Group

key management in MANETs. International Journal of

Network Security, 6(1): 67-79.

[2] Wallner, D.M., Harder, E.J., Agee, R.C. (1998). Key

management for multicast: Issues and architectures.

Internet RFC 2627.

[3] Sherman, A.T., McGrew, D.A. (2003). Key

establishment in large dynamic groups using one-way

function trees. IEEE Transactions on Software

Engineering, 29(5): 444-458.

https://doi.org/10.1109/TSE.2003.1199073

[4] Mittra, S. (1997). Iolus: A framework for scalable secure

multicasting. Journal of Computer Communication

Reviews, 27(4): 277-288.

https://doi.org/10.1145/263109.263179

[5] Kim, Y., Perrig, A., Tsudik, G. (2004). Tree-based group

key agreement. ACM Transactions on Information

Systems Security, 7(1): 60-96.

https://doi.org/10.1145/984334.984337

[6] Amir, Y., Kim, Y., Nita-Rotaru, C., Schultz, J.L., Stan,

J., Tsudik, G. (2004). Secure group communication using

robust contributory key agreement. IEEE Transactions

on Parallel and Distributed Systems, 15(5): 468-480.

http://doi.org/10.1109/TPDS.2004.1278104

[7] Burmester, M., Desmedt, Y. (1994). A secure and

efficient conference key distribution system. In: De

Santis, A. (eds) Advances in Cryptology -

EUROCRYPT'94. EUROCRYPT 1994. Lecture Notes

in Computer Science, vol 950. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/BFb0053443

[8] Huang, J.H., Mishra, S. (2003). Mykil: A highly scalable

key distribution protocol for large group multicast. In

GLOBECOM '03. IEEE Global Telecommunications

Conference (IEEE Cat. No.03CH37489), San Francisco,

CA, USA.

https://doi.org/10.1109/GLOCOM.2003.1258483

[9] Wu, B., Wu, J., Fernandez, E.B., Ilyas, M., Magliveras,

S. (2007). Secure and efficient key management in

mobile ad hoc networks. Journal of Network and

Computer Applications, 30(3): 937-954.

https://doi.org/10.1016/j.jnca.2005.07.008

[10] Yu, Z., Guan, Y. (2005). A key pre-distribution scheme

using Deployment knowledge for wireless sensor

networks. In Proceedings of the 4th ACM/IEEE

International Conference on Information Processing in

Sensor Networks (IPSN), Boise, ID, USA, pp. 261-268.

https://doi.org/10.1109/IPSN.2005.1440934

[11] Renuka A., Shet, K.C. (2009): Hierarchical approach for

key management in mobile Ad hocNetworks.

International Journal of Computer Science and

Information Security, 5: 87-95.

[12] Wu, B., Wu, J., Dong, Y. (2008). An efficient group key

management scheme for mobile ad hoc networks.

International Journal of Security and Networks, 6(4):

560-577.

[13] Kang, S., Ji, C., Hong, M. (2014). Secure collaborative

key management for dynamic groups in mobile networks.

Journal of Applied Mathematics, 2014: 601625.

https://doi.org/10.1155/2014/601625

[14] Vaishnavi, N., Upadhay, H. (2016). Comprehensive

study on key management schemes in MANET.

International Academy of Science, Engineering and

Technology, 5(2): 81-90.

[15] Vanathy, B., Ramakrishnan, M. (2020). Dynamic key

distribution management using key escrow based ECC

algorithm in MANETs. International Journal of

Advanced Research in Engineering and Technology

(IJARET), 11(1): 116-128.

[16] Sandhya Rani, M., Rekha, R., Sunitha, K.V.N. (2020).

Multicast symmetric secret key management scheme in

mobile Ad-hoc Networks. In: Satapathy, S.C., Raju, K.S.,

Shyamala, K., Krishna, D.R., Favorskaya, M.N. (eds)

Advances in Decision Sciences, Image Processing,

Security and Computer Vision. Learning and Analytics

in Intelligent Systems, vol 3. Springer, Cham.

https://doi.org/10.1007/978-3-030-24322-7_24

1082

