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To address the challenges posed by traditional network architectures, the Software-

Defined Network (SDN) architecture was introduced. However, SDNs are not immune to 

many security threats (e.g. Dos, Backdoors). In this paper, we present an advanced 

intrusion detection system that leverages federated learning (FL) and deep learning (DL) 

techniques to check whether attacks occur or not on SDN. FL has been employed as a 

collaborative learning technique, enabling various data planes to conduct local training on 

their respective client datasets. Following local training on each data plane, the local 

model parameters are securely transmitted to the controller server. At the controller server, 

these local training parameters are aggregated to construct a global model. The resulting 

aggregation outcome is then shared back with each local model to update them, enhancing 

their ability to detect attacks. Three datasets were used to evaluate the efficacy of the 

suggested method: UNSW-NB15, NF-UQ-NIDS-v2, and CICIDS2017. The obtained 

results demonstrate a strong performance in anomaly detection, with an accuracy value 

reach to 95.68%. 
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1. INTRODUCTION

As networks undergo continuous evolution, there is an 

increasing interest in exploring innovative methods for 

designing network architectures capable of addressing the 

intricacies of modern networks. Consequently, this has given 

rise to a novel networking paradigm known SDN [1]. SDN is 

widely acknowledged as a highly promising architecture for 

the future of computer networks. It introduces a division of the 

network infrastructure into two distinct components: the 

control plane and the data plane [2]. Although this architecture 

has many benefits, it is also vulnerable to many threats, such 

as security breaches. Existing efforts focusing on SDN 

security face certain limitations related to safeguarding 

network data privacy. Resolve resource utilization costs, 

minimize communication overhead, and address data island 

issues. Therefore, to tackle these limitations and given the 

multitude of security threats present in networks [3], this paper 

introduces a method that utilizes FL to establish an anomaly 

detection system for SDNs. This approach enables 

collaborative learning while preserving data privacy. This 

work makes use of several neural network architectures based 

on FL, such as the Gated Recurrent Unit (GRU), Long Short-

Term Memory (LSTM), and Recurrent Neural Network 

(RNN) [4, 5], each trained on unique datasets sourced from 

different data planes. The reason for using this approach is to 

facilitate the acquisition of diverse knowledge and insights 

from these sources, allowing data planes to collaborate in 

detecting attacks against any host by securely sharing their 

only encrypted model parameters with the control plane 

without needing to share the raw data [6]. 

2. RELATED WORK

FL works on the tenet that data that is decentralized and 

never leaves the local environment in which it was generated 

is used to train a central model. FL brings the computational 

processes to the data itself, eliminating the need to move the 

data to another location for analysis. Numerous researchers 

apply FL in various domains, including network security, as 

SDN security. Mehta et al. [7] have used FL to predict DDoS 

attacks on SDN environments where a neural network model 

is cooperatively trained by several devices or clients without 

requiring them to share their raw data with a central server. 

Instead, they utilize a global model by aggregating gradients 

to compute an average. The experimental findings of this 

method for detecting DDoS attacks reach a 99% accuracy rate. 

Ali et al. [8] have proposed an intrusion detection system that 

safeguards the privacy of end-user data. It revolves around the 

concept of locally training data using Artificial Neural 

Networks (ANN) to derive the model's weights. Subsequently, 

these weights are transmitted to a federated server for 

aggregation. Furthermore, it has achieved a rate of 98.85% of 

prediction accuracy, along with an F1-Score of 94.21%. Wang 

et al. [9] enhanced traffic anomaly detection by fusing FL with 
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an unsupervised convolutional autoencoder and smoothly 

integrating it into the SDN architecture. They also devised an 

approach for selecting aggregating models that consider data 

volume, which leads to a reduction in the federation's training 

time and an improvement in the accuracy of the models. The 

evaluation, conducted on the CICIDS 2017 dataset, clearly 

indicates that the federated model outperforms the local model. 

Notably, the average Area Under the Curve (AUC) exceeded 

90%, and the accuracy surpassed 80%. Ropout [10] has 

created the FedIoT platform, which contains the FedDetect 

algorithm designed especially for the Internet of Things (IoT) 

context's on-device anomaly data detection. To enhance the 

platform's performance, the researchers incorporated FL in 

combination with Deep Autoencoder. The experimental 

findings provided compelling evidence of federated learning's 

effectiveness in detecting various types of attacks across 

numerous devices. The accuracy of their system was 96%. All 

previous related works used FL aided with a single type of 

model while in the proposed work multi-models have been 

used and tested on many datasets one of them is the CICIDS 

2017 dataset which was used by Wang et al. [9] and our work 

got more accurate results. 

 

 

3. BACKGROUND 

 
This paper proposed a system to enhance the security of 

SDN based on applying Federated Machine Learning (FML). 

The foundation of the SDN paradigm is the idea of dividing 

the control plane and data plane of a network, as Figure 1 

illustrates and describes the fundamental architecture of SDN. 

One of the most amazing aspects of this transition is that it 

replaces the complicated routing devices present in traditional 

networks with simpler switches, which are then responsible for 

implementing policies as directed by an intelligent and 

programmable logically centralized controller [11]. One of the 

main security benefits of SDNs over traditional networks is the 

controller's ability to see the complete network within the SDN 

framework. However, it's important to note that even though 

SDNs offer this advantage it has disadvantages they are not 

immune to various security threats [12]. 

 

 
 

Figure 1. Software defined network architecture 

 

FML is a methodology in which numerous devices 

collaboratively train a shared model. This is accomplished by 

sending their locally-computed updates to a central server. The 

client devices download the shared global model from the 

central server. As seen in Figure 2, each client utilizes its local 

dataset to update the model parameters [13, 14]. The benefit 

of this method is that it can train on a bigger dataset than any 

one device could handle by itself. Additionally, it improves 

data privacy by keeping data locally on the devices rather than 

sending it to a centralized location, which lowers 

communication overhead and strengthens the system [15]. 

 

 
 

Figure 2. Federated learning architecture 

 

A subset of machine learning known as DL was first 

introduced by ANNs [16] which has become a hot topic in 

many fields. One of the ANN types is the RNN [17]. 

In this paper, FML has been used to allow different data 

planes of SDN to train their DL model locally using their 

client's datasets to create a global model used to help each data 

plane detect attacks. This has harnessed the capabilities of 

deep neural networks to bolster security in SDN while 

upholding data privacy as has been shown in the next sections. 

HFL not only aids in detecting attacks but also addresses the 

challenge of data sharing among nodes while preserving data 

privacy. By training the ML model collaboratively without 

directly sharing raw data, HFL makes sure that private 

concerns and data sharing do not conflict and that sensitive 

data is secured [18]. 

 

 

4. METHODOLOGY 

 

This research paper presents a method for detecting 

anomalies within SDNs using Multi-Model FL. SDN is split 

into two segments: Planes of Data and Control. At the 

controller server, the LSTM model will be built as a structure 

of a global model. Each data plane server uses its local DL 

model (RNN, LSTM, or GRU) to train its data and get the 

parameters (weights, bias, recurrent weights) for the model 

layers after training. Then, the parameters of each data plane 

are encrypted by homomorphic encryption and sent to the 

controller server. After decrypting it and averaging these 

characteristics, the controller uses each local model's 

significance in detecting the attack to create a global model. 

This technique allows SDN data planes to collaboratively gain 

insights from a shared detection model without disclosing 

sensitive data. 

In the first communication iteration, the data plane server 

sends updates to the controller, assuming that the controller 

and data planes communicate for a total of 't' 

iterations. 𝑃𝐺  represents the controller's average aggregation 

of the model parameter as a result. 

The definition of 'N' in this context is N = |𝐷1| + |𝐷2| + . . . 

+ |𝐷𝑠 |, where 𝐷𝑖  stands for the data samples for each switch's 
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data plane. This sums up the total number of data samples for 

all data planes. Eq. (1) is the formula that the controller uses 

to update the global model in the first iteration. 

 

𝑃𝐺(1) =  ∑
|𝐷𝑘|

𝑁

𝑠
𝑘=1  𝑃𝐾   (1) 

 

where,  𝑃𝐾  is the local model parameter (weight, recurrent 

weight, or bias) in the first iteration of updating. S in the count 

of DL local model (data plane), K refers to the data 

plane, 𝑃𝐺  refer to the averaged parameter in the first iteration.  

In the iterations t after the first and in the aggregation 

process step that occurs at the server to create the global model, 

not only the averaged aggregation for the parameters have 

been taken, but these parameters are considered with the 

importance of each sub-model according to its contribution to 

detecting attacks at the data plane, as well as the other part of 

the importance has assigned according to the least loss that has 

been achieved through the training of its model (the difference 

between the real and expected value) based on the following 

formulas: 

First, using Eq. (2), the Euclidian distance was utilized to 

calculate the difference between each local 

model 𝑃𝐾  parameter and the parameter of the global model 𝑃𝐺 . 

It is utilized in order to measure the impact of each client's 

local parameters on the global parametric model optimization. 

 

𝑑(𝑃𝐺(𝑡), 𝑃𝐾(𝑡)) = √∑ (𝑃𝐺  (𝑡)𝑖
𝑛
𝑖=1 − 𝑃𝐾(𝑡)𝑖)

2 (2) 

 

Sigmoid function denoted as Eq. (3) has used for normalize 

the result of Eq. (2). 

 

𝑓(𝑋) =  
1

1 + 𝑒−(𝑥)
 (3) 

 

𝑎𝑘(𝑡) = 𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑  (𝑑(𝑃𝐺(𝑡), 𝑃𝐾(𝑡))) (4) 

 

The normalized result of Eq. (4) has been used in Eq. (5) to 

assign the first part of importance ℎ𝑘 to the data plane local 

model.  

  
ℎ𝑘

(t) =  
 𝑎𝑘(𝑡)

∑ 𝑎𝑘
𝑠
𝑘=1 (𝑡)

  (5) 

 

To enhance the importance, the second part of it was a 

weight will be added to each model according to the lowest 

loss obtained as shown in Eq. (6) and Eq. (7), where 𝑤𝑘  is the 

weight for specific data plane local model based on its 

loss 𝐿𝑘 , 𝑅𝑘 is the rank value for the data plane local model 

compared with the others. 

 

𝑤𝑘(t) = 
1

𝐿𝑘(𝑡)
  (6) 

 

𝑅𝑘(t) = 
𝑤𝑘(t)

∑ 𝑤𝑘
𝑠
𝑘=1 (𝑡)

 (7) 

 

Therefore the last equation that give the importance for the 

data plane local model is:  

 

𝑚 𝑘(t) = ℎ𝑘(t) + 𝑅𝑘(t) (8) 

 

The controller server will use the following Eq. (9) to 

aggregate model parameters for each data plane data 𝑚𝑘 based 

on its importance: 

𝑃𝐺(𝑡) =  ∑
|𝐷𝑘|

𝑁∗
𝑠
𝑘=1  𝑚𝑘(𝑡 − 1) ∗  𝑃𝑘

𝑡  (9) 

 

where, 𝑁∗ is all the data samples for all the data planes. 

As a result, as previously mentioned, each iteration will 

dynamically assign the importance of each data plane based on 

how much the updated parameters from the previous iteration 

contributed to the global model optimization, with the 

exception of the controller server's average parameter 

aggregation in the first iteration. The controller receives this 

global model's encrypted transmissions and forwards them to 

the switches in each data plane partition. This procedure 

repeats itself on a regular basis to guarantee that the data is 

current. The SDN controller decides if a new flow entering the 

SDN network should be dropped (is an attack) based on the 

outputs of the updated local model. The suggested work 

diagram is displayed in Figure 3. 

 
 

Figure 3. Proposed multi-model federated learning intrusion detection system 
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4.1 Intrusion detection in SDN based on modeled FL 
 

In the proposed work, a FL model is employed to enhance 

the security of SDNs. This section provides a detailed 

description of the model. N edge servers, denoted as S, are 

responsible for collecting shared data D from hosts within their 

respective switches in the data plane. These servers, 

represented as {𝑆1, ..., 𝑆𝑁}, conduct training using their shared 

data. The training employs multiple DL models, including 

RNN, LSTM, and GRU models, as part of our approach. 

Concurrently, a centralized deep learning model is trained 

by the SDN controller server, represented by the letter "c." It 

does this by using different weighted parameters that are 

obtained from several data planes and trained models. Through 

their combined efforts, these models help train the FL 

framework's primary model. We use the matrix 𝑀𝑖  to represent 

the data owned by data owner i (the edge server). In this 

illustration, a sample is represented by each row, and a feature 

is represented by each column. The sample IDs space is 

designated as Y, and the feature space is denoted as X. The 

suggested methodology is built utilizing a Horizontal 

Federated Learning (HFL) technique [19], in which agents 

cooperate on the common characteristics but have different 

sample IDs.  
 

4.2 Multi-model learning for attack detection 
 

In the proposed work, a combination of multiple deep 

learning models, including RNN, LSTM, and GRU, has been 

employed. These models are well-known known in the public 

domain for their prowess as dynamic classifiers [5]. The neural 

network nodes form a directed cycle that allows them to store 

information about past calculations [20]. As such, our model 

is able to understand the feature-to-feature correlations that 

result in attacks and can identify attacks within SDN. We have 

used three datasets, UNSW-NB15, NF-UQ-NIDS-v2, and 

CICIDS2017, to validate our methodology. 700 thousand 

samples have been taken from each dataset. These datasets 

contain a blend of genuine, up-to-date normal network 

activities and contemporary synthesized attack behaviors to 

provide an intrusion detection system for SDN. 

The network architecture for each model in the proposed 

system comprises an input layer implemented as a Linear layer 

(RNN/LSTM/GRU), a hidden layer with the output being 

passed through a ReLU activation function [21], Dropout layer, 

and Sigmoid Layer. The inclusion of the Dropout layer is 

essential to address potential overfitting issues that could 

otherwise lead to a decrease in performance when applied to 

the test dataset. In the analysis of the UNSW-NB15 dataset, all 

deep learning models utilize 19 input features encompassing 

attributes related to basic information, flow characteristics, 

content, and various features associated with network traffic 

across different links within the network. When working with 

the UQ-NIDS-v2 dataset and the CICIDS2017 dataset, the 

models have 5 features as input. 

A prediction value that shows the likelihood of an attack 

happening when new flow traffic reaches the SDN on the data 

plane is the model's output. When such a prediction is made, 

the controller can then take action by issuing a notification to 

raise an alert and provide instructions to the network switch, 

directing it to drop the suspicious or potentially malicious 

traffic. All of the models used in the proposed study have 

unique configurations that define how many layers there are, 

how many neurons (units) there are in each layer, and how 

these layers are connected to one another. In the beginning, it's 

crucial to fine-tune these parameters to discover the optimal 

configuration that produces the highest accuracy and the 

lowest loss. Through experimentation, it was found that the 

models achieved their best performance when configured with 

4 layers and between 265 to 512 neurons in each layer. 

Furthermore, it was noted that the Multi-model FL approach 

provides a broader range of knowledge and insights compared 

to using a single model as shown in the next section which 

exhibits superior performance and effectiveness in achieving 

the desired results. 

 

 

5. EXPERIMENTS AND RESULTS 

 

This section provides a detailed evaluation of the suggested 

federated learning technique's efficacy in identifying 

abnormalities in SDN. The evaluation is conducted using 

datasets including UNSW-NB15, CICIDS2017, and NF-UQ-

NIDS-v2. Within this section, proposed work steps are 

presented. This includes dataset preprocessing, the utilization 

of a federated learning-assisted multi-neural network, as well 

as the assessment of categorization performance. 

The studies that have been carried out involve the edge 

servers that are linked to the data planes using the switch-

specific data to train the model. They then upload the modified 

model parameters for aggregation to the controller server. 

 

5.1 Dataset preprocessing 

 

Every original dataset has been pre-processed before being 

passed to the learning model for training. The pre-processing 

procedure includes cleaning, balancing, transformation, and 

normalization for the raw data. 

 

5.1.1 Data cleaning 

In the proposed system, when dealing with samples (rows) 

that contain missing data, the approach taken has been to 

handle them by simply ignoring or omitting those samples. 

 

5.1.2 Data balancing 

After preparing the data, each data plane has data with class 

imbalance (different distribution for normal and attack traffic 

classes). An imbalance in data distribution can result in less 

than optimal performance of deep learning models. 

Consequently, adjusting class distribution has been employed 

to address the challenges stemming from such class imbalance 

by making programmatically the sample count of the abnormal 

class equal to the sample count of the normal class. 

 

5.1.3 Data transformation  

In the proposed system, Min-Max Scaling has been 

employed as a normalization technique for numerical features 

[22]. This process transforms the numerical features so that 

they all fall within the same scale, typically ranging from 0 to 

1. 
 

𝑥∗ =
𝑥−𝑥𝑚

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
  (10) 

 

where,  𝑥∗ represents the data after normalization, 

while  𝑥 stands for the initial, unnormalized data. 

Additionally, 𝑥𝑚𝑎𝑥 and "𝑥𝑚𝑖𝑛" correspond to the maximum 

and minimum values, respectively, observed within the dataset 

for the specific. 
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5.2 Applicability of FL model 

 

The FL approach has been integrated into the SDN 

architecture to detect potential threats in the event that they 

arise, after the data has been normalized. Every network 

switch collects information from the hosts that are connected 

to it and sends it to the data plane server that corresponds to it. 

The server will then use the shared data to develop a local 

machine learning model. By utilizing Paillier homomorphic 

encryption, all data plane servers will securely transmit model 

parameter weights, bias, and recurrent weights to the 

controller. Next, the controller decrypts these parameters, 

aggregates them, and calculates their average, taking into 

account their respective importance, as previously described. 

This process is essential for constructing the global model. The 

controller then safely sends the encrypted global model 

parameters to each data plane connected to the network, 

enabling them to retrain their local models using the decrypted 

values. 

 

5.3 Classification performance evaluation 

 

A table that represents a confusion matrix has been utilized 

to explain how well the suggested method has performed. 

Figure 4 shows a binary confusion matrix. 

Accuracy is the preferred performance metric in the 

suggested FL-based system [23]. The percentage of accurately 

detected instances over the course of the full traffic trace is 

measured by accuracy. The ratio of packets correctly classified 

as normal or attack, divided by the total number of packets 

correctly and wrongly classified by the proposed system, is 

used to calculate accuracy. Eq. (11) represents this 

computation. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (11) 

 

SDN topology, which consists of one controller and six 

switches, is utilized to test the outcomes of the suggested work. 

The four hyperparameters of the FL model are N, B, E, and T. 

N denotes the number of hosts linked to each switch, B the size 

of the local batch, E the number of local epochs, and T the 

number of global round "iterations". 

Three datasets-UNSW-NB15, NF-UQ-NIDS-v2, and 

CICIDS2017-have been utilized to evaluate the suggested 

system's classification performance. Every switch has a 

separate value for N while B is set as 64, E value is set to 50, 

and T value is set to 10. Table 1, Table 2, Table 3, and Figure 

5 (a, b, and c) shown models evaluation results of applying 

Multi-Model FL for UNSW-NB15, CICIDS2017, and NF-

UQ-NIDS-v datasets, and Figure 6 shows an accuracy result 

comparison between using Multi-models FL and Single-model 

FL on the CICIDS2017 dataset. 

 

 
 

Figure 4. A binary confusion matrix 

 

 
 

Figure 5. The suggested system's detection performance across different datasets 
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Table 1. Models evaluation results of applying multi-model FL for the UNSW-NB15 dataset 
 

DL 

Model 

1st Data Plane 

(GRU) 

2nd Data Plane 

(LSTM) 

3rd Data Plane 

(RNN) 

4th Data Plane 

(GRU) 

5th Data Plane 

(LSTM) 

6th Data Plane 

(RNN) 

Accuracy 95.31 95.75 96 96.61 95.1 95.31 

 

Table 2. Models evaluation results of applying multi-model FL for the CICIDS2017 dataset 
 

DL 

Model 

1st Data Plane 

(GRU) 

2nd Data Plane 

(LSTM) 

3rd Data Plane 

(RNN) 

4th Data Plane 

(GRU) 

5th Data Plane 

(LSTM) 

6th Data Plane 

(RNN) 

Accuracy 98.46 98.5 99.01 98.96 98.96 98.37 
 

Table 3. Models evaluation results of applying multi-model FL for the NF-UQ-NIDS-v2 dataset 
 

DL 

Model 

1st Data Plane 

(GRU) 

2nd Data Plane 

(LSTM) 

3rd Data Plane 

(RNN) 

4th Data Plane 

(GRU) 

5th Data Plane 

(LSTM) 

6th Data Plane 

(RNN) 

Accuracy 90.33 90.78 91.72 91.37 .7890  .4290  

 

 

 
 

Figure 6. Comparison between using Multi-Models FL and 

Single-model FL 

 

Applying the suggested system to datasets—of which 30% 

are used for testing and 70% are used for model training has 

allowed it to be assessed. As previously noted, the training 

models that are employed are RNN, LSTM, and GRU. The 

results of experiments show that collaborative FL training can 

achieve excellent accuracy in detecting SDN attacks while 

maintaining data privacy. The global model, which is based on 

FL collected on the global server, plays a crucial role in 

enhancing the accuracy of local models of different kinds at 

each data level to detect attacks, should they occur. 

To simulate the proposed work, mininet version 2.3.1b1 

with Ryu controller and an open virtual switch (OVS) have 

been used. Also, scapy tool has been used to generate packet 

flow in order to evaluate the system. 

 

 

6. CONCLUSION 

 

In this paper, an intelligent detection mechanism for SDN 

attack identification is introduced. The suggested solution 

makes use of FL in conjunction with several models that 

exhibit remarkable effectiveness in attack detection while 

maintaining data privacy. Upon predicting an attack, the 

controller is tasked with discarding the respective packet. The 

method achieved an impressive overall accuracy rate of 

95.68% across diverse datasets. By successfully identifying 

network traffic threats and maintaining data confidentiality, 

decreasing communication overhead, and lowering resource 

consumption costs, this proposed method has the potential to 

improve SDN security. Utilizing training datasets tailored to 

the SDN environment was a limitation in examining the 

proposed work, one of the future works is to use a dataset 

tailored to the SDN to introduce a wider spectrum of SDN-

relevant features. 
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