
An Innovative Approach to Syntax-Free Interpretation in Functional Programming

Languages

Omar Alaqeeli

Department of Computer Science, Saudi Electronic University, Riyadh 11673, Saudi Arabia

Corresponding Author Email: o.alaqeeli@seu.edu.sa

Copyright: ©2023 IIETA. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.280621 ABSTRACT

Received: 4 September 2023

Revised: 28 November 2023

Accepted: 5 December 2023

Available online: 23 December 2023

In the realm of programming languages, interpreters fundamentally rely on syntax analysis

(parsing) for establishing a correct evaluation hierarchy. Traditional parsing methods,

however, present limitations in terms of optimization. This study introduces an innovative

approach that circumvents syntax analysis in the interpretation of functional programming

languages. The proposed method employs a novel subroutine, transforming program

expressions into a series of atomic expressions, herein referred to as the "molecular

program." Each atomic expression within this molecular program constitutes an element of

the program’s lexicon, assigned a unique identifier that supplants its role in the original

expression. The evaluation process adopts a recursive methodology, where the evaluation

of a single variable invariably leads to the sequential evaluation of related variables. For the

purposes of clarity and demonstration, this approach is exemplified using Lucid, a notable

functional programming language. It is posited that this syntax-free interpretation method

can be universally applied to any functional programming language that operates on the

principles of expressions, functions, or formulas. The efficacy of this method is validated

through rigorous testing, suggesting an enhancement in the efficiency of programming

language interpretation.

Keywords:

functional programming, lexical analysis,

syntax analysis, parse tree, compiler,

interpreter, lucid

1. INTRODUCTION

1.1 Overview of lexical and syntax analysis in interpreters

In the architecture of programming language interpreters,

two fundamental components are predominantly recognized:

the Lexical Analyzer and the Syntax Analyzer. The Lexical

Analyzer, also known as the Semantics Analyzer in certain

studies [1-5], primarily serves to scan the source code, thereby

generating a 'dictionary'. This dictionary maps each token to

its corresponding conceptual identity, such as integers,

identifiers, operators, and reserved words, effectively

categorizing patterns within the source program [6]. This

phase, constituting the initial stage of program interpretation

and compilation, adheres to a set of predefined rules.

Subsequently, the Syntax Analyzer, often referred to as the

'parser' in literature, employs either Context-Free Grammar or,

in specific instances, Synchronous Context-Free Grammar

rules [7-10]. This process is designed to evaluate program

statements accurately, utilizing the dictionary formulated by

the Lexical Analyzer. For instance, an expression like 'x = 1'

undergoes syntactic analysis as <id><operator><int>, while

a compound expression 'x + y − z' is dissected into

<id><operator><id><operator><id>. This marks the

secondary phase of program interpretation.

1.2 Limitations of conventional parsing approaches

The implementation of the Lexical Analyzer is generally

straightforward and can be conducted either manually or

through automated means [11-15]. However, the deployment

of the Syntax Analyzer presents more complex challenges.

Particularly in scenarios involving significant similarities

between program statements [16], or in the domain of image

processing [17-19], the intricacies of Syntax Analysis are

amplified. To address these complexities or to enhance the

efficiency of Syntactical Analysis, various strategies have

been explored. These include the implementation of

combinators [20, 21] and the optimization of existing

combinators [22-24]. In the context of functional

programming, the design of such combinators, conceptualized

as functions that operate on other functions, introduces

additional layers of complexity. These complexities often

manifest in increased runtime and memory consumption,

which necessitate further resolution [25]. An alternative

approach involves the utilization of external tools [26], such

as Yacc, which perform functions akin to those of the Syntax

Analyzer [27].

Within the scope of this study, the Lucid programming

language, a functional language [28], is employed to

exemplify the proposed methodology of bypassing the Syntax

Analysis phase. This approach is anticipated to augment the

efficiency of program interpretation, concurrently reducing

the load on system memory and compilation time.

Lucid's syntax encompasses operators like 'fby' and 'sby',

which regulate the flow and output of a value stream. For

instance, in the expression 'i = 1 fby i+1', 'i' represents the

Ingénierie des Systèmes d’Information
Vol. 28, No. 6, December, 2023, pp. 1637-1642

Journal homepage: http://iieta.org/journals/isi

1637

https://orcid.org/0000-0003-4030-6648
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280621&domain=pdf

sequential stream 1, 2, 3, and so on. Additionally, operators

like 'first' and 'init' retrieve the initial value in a stream, while

'next', 'right', and 'succ' access subsequent values. This is in

conjunction with standard operators, such as arithmetic and

logical operators, including '+', '-', 'AND', 'OR', and others.

Consider, for example, the Triangular number formula 'Tn'

outputs the stream of values, and is represented in Lucid as n

= 0 fby n + 1, and x = n ∗ (n + 1)/2:

1

(1)
1 2 3

2

n

x

n n
x n

=

+
= + + ++ =

where, n denotes the stream commencing with 0, followed by

(fby) 1, 2, 3, etc., while x computes the Triangular number. The

forthcoming sections will elaborate on the computation of 'Tn'

using the proposed methodology.

The structure of the remaining paper is outlined as follows:

the method for transforming a program into a molecular

program is detailed in the 'proposed approach' section.

Subsequently, the 'evaluation approach' section elucidates the

methodology of evaluation within this framework. Finally, the

paper concludes with a discussion on limitations and potential

avenues for future research.

2. PROPOSED APPROACH

2.1 Dismantling procedure

From a conventional perspective, the functional program

presented previously in Lucid will pass through a Lexical

Analyser that is followed by a Syntax Analyser. In our method,

we dismantle each functional expression by first scanning the

entire string of characters, and then transforming the

expression components into atomic expressions. These

expressions will be associated with unique identifiers that

replace their existence in the original expression. For example,

if x = 3 + (2 + 1), then 2 + 1 will be deducted from x, and its

occurrence in x will be replaced by an identifier, say v0, thus x

= 3 + v0. The main purpose of using unique identifiers is to

retrieve the corresponding atomic expression in the event of

evaluation. In other words, we transform the complete

program into a “molecular” program.

Definition 2.1. An atomic expression is an expression that

includes only one operator in its syntax. Such that if α is a

Lucid atomic expression, then α has the following Context-

Free Grammar:

|⟨operator⟩⟨operand⟩
|⟨operand⟩⟨operator⟩⟨operand⟩
|if ⟨operand⟩ then ⟨operand⟩ else ⟨operand⟩ fi

2.2 Transformation into molecular program

The dismantling is not arbitrary. It respects the precedence

of operations and parentheses. With respect to Lucid syntax,

the first components to be deducted are numbers. Operators

that use only one operand, such as first and next, are deducted

next, and then operators that use two operands, such as ∗, /, +

and −. The final deduction is performed on operators that

output a stream of values, such as fby and sby. For instance, if

x = 4+next i then 4 is deducted first, and replaced by an

identifier, followed by next and then +.

In our aforementioned Lucid program of the Triangular

number Tn, the dismantling will proceed as follows: In the

expression n = 0 fby n+1, the integer number 0 is deducted first

and replaced by an identifier, say v0. v0 is also associated with

0 somewhere in the memory (in Java, for example, using

HashMap is very efficient), thus ⟨v0, int 0⟩, meaning that the

value of v0 = int 0 (the addition of int as an operator is

necessary for v0 to be considered an atomic expression).

At this iteration, the original expression n = 0 fby n+1

becomes n = v0 fby n+1. This is followed by the deduction of

the integer number 1 and replaced by v1. Thus, n = v0 fby n +

v1 and ⟨v1, int 1⟩ is the new association.

The next segment to be deducted is where the operator is

n+v1. So v2 = n+v1 and ⟨v2, n + v1⟩, therefore, n = v0 fby v2. In

the next iteration, n is already an atomic expression, therefore

no further deduction is necessary, but n is associated with its

atomic expression as ⟨n, v0 fby v2⟩.
The dismantling routine processes each expression enclosed

between parentheses, if any, separately. Precisely, it processes

expressions enclosed between the innermost parentheses and

proceeds from there. So if x = 1+(2∗(3+4)), then the innermost

parentheses, (3+4), is deducted first, then (2∗(3+4)) and finally

1+(2∗(3+4)).

In the second line of the Lucid program, x = n∗(n+1)/2, the

dismantling starts with the value between the parentheses (n +

1). So 1 is deducted, followed by the addition +. The deduction

continues with the second integer number, 2, and then

processes the multiplication before the division, and thus

operator precedence is preserved. The overall deduction of x =

n ∗ (n + 1)/2 is as Table 1.

Table 1. The overall deduction of x = n ∗ (n + 1)/2

(2.1) x = n ∗ (n + 1)/2

(2.2) x = n ∗ (n + v3)/2 −→ ⟨v3, int 1⟩

(2.3) x = n ∗ v4/2 −→ ⟨v4, n + v3⟩

(2.4) x = n ∗ v4/v5 −→ ⟨v5, int 2⟩

(2.5) x = v6/v5 −→ ⟨v6, n ∗ v4⟩

(2.6) x = v6/v5 −→ ⟨x, v6/v5⟩

The list of associations resulted from dismantling can be

viewed as a “dictionary.” Instead of tokens and descriptions,

we will have variables and atomic expressions.

Theorem 2.2. For every functional program λ, there is a

molecular program λ′ that is equivalent to λ and consists of

only atomic expressions.

Proof. Let δ be the set of equations of the functional

program λ, and δ′ be the set of equations of the molecular

program λ′. The two sets are equivalent in the following sense:

any solution to the first set can be expanded (by adding values

for the vn) into a solution for the second; and from any solution

to the second we can extract (by discarding the values of the

vn) a solution to the first set.

In particular, the least fixed points (domain-theoretic

minimal solutions) correspond in this way. So from the point

of view of the Lucid denotational semantics, they have the

same meaning.

2.3 Dismantle algorithm

Algorithm1: Transformation into molecular program

Input: Functional Program λ.

1638

Onput: Functional Program λ′.

i ← 0;

n ← 0;

for tokens in λ do

 if tokeni  {N,W,Z,R} then

 ⟨vn, type + “ ” + tokeni⟩;
 tokeni ↔ vn;

n ← n + 1;

for tokens in λ do

 if token  {first, next,…NOT} then

 ⟨vn, tokeni +“ ”+ tokeni+1⟩;
 tokeni ↔ vn;

 eliminate tokeni+1 in λ;

n ← n + 1;

for tokens in λ do

 if tokeni  {fby, sby, ... , +, −, ... , AND, OR, >, <, ... }

then ⟨vn, tokeni−1 + “ ” + tokeni + “ ” + tokeni+1⟩;
tokeni−1 ↔ vn;

 eliminate tokeni & tokeni+1 in λ;

n ← n + 1;

for tokens in λ do

if tokeni  {If} then

⟨vn, tokeni + “ ” + tokeni+1 + “ ” + tokeni+2 + “ ” + tokeni+3

+ “ ” + tokeni+4 + “ ” + tokeni+5 + “ ” + tokeni+6⟩;
tokeni ↔ vn;

 eliminate tokeni+1, tokeni+2, tokeni+3, tokeni+4, tokeni+5

&

tokeni+6 in λ;

n ← n + 1;

3. EVALUATION APPROACH

3.1 Recursive evaluation logic

The evaluation of the molecular program is a simple

recursion. A demand for an evaluation of one variable is a

demand for an evaluation of another.

The transformation of Tn Lucid program results in the

following molecular program Tn:

⟨v0, int 0⟩ ⟨v1, int 1⟩
⟨v2, n + v1⟩
⟨n, v0 fby v2⟩
⟨v3, int 1⟩
⟨v4, n + v3⟩
⟨v5, int 2⟩
⟨v6, n ∗ v4⟩
⟨x, v6/v5⟩

The computation of Tn starts with the demand for the

evaluation of n. Since n = v0 fby v2, this generates the demand

for evaluating v0 and v2 (in the actual execution, fby evaluates

v0 in the first iteration and v2 in the following iterations). v0 =

int 0 so the output of evaluating n in the first iteration is 0.

The evaluation of x follows, so the demand for evaluating x

where x = v6/v5 will generate the demand for evaluating both

v6 and v5. v6 = n ∗ v4 generates the demand for evaluating v4 that

is n + v3 and v3 is int 1 thus v4 = 0 + 1 therefore v6 = 0 ∗ (0 + 1).

v5 on the other hand is int 2. Consequently, in the first iteration

we will have x = 0 ∗ (0 + 1)/2 = 0. Thus, Tn = 0.

In the second iteration, the second operand in n = v0 fby v2 is

evaluated. v2 = n + v1 generates the demand for evaluating v1

that is 1 and since n in the first iteration is 0 then n = 1 in the

second iteration. Then x is evaluated which is the demand to

evaluate v6 and v5. When evaluating v6, we will evaluate v4

which is a demand for the evaluation of v3 that is 1, so v4 = 1 +

1 and therefore v6 is 1 ∗ 2. The evaluation of v5 is 2. Thus, x =

1. In the second iteration Tn = 1 and so on. Figure 1 shows the

hierarchy of the evaluation process.

Contrary to the conventional methodology, the evaluation

of an expression is simply a sequence of demands that is

initiated by a demand of an evaluation of one variable. This

reduces the complexity of interpretation process hence

increase the efficiency of program interpretation.

Figure 1. Evaluation hierarchy

3.2 Evaluation algorithm

Algorithm 2: Evaluation process

Input: A variable vn & dictionary ⟨vn, Atomic

Expressionn⟩.
Output: Numeric Value.

Function Eval(vn, ⟨vn, AEn⟩) is

AEn is <operator><operand1>

If vn=operand1 then

else if AEn is ⟨operand1⟩⟨operator⟩⟨operand2⟩ then

vn=Eval(operand1,⟨operand1,AE1⟩)⟨operatorn⟩
Eval(operand2, ⟨operand2,AE2⟩)
else if AEn is if ⟨operand1⟩ then ⟨operand2⟩ else

⟨operand3⟩ fi then

if Eval(operand1, ⟨operand1,AE1⟩) = True then

vn = Eval(operand2, ⟨operand2,AE2⟩)
else

vn = Eval(operand3, ⟨operand3,AE3⟩)

4. IMPLEMENTATION

For the purpose of demonstration, a related simple software

called Luminous, written in Java, has been implemented by the

author using the same approach. It can be found at:

https://github.com/Omar-Alaqeeli/Luminous.

Briefly, Luminous has the following commands:

var v: used to declare a variable v, and assign a value to it.

val v: used to evaluate v and prints its value according to its

dimensions.

defs: used to list all variables stored in the dictionary along

with their expressions.

defined v: returns true if v can be evaluated and returns false

otherwise.

constant v: returns true if there is no temporal operators

(except for first) involve in an expression that is linked directly

or indirectly to v. Otherwise return false.

dims v: returns dimensions that v depends on; t for the time

dimension, s for the space dimension, t & s for both and none

for nothing.

1639

We use 1 to represent true in expression and 0 to represent

false.

Luminous software package includes ten classes. Class

amend.java is called to detect operators, such as +, -, *, / and

parentheses, (,) and amends space between each operand and

operator when reconstructing equations. This is because when

the interpreter scan program statements, it needs to decide the

beginning and the end of each string. In other words,

distinguishing between operands and operators.

The class analyzer.java is used to scan program statements

and pass them to dismantler.java.

The class dismantler.java is used to dismantle program

statements into atomic expressions and construct a dictionary.

This class uses java Maps that required two parameters (in our

case two strings); identifiers and their associated atomic

expressions.

The class evaluator.java retrieves atomic expressions from

the dictionary and evaluates them in a hierarchal order. The

evaluator considers all types of data, such as int, float (that is

denoted as flo in Luminous), first, init, …etc. It also handles

comparison, such as ==,!=, AND, OR, NOT.

The amender, the analyzer, the dismantler and the evaluator

are the core of Luminous interpreter. There are other classes

used for different purposes but they are necessary for

Luminous to operate coherently.

The class constQuery.java is used to inquire if an operand

is a constant or a variable. The class evalQuery.java is used to

inquire if an operand can be evaluated or not. The class

list.java is used to print all variables along with their

associated expressions in the previously constructed

dictionary.

The class spaceDim.java and timeDim.java are used to

inquire about the dimensions that variables depend on. If s is

the output, then the variable depends only on space dimension.

If t is the output, then the variable depends only on the time

dimension. If the output is both s and t, then the variable

depends on both, space and time dimensions. When inquiring

about the dimensions of a variable, the interpreter traces all

elements related to that variable in the dictionary.

Assuming all the aforementioned files have been

downloaded and located on the same directory, using system’s

terminal, all files can be compiled using the following

command (Figure 2):

Figure 2. Compiling All Files from the Same Directory

Using Terminal Commands

To compile one file, we use (Figure 3):

Figure 3. Instructions for Compiling a Single File

To run the interpreter after compiling all its necessary files,

we type (Figure 4):

Figure 4. Running the Interpreter Post-Compilation

When Luminous is running, the right shift operator >> appears

and user can start typing commands.

Figure 5-11 are screenshots of Luminous which is operated

through system’s terminal to interpret Lucid programs.

Figure 5. var and val in use

Notice that we can’t add a and b directly without first

defining a variable that is equal to their sum, c, thus the

evaluation is inquired for c. Also, when defining variables,

each sentence has to be concluded with a semicolon, otherwise

error will be thrown.

Figure 6. When variable under evaluation has only one

dimension, the stream of outputs is printed vertically (time

dimension) or horizontally (space dimension)

The stream is continued infinitely (due to the nature of

Lucid programming language) and in this case the terminal has

to be interrupted manually.

Figure 7. When evaluating a variable with two dimensions,

the stream of values is printed in a form of a matrix.

For demonstration purposes, only five columns are printed

(in reality, the stream is infinite). Since outputs are infinite

therefore the terminal has to be interrupted.

Figure 8. defs lists all values in the dictionary; variables and

their atomic expressions

1640

Figure 9. j can’t be defined because i is not yet defined.

Hence, j can’t be evaluated

Figure 10. j is not a constant since its expression includes the

operator fby that constantly recalculates j

Figure 11. j relies on time dimension

5. DISCUSSION

Using the transformation approach we presented has indeed

shortened the path of program interpretation. Instead of using

lexical and syntax analysis, we transform the program into a

molecular program that describes the identity of each variable

as well as how it will be evaluated. The evaluation is a simple

recursive process and no further intervention is needed when

processing data, such as what was suggested in literature [29].

Dismantling a program is much simpler than syntactically

analysing it. For instance, when evaluating x = 7 ÷ (1 + 2 ∗ 3),

a conventional syntax analyser will scan 1+2∗3 and decide the

priority of ∗ before + following certain rules. Using our

approach, we simply search for ∗ and / within the same close

and then search for + and − following common knowledge of

the operator’s precedence. Although there are limitations, the

dismantle approach seems to produce more positive results

than anticipated.

5.1 Error handling benefits

Normally, error handling is an important part of the Syntax

Analyser when evaluating, since lexical analysis is merely a

tokenizing process regardless of the correctness of the

program statement. When evaluating, statements are verified

for syntax errors according to a syntax tree. Using our

approach, we capture errors during transformation. When an

operator is detected, its operands are also detected, and

following the atomic expression Context-Free Grammar, an

error is thrown, if any, before transformation. Since evaluation

is a sequence of other variable evaluation then error are

captures earlier.

5.2 Limitations and open questions

Some functional programming languages, like Haskell, use

indentation as part of their syntax [30]. The dismantling

method doesn’t handle indentations, although this could be a

future topic of research, namely, whether this method could be

extended. One way to handle indentation is for every indent

we rank program statement and based on that rank we decide

whether it belong its precedent or not. Also, although the

evaluation process is a simple recursion, in each iteration the

dictionary is scanned for the demanded variable. This may be

a burden and may negatively affect the efficiency of the

program execution, although this is not yet clear.

The method as we use it is limited to functional

programming languages; however, we conjecture that since it

is applicable on Lucid, then it could be used in another

functional language that doesn’t use indentation. It is not clear

whether it would make code interpretation slower or faster, but

it would definitely make the construction of an interpreter

much simpler. It is also unclear if this method can be extended

to non-functional programming languages, so this is another

research question.

6. CONCLUSION

The method as we use it is limited to functional

programming languages; however, we conjecture that since it

is applicable on Lucid, then it could be used in another

functional language that doesn’t use indentation. It is not clear

whether it would make code interpretation slower or faster, but

it would definitely make the construction of an interpreter

much simpler. It is also unclear if this method can be extended

to non-functional programming languages, so this is another

research question.

REFERENCES

[1] Thielecke, H. (2014). On the semantics of parsing actions.

Science of Computer Programming, 84: 52-76.

https://doi.org/10.1016/j.scico.2013.04.010

[2] Girardot, J.J., Rollin, F. (1987). The syntax of APL, an

old approach revisited. ACM SIGAPL APL Quote Quad,

17(4): 441-449. https://doi.org/10.1145/384282.28371

[3] Tayal, M.A., Raghuwanshi, M.M., Malik, L. (2014).

Syntax parsing: Implementation using grammar-rules for

English language. In 2014 International Conference on

Electronic Systems, Signal Processing and Computing

Technologies, Nagpur, India, pp. 376-381.

https://doi.org/10.1109/ICESC.2014.71

[4] Mitchell, R.J., Mitchell, R.J. (1991). The Analyser.

Modula-2 Applied, Palgrave, London, pp. 232-250.

https://doi.org/10.1007/978-1-349-12439-8_19

[5] Wirth, N. (1971). The design of a PASCAL compiler.

Software: Practice and Experience, 1(4): 309-333.

https://doi.org/10.1002/spe.4380010403

[6] Su, Y., Yan, S.Y. (2011). Principles of Compilers.

Springer. https://doi.org/10.1007/978-3-642-20835-5

[7] Crescenzi, P., Gildea, D., Marino, A., Rossi, G., Satta, G.

(2015). Synchronous context-free grammars and optimal

linear parsing strategies. Journal of Computer and

System Sciences, 81(7): 1333-1356.

https://doi.org/10.1016/j.jcss.2015.04.003

[8] Huang, L., Zhang, H., Gildea, D., Knight, K. (2009).

Binarization of synchronous context-free grammars.

Computational Linguistics, 35(4): 559-595.

https://doi.org/10.1162/coli.2009.35.4.35406

[9] Dyer, C., Lopez, A., Ganitkevitch, J., et al. (2010). cdec:

A decoder, alignment, and learning framework for finite-

1641

state and context-free translation models. In Proceedings

of the ACL 2010 System Demonstrations, Uppsala,

Sweden, Uppsala, Sweden, pp. 7-12.

[10] Gildea, D., Satta, G. (2016). Synchronous context-free

grammars and optimal parsing strategies. Computational

Linguistics, 42(2): 207-243.

https://doi.org/10.1162/COLI_a_00246

[11] Grune, D., Van Reeuwijk, K., Bal, H.E., Jacobs, C.J.,

Langendoen, K. (2012). Modern compiler design.

Springer Science & Business Media.

https://doi.org/10.1007/978-1-4614-4699-6

[12] Sanju, V. (2016). An exploration on lexical analysis. In

2016 International Conference on Electrical, Electronics,

and Optimization Techniques, Chennai, India, pp. 253-

258. https://doi.org/10.1109/ICEEOT.2016.7755127

[13] Waite, W.M. (1986). The cost of lexical analysis.

Software: Practice and Experience, 16(5): 473–488.

https://doi.org/doi.org/10.1007/BFb0026419

[14] Sugimura, R., Akasaka, K., Kubo, Y., Matsumoto, Y.

(1989). Logic based lexical analyser LAX. In Logic

Programming'88: Proceedings of the 7th Conference

Tokyo, Japan, pp. 188-216. https://doi.org/10.1007/3-

540-51564-X_64

[15] Hill, J.M. (1992). Parallel lexical analysis and parsing on

the AMT distributed array processor. Parallel Computing,

18(6): 699-714. https://doi.org/10.1016/0167-

8191(92)90008-U

[16] Ferreira, R., Lins, R.D., Simske, S.J., Freitas, F., Riss, M.

(2016). Assessing sentence similarity through lexical,

syntactic and semantic analysis. Computer Speech &

Language, 39: 1-28.

https://doi.org/10.1016/j.csl.2016.01.003

[17] Zhang, S., Wang, J., Gong, Y., Zhang, S., Zhang, X., Lan,

X. (2014). Image parsing by loopy dynamic

programming. Neurocomputing, 145: 240-249.

https://doi.org/10.1016/j.neucom.2014.05.037

[18] Kovásznay, L.S., Joseph, H.M. (1955). Image processing.

Proceedings of the IRE, 43(5): 560-570.

https://doi.org/10.1109/JRPROC.1955.278100

[19] Abràmoff, M.D., Garvin, M.K., Sonka, M. (2010).

Retinal imaging and image analysis. IEEE Reviews in

Biomedical Engineering, 3: 169-208.

https://doi.org/10.1109/RBME.2010.2084567

[20] Danielsson, N.A. (2010). Total parser combinators. In

Proceedings of the 15th ACM SIGPLAN International

Conference on Functional Programming, Baltimore

Maryland, USA, pp. 285-296.

https://doi.org/10.1145/1863543.1863585

[21] Izmaylova, A., Afroozeh, A., Storm, T. V. D. (2016).

Practical, general parser combinators. In Proceedings of

the 2016 ACM SIGPLAN Workshop on Partial

Evaluation and Program Manipulation, St. Petersburg,

FL, USA, pp. 1-12.

https://doi.org/10.1145/2847538.2847539

[22] Kurš, J., Vraný, J., Ghafari, M., Lungu, M., Nierstrasz,

O. (2018). Efficient parsing with parser combinators.

Science of Computer Programming, 161: 57-88.

https://doi.org/10.1016/j.scico.2017.12.001

[23] Kurš, J., Vraný, J., Ghafari, M., Lungu, M., Nierstrasz,

O. (2016). Optimizing parser combinators. In

Proceedings of the 11th Edition of the International

Workshop on Smalltalk Technologies, Prague, Czech

Republic, pp. 1-13.

https://doi.org/10.1145/2991041.2991042

[24] Béguet, E., Jonnalagedda, M. (2014). Accelerating parser

combinators with macros. In Proceedings of the Fifth

Annual Scala Workshop, Uppsala, Sweden, pp. 7-17.

https://doi.org/10.1145/2637647.2637653

[25] Hutton, G., Meijer, E. (1998). Monadic parsing in

Haskell. Journal of Functional Programming, 8(4): 437-

444. https://doi.org/10.1017/S0956796898003050

[26] Atkey, R. (2012). The semantics of parsing with

semantic actions. In 2012 27th Annual IEEE Symposium

on Logic in Computer Science, Dubrovnik, Croatia, pp.

75-84. https://doi.org/10.1109/LICS.2012.19

[27] Johnson, S.C. (1975). Yacc: Yet another compiler-

compiler (Vol. 32). Murray Hill, NJ: Bell Laboratories.

[28] Wadge, W.W., Ashcroft, E.A. (1985). Lucid, the

Dataflow Programming Language. London: Academic

Press, 303.

[29] Goodman, D., Khan, B., Luján, M., Watson, I. (2013).

Improved dataflow executions with user assisted

scheduling. In 2013 Data-Flow Execution Models for

Extreme Scale Computing, Edinburgh, UK, pp. 14-21.

https://doi.org/10.1109/DFM.2013.10

[30] Adams, M.D., Ağacan, Ö.S. (2014). Indentation-

sensitive parsing for Parsec. ACM Sigplan Notices,

49(12): 121-132.

https://doi.org/10.1145/2633357.2633369

1642

