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In the realm of programming languages, interpreters fundamentally rely on syntax analysis 

(parsing) for establishing a correct evaluation hierarchy. Traditional parsing methods, 

however, present limitations in terms of optimization. This study introduces an innovative 

approach that circumvents syntax analysis in the interpretation of functional programming 

languages. The proposed method employs a novel subroutine, transforming program 

expressions into a series of atomic expressions, herein referred to as the "molecular 

program." Each atomic expression within this molecular program constitutes an element of 

the program’s lexicon, assigned a unique identifier that supplants its role in the original 

expression. The evaluation process adopts a recursive methodology, where the evaluation 

of a single variable invariably leads to the sequential evaluation of related variables. For the 

purposes of clarity and demonstration, this approach is exemplified using Lucid, a notable 

functional programming language. It is posited that this syntax-free interpretation method 

can be universally applied to any functional programming language that operates on the 

principles of expressions, functions, or formulas. The efficacy of this method is validated 

through rigorous testing, suggesting an enhancement in the efficiency of programming 

language interpretation. 
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1. INTRODUCTION

1.1 Overview of lexical and syntax analysis in interpreters 

In the architecture of programming language interpreters, 

two fundamental components are predominantly recognized: 

the Lexical Analyzer and the Syntax Analyzer. The Lexical 

Analyzer, also known as the Semantics Analyzer in certain 

studies [1-5], primarily serves to scan the source code, thereby 

generating a 'dictionary'. This dictionary maps each token to 

its corresponding conceptual identity, such as integers, 

identifiers, operators, and reserved words, effectively 

categorizing patterns within the source program [6]. This 

phase, constituting the initial stage of program interpretation 

and compilation, adheres to a set of predefined rules. 

Subsequently, the Syntax Analyzer, often referred to as the 

'parser' in literature, employs either Context-Free Grammar or, 

in specific instances, Synchronous Context-Free Grammar 

rules [7-10]. This process is designed to evaluate program 

statements accurately, utilizing the dictionary formulated by 

the Lexical Analyzer. For instance, an expression like 'x = 1' 

undergoes syntactic analysis as <id><operator><int>, while 

a compound expression 'x + y − z' is dissected into 

<id><operator><id><operator><id>. This marks the 

secondary phase of program interpretation. 

1.2 Limitations of conventional parsing approaches 

The implementation of the Lexical Analyzer is generally 

straightforward and can be conducted either manually or 

through automated means [11-15]. However, the deployment 

of the Syntax Analyzer presents more complex challenges. 

Particularly in scenarios involving significant similarities 

between program statements [16], or in the domain of image 

processing [17-19], the intricacies of Syntax Analysis are 

amplified. To address these complexities or to enhance the 

efficiency of Syntactical Analysis, various strategies have 

been explored. These include the implementation of 

combinators [20, 21] and the optimization of existing 

combinators [22-24]. In the context of functional 

programming, the design of such combinators, conceptualized 

as functions that operate on other functions, introduces 

additional layers of complexity. These complexities often 

manifest in increased runtime and memory consumption, 

which necessitate further resolution [25]. An alternative 

approach involves the utilization of external tools [26], such 

as Yacc, which perform functions akin to those of the Syntax 

Analyzer [27]. 

Within the scope of this study, the Lucid programming 

language, a functional language [28], is employed to 

exemplify the proposed methodology of bypassing the Syntax 

Analysis phase. This approach is anticipated to augment the 

efficiency of program interpretation, concurrently reducing 

the load on system memory and compilation time. 

Lucid's syntax encompasses operators like 'fby' and 'sby', 

which regulate the flow and output of a value stream. For 

instance, in the expression 'i = 1 fby i+1', 'i' represents the 
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sequential stream 1, 2, 3, and so on. Additionally, operators 

like 'first' and 'init' retrieve the initial value in a stream, while 

'next', 'right', and 'succ' access subsequent values. This is in 

conjunction with standard operators, such as arithmetic and 

logical operators, including '+', '-', 'AND', 'OR', and others. 

Consider, for example, the Triangular number formula 'Tn' 

outputs the stream of values, and is represented in Lucid as n 

= 0 fby n + 1, and x = n ∗ (n + 1)/2: 

 

1

( 1)
1 2 3

2

n

x

n n
x n

=

+
= + + ++ =

 
 

where, n denotes the stream commencing with 0, followed by 

(fby) 1, 2, 3, etc., while x computes the Triangular number. The 

forthcoming sections will elaborate on the computation of 'Tn' 

using the proposed methodology. 

The structure of the remaining paper is outlined as follows: 

the method for transforming a program into a molecular 

program is detailed in the 'proposed approach' section. 

Subsequently, the 'evaluation approach' section elucidates the 

methodology of evaluation within this framework. Finally, the 

paper concludes with a discussion on limitations and potential 

avenues for future research. 

 

 
2. PROPOSED APPROACH 

 

2.1 Dismantling procedure 

 

From a conventional perspective, the functional program 

presented previously in Lucid will pass through a Lexical 

Analyser that is followed by a Syntax Analyser. In our method, 

we dismantle each functional expression by first scanning the 

entire string of characters, and then transforming the 

expression components into atomic expressions. These 

expressions will be associated with unique identifiers that 

replace their existence in the original expression. For example, 

if x = 3 + (2 + 1), then 2 + 1 will be deducted from x, and its 

occurrence in x will be replaced by an identifier, say v0, thus x 

= 3 + v0. The main purpose of using unique identifiers is to 

retrieve the corresponding atomic expression in the event of 

evaluation. In other words, we transform the complete 

program into a “molecular” program. 

Definition 2.1. An atomic expression is an expression that 

includes only one operator in its syntax. Such that if α is a 

Lucid atomic expression, then α has the following Context-

Free Grammar: 

 

|⟨operator⟩⟨operand⟩ 
|⟨operand⟩⟨operator⟩⟨operand⟩ 
|if ⟨operand⟩ then ⟨operand⟩ else ⟨operand⟩ fi 

 
2.2 Transformation into molecular program  

 

The dismantling is not arbitrary. It respects the precedence 

of operations and parentheses. With respect to Lucid syntax, 

the first components to be deducted are numbers. Operators 

that use only one operand, such as first and next, are deducted 

next, and then operators that use two operands, such as ∗, /, + 

and −. The final deduction is performed on operators that 

output a stream of values, such as fby and sby. For instance, if 

x = 4+next i then 4 is deducted first, and replaced by an 

identifier, followed by next and then +. 

In our aforementioned Lucid program of the Triangular 

number Tn, the dismantling will proceed as follows: In the 

expression n = 0 fby n+1, the integer number 0 is deducted first 

and replaced by an identifier, say v0. v0 is also associated with 

0 somewhere in the memory (in Java, for example, using 

HashMap is very efficient), thus ⟨v0, int 0⟩, meaning that the 

value of v0 = int 0 (the addition of int as an operator is 

necessary for v0 to be considered an atomic expression). 

At this iteration, the original expression n = 0 fby n+1 

becomes n = v0  fby n+1. This is followed by the deduction of 

the integer number 1 and replaced by v1. Thus, n = v0  fby n + 

v1 and ⟨v1, int 1⟩ is the new association. 

The next segment to be deducted is where the operator is 

n+v1. So v2 = n+v1 and ⟨v2, n + v1⟩, therefore, n = v0 fby v2. In 

the next iteration, n is already an atomic expression, therefore 

no further deduction is necessary, but n is associated with its 

atomic expression as ⟨n, v0  fby v2⟩. 
The dismantling routine processes each expression enclosed 

between parentheses, if any, separately. Precisely, it processes 

expressions enclosed between the innermost parentheses and 

proceeds from there. So if x = 1+(2∗(3+4)), then the innermost 

parentheses, (3+4), is deducted first, then (2∗(3+4)) and finally 

1+(2∗(3+4)). 

In the second line of the Lucid program, x = n∗(n+1)/2, the 

dismantling starts with the value between the parentheses (n + 

1). So 1 is deducted, followed by the addition +. The deduction 

continues with the second integer number, 2, and then 

processes the multiplication before the division, and thus 

operator precedence is preserved. The overall deduction of x = 

n ∗ (n + 1)/2 is as Table 1. 

 

Table 1. The overall deduction of x = n ∗ (n + 1)/2 

 

(2.1) x = n ∗ (n + 1)/2  

(2.2) x = n ∗ (n + v3)/2 −→ ⟨v3, int 1⟩ 

(2.3) x = n ∗ v4/2 −→ ⟨v4, n + v3⟩ 

(2.4) x = n ∗ v4/v5 −→ ⟨v5, int 2⟩ 

(2.5) x = v6/v5 −→ ⟨v6, n ∗ v4⟩ 

(2.6) x = v6/v5 −→ ⟨x, v6/v5⟩ 

 

The list of associations resulted from dismantling can be 

viewed as a “dictionary.” Instead of tokens and descriptions, 

we will have variables and atomic expressions. 

 

Theorem 2.2. For every functional program λ, there is a 

molecular program λ′ that is equivalent to λ and consists of 

only atomic expressions. 

Proof. Let δ be the set of equations of the functional 

program λ, and δ′ be the set of equations of the molecular 

program λ′. The two sets are equivalent in the following sense: 

any solution to the first set can be expanded (by adding values 

for the vn ) into a solution for the second; and from any solution 

to the second we can extract (by discarding the values of the 

vn) a solution to the first set. 

In particular, the least fixed points (domain-theoretic 

minimal solutions) correspond in this way. So from the point 

of view of the Lucid denotational semantics, they have the 

same meaning.  

 

2.3 Dismantle algorithm 

 

Algorithm1: Transformation into molecular program 

Input: Functional Program λ. 
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Onput: Functional Program λ′. 

i ← 0; 

n ← 0; 

for tokens in λ do 

   if tokeni  {N,W,Z,R} then 

  ⟨vn, type + “ ” + tokeni⟩; 
      tokeni ↔ vn; 

n ← n + 1; 

for tokens in λ do 

  if token  {first, next,…NOT} then  

        ⟨vn, tokeni +“  ”+ tokeni+1⟩; 
    tokeni ↔ vn;  

     eliminate  tokeni+1 in λ; 

n ← n + 1; 

for tokens in λ do 

      if tokeni  {fby, sby, ... , +, −, ... , AND, OR, >, <, ... }  

then ⟨vn, tokeni−1 + “ ” + tokeni + “ ” + tokeni+1⟩;            
tokeni−1  ↔  vn;  

     eliminate tokeni & tokeni+1 in λ; 

n ← n + 1; 

for tokens in λ do 

if tokeni  {If} then 

⟨vn, tokeni + “ ” + tokeni+1 + “ ” + tokeni+2 + “ ” + tokeni+3 

+ “ ” + tokeni+4 + “ ” + tokeni+5 + “ ” + tokeni+6⟩;  
tokeni ↔ vn;  

      eliminate tokeni+1, tokeni+2, tokeni+3, tokeni+4, tokeni+5  

& 

tokeni+6 in λ; 

n ← n + 1; 

 

 

3. EVALUATION APPROACH 

 

3.1 Recursive evaluation logic 

 

The evaluation of the molecular program is a simple 

recursion. A demand for an evaluation of one variable is a 

demand for an evaluation of another. 

The transformation of Tn Lucid program results in the 

following molecular program Tn: 

 

⟨v0, int 0⟩ ⟨v1, int 1⟩ 
⟨v2, n + v1⟩ 
⟨n, v0 fby v2⟩ 
⟨v3, int 1⟩ 
⟨v4, n + v3⟩ 
⟨v5, int 2⟩ 
⟨v6, n ∗ v4⟩ 
⟨x, v6/v5⟩ 

 

The computation of Tn starts with the demand for the 

evaluation of n. Since n = v0 fby v2, this generates the demand 

for evaluating v0 and v2 (in the actual execution, fby evaluates 

v0 in the first iteration and v2 in the following iterations). v0 = 

int 0 so the output of evaluating n in the first iteration is 0. 

The evaluation of x follows, so the demand for evaluating x 

where x = v6/v5 will generate the demand for evaluating both 

v6 and v5. v6 = n ∗ v4 generates the demand for evaluating v4 that 

is n + v3 and v3 is int 1 thus v4 = 0 + 1 therefore v6 = 0 ∗ (0 + 1). 

v5 on the other hand is int 2. Consequently, in the first iteration 

we will have x = 0 ∗ (0 + 1)/2 = 0. Thus, Tn = 0. 

In the second iteration, the second operand in n = v0 fby v2 is 

evaluated. v2 = n + v1 generates the demand for evaluating v1 

that is 1 and since n in the first iteration is 0 then n = 1 in the 

second iteration. Then x is evaluated which is the demand to 

evaluate v6 and v5. When evaluating v6, we will evaluate v4 

which is a demand for the evaluation of v3 that is 1, so v4 = 1 + 

1 and therefore v6 is 1 ∗ 2. The evaluation of v5 is 2. Thus, x = 

1. In the second iteration Tn = 1 and so on. Figure 1 shows the 

hierarchy of the evaluation process. 

Contrary to the conventional methodology, the evaluation 

of an expression is simply a sequence of demands that is 

initiated by a demand of an evaluation of one variable. This 

reduces the complexity of interpretation process hence 

increase the efficiency of program interpretation.  

 

 
 

Figure 1. Evaluation hierarchy 

 

3.2 Evaluation algorithm 

 

Algorithm 2: Evaluation process 

Input: A variable vn & dictionary ⟨vn, Atomic 

Expressionn⟩. 
Output: Numeric Value. 

Function Eval(vn, ⟨vn, AEn⟩) is 

AEn is <operator><operand1> 

If vn=operand1 then 

else if AEn is ⟨operand1⟩⟨operator⟩⟨operand2⟩ then 

vn=Eval(operand1,⟨operand1,AE1⟩)⟨operatorn⟩ 
Eval(operand2, ⟨operand2,AE2⟩)  
else if AEn is if ⟨operand1⟩ then ⟨operand2⟩ else 

⟨operand3⟩ fi then 

if Eval(operand1, ⟨operand1,AE1⟩) = True then 

vn = Eval(operand2, ⟨operand2,AE2⟩) 
else 

vn = Eval(operand3, ⟨operand3,AE3⟩) 
 

 

4. IMPLEMENTATION 

 

For the purpose of demonstration, a related simple software 

called Luminous, written in Java, has been implemented by the 

author using the same approach. It can be found at: 

https://github.com/Omar-Alaqeeli/Luminous.  

Briefly, Luminous has the following commands: 

var v: used to declare a variable v, and assign a value to it.  

val v: used to evaluate v and prints its value according to its 

dimensions.  

defs: used to list all variables stored in the dictionary along 

with their expressions.  

defined v: returns true if v can be evaluated and returns false 

otherwise.  

constant v: returns true if there is no temporal operators 

(except for first) involve in an expression that is linked directly 

or indirectly to v. Otherwise return false. 

dims v: returns dimensions that v depends on; t for the time 

dimension, s for the space dimension, t & s for both and none 

for nothing. 
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We use 1 to represent true in expression and 0 to represent 

false. 

Luminous software package includes ten classes. Class 

amend.java is called to detect operators, such as +, -, *, / and 

parentheses, (,) and amends space between each operand and 

operator when reconstructing equations. This is because when 

the interpreter scan program statements, it needs to decide the 

beginning and the end of each string. In other words, 

distinguishing between operands and operators. 

The class analyzer.java is used to scan program statements 

and pass them to dismantler.java.  

The class dismantler.java is used to dismantle program 

statements into atomic expressions and construct a dictionary. 

This class uses java Maps that required two parameters (in our 

case two strings); identifiers and their associated atomic 

expressions.  

The class evaluator.java retrieves atomic expressions from 

the dictionary and evaluates them in a hierarchal order. The 

evaluator considers all types of data, such as int, float (that is 

denoted as flo in Luminous), first, init, …etc. It also handles 

comparison, such as ==,!=, AND, OR, NOT.  

The amender, the analyzer, the dismantler and the evaluator 

are the core of Luminous interpreter. There are other classes 

used for different purposes but they are necessary for 

Luminous to operate coherently.  

The class constQuery.java is used to inquire if an operand 

is a constant or a variable. The class evalQuery.java is used to 

inquire if an operand can be evaluated or not. The class 

list.java is used to print all variables along with their 

associated expressions in the previously constructed 

dictionary.  

The class spaceDim.java and timeDim.java are used to 

inquire about the dimensions that variables depend on. If s is 

the output, then the variable depends only on space dimension. 

If t is the output, then the variable depends only on the time 

dimension. If the output is both s and t, then the variable 

depends on both, space and time dimensions. When inquiring 

about the dimensions of a variable, the interpreter traces all 

elements related to that variable in the dictionary.  

Assuming all the aforementioned files have been 

downloaded and located on the same directory, using system’s 

terminal, all files can be compiled using the following 

command (Figure 2): 

 

 
 

Figure 2. Compiling All Files from the Same Directory 

Using Terminal Commands 

 

To compile one file, we use (Figure 3): 

 

 
 

Figure 3. Instructions for Compiling a Single File 

 

To run the interpreter after compiling all its necessary files, 

we type (Figure 4): 

 
 

Figure 4. Running the Interpreter Post-Compilation 

When Luminous is running, the right shift operator >> appears 

and user can start typing commands. 

Figure 5-11 are screenshots of Luminous which is operated 

through system’s terminal to interpret Lucid programs.  

 

 
 

Figure 5. var and val in use 

 

Notice that we can’t add a and b directly without first 

defining a variable that is equal to their sum, c, thus the 

evaluation is inquired for c. Also, when defining variables, 

each sentence has to be concluded with a semicolon, otherwise 

error will be thrown. 

 

 
 

Figure 6. When variable under evaluation has only one 

dimension, the stream of outputs is printed vertically (time 

dimension) or horizontally (space dimension) 

 

The stream is continued infinitely (due to the nature of 

Lucid programming language) and in this case the terminal has 

to be interrupted manually. 

 

 
 

Figure 7. When evaluating a variable with two dimensions, 

the stream of values is printed in a form of a matrix.  

 

For demonstration purposes, only five columns are printed 

(in reality, the stream is infinite). Since outputs are infinite 

therefore the terminal has to be interrupted. 

 

 
 

Figure 8. defs lists all values in the dictionary; variables and 

their atomic expressions 
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Figure 9. j can’t be defined because i is not yet defined. 

Hence, j can’t be evaluated 

 

Figure 10. j is not a constant since its expression includes the 

operator fby that constantly recalculates j 

 

 
 

Figure 11. j relies on time dimension 

 

 

5. DISCUSSION 

 

Using the transformation approach we presented has indeed 

shortened the path of program interpretation. Instead of using 

lexical and syntax analysis, we transform the program into a 

molecular program that describes the identity of each variable 

as well as how it will be evaluated. The evaluation is a simple 

recursive process and no further intervention is needed when 

processing data, such as what was suggested in literature [29]. 

Dismantling a program is much simpler than syntactically 

analysing it. For instance, when evaluating x = 7 ÷ (1 + 2 ∗ 3), 

a conventional syntax analyser will scan 1+2∗3 and decide the 

priority of ∗  before + following certain rules. Using our 

approach, we simply search for ∗ and / within the same close 

and then search for + and − following common knowledge of 

the operator’s precedence. Although there are limitations, the 

dismantle approach seems to produce more positive results 

than anticipated. 

 

5.1 Error handling benefits 

 

Normally, error handling is an important part of the Syntax 

Analyser when evaluating, since lexical analysis is merely a 

tokenizing process regardless of the correctness of the 

program statement. When evaluating, statements are verified 

for syntax errors according to a syntax tree. Using our 

approach, we capture errors during transformation. When an 

operator is detected, its operands are also detected, and 

following the atomic expression Context-Free Grammar, an 

error is thrown, if any, before transformation. Since evaluation 

is a sequence of other variable evaluation then error are 

captures earlier.  

 

5.2 Limitations and open questions 

 

Some functional programming languages, like Haskell, use 

indentation as part of their syntax [30]. The dismantling 

method doesn’t handle indentations, although this could be a 

future topic of research, namely, whether this method could be 

extended. One way to handle indentation is for every indent 

we rank program statement and based on that rank we decide 

whether it belong its precedent or not. Also, although the 

evaluation process is a simple recursion, in each iteration the 

dictionary is scanned for the demanded variable. This may be 

a burden and may negatively affect the efficiency of the 

program execution, although this is not yet clear. 

The method as we use it is limited to functional 

programming languages; however, we conjecture that since it 

is applicable on Lucid, then it could be used in another 

functional language that doesn’t use indentation. It is not clear 

whether it would make code interpretation slower or faster, but 

it would definitely make the construction of an interpreter 

much simpler. It is also unclear if this method can be extended 

to non-functional programming languages, so this is another 

research question. 

 

 

6. CONCLUSION 

  

The method as we use it is limited to functional 

programming languages; however, we conjecture that since it 

is applicable on Lucid, then it could be used in another 

functional language that doesn’t use indentation. It is not clear 

whether it would make code interpretation slower or faster, but 

it would definitely make the construction of an interpreter 

much simpler. It is also unclear if this method can be extended 

to non-functional programming languages, so this is another 

research question. 
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