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 Attribute reduction, a seminal aspect of data analysis, primarily hinges on the 

indiscernibility matrix. Previous studies have explored the weight of an attribute via 

various methods, yet achieving optimal reduction remains elusive. This study proposes 

a novel approach to optimal reduction, leveraging the concept of weighted attributes 

based on the probability values of core and non-core elements. This approach 

scrutinizes the accuracy of both core and non-core attributes, thereby enhancing our 

comprehension of the object's attributes. The weighted attribute concept is derived in 

light of entropy information and the indiscernibility matrix. A discernibility matrix aids 

in ascertaining the reduct, whereas entropy information facilitates the analysis of the 

weight of uncertain data. By deploying decision attributes, we derive the core and its 

corresponding probabilistic value, establishing an algebraic structure as an ordered pair 

of objects with associated weight concepts. This structure further enables the 

investigation of the consistency set and the join (meet) irreducible set employing 

weighted attribute concepts. Ultimately, optimal reduction is determined by the weight 

of non-core elements, allowing a comprehensive analysis of the information system and 

procurement of its essential attributes for decision-making. The proposed concept of 

weighted attributes is elucidated using a biological dataset. 
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1. INTRODUCTION 

 

The concept of an indiscernibility relation, along with 

features of discernibility and indiscernibility matrices, was 

first introduced by Pawlak [1]. Yao [2] advanced this concept, 

constructing three regions - positive, negative, and boundary - 

to illustrate the advantages of the three-way decision rule in 

the rough set model and decision theory. The relationship 

between the error level of tolerance and incorrect decision cost 

was also elucidated. 

Wu et al. [3] explored the fundamental notions of formal 

concept analysis, employing granular concepts. The object-

oriented concept lattice's properties were examined, and an 

algorithm was proposed to probe the concept of lattice and its 

properties. Li et al. [4] established a multi-granular decision 

rule for the decomposition of the concept lattice, leading to the 

generation of a new algorithm for disjoint normal functions. 

Ezhilarasi et al. [5] advanced the classification of rough set 

theory for uncertain datasets using the weighted attribute 

concept. This concept facilitated analysis of a decision rule's 

subset, and the results were accentuated by prediction 

accuracy for the datasets. Kang et al. [6] proposed employing 

an algebraic structure and lattice structure to investigate 

knowledge of decision dependency, and the potential 

applications of decision dependency were discussed in a 

technology that merges rough set theory and formal concept 

analysis. 

The formal concept of reliability engineering problems was 

determined by Rocco et al. [7], who offered fundamental 

views on formal concepts pertaining to the field of reliability. 

Qian et al. [8] extended formal concepts to three-way 

decisions, and the characteristics of formal context were 

investigated using the isomorphism relationship between type 

I and type II dual interactable. 

Huang and Bian [9] applied a formal concept analysis to 

online tour planning, while Yao and Chen [10] introduced the 

formal concept analysis for two definable sets and defined an 

approximation operator. They also examined the interpretation 

of lattice theory and set theory. Srirekha et al. [11] investigated 

the projection of a distributive lattice by defining the trivial 

ordered set and its properties. The lattice homomorphism was 

analyzed based on an equivalence relation, and its condition 

was verified. 

Jiang et al. [12] analyzed the relationship between 

generalized weighted averages and its properties using hesitant 

fuzzy, while Xiao and He [13] discussed the properties of the 

formal concept lattice. They also calculated the weight for 

each attribute using the degree of importance in rough set 

theory and entropy information. Shi and Chen [14] proposed a 

new method on rough set theory and granular theory, 

characterizing the effectiveness of weight. Li et al. [15] 

experimented with a combination of fundamental geographic 

information data and proposed numerous applications for geo-

ontologies merging. Bao et al. [16] generalized a new method 

Mathematical Modelling of Engineering Problems 
Vol. 10, No. 6, December, 2023, pp. 2135-2141 

 

Journal homepage: http://iieta.org/journals/mmep 
 

2135

https://orcid.org/0000-0001-6656-3883
https://orcid.org/0000-0003-2317-9712
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.100625&domain=pdf


 

on attribute weight for a significant individual degree of each 

conditional attribute. 

Weighted attribute concepts have been extensively applied 

to attribute reduction. The positive region and degree of 

individual attributes have been investigated, along with their 

applications in diverse fields. Combining entropy information 

with these concepts, a formal concept lattice was defined. In 

this paper, an algebraic structure for the weighted attribute 

concept is defined, and attribute reduction by core and non-

core elements is investigated. Decision attributes are utilized 

to estimate the probability of the core, demonstrating the 

effectiveness of weighted attribute concepts. Optimal 

reduction features were determined using weighted attribute 

concepts. 

The remainder of this paper is organized as follows: Section 

2 discusses the basic knowledge about the formal context that 

generates the granular. Section 3 provides the attribute 

reduction obtained from the indiscernibility matrix. In Section 

4, the weighted attribute concept is introduced with the 

knowledge of core and non-core elements. Section 5 

demonstrates the significance of the proposed work through a 

real-time application with the implementation of weighted 

attribute concepts. 

 

 

2. PRELIMINARIES 

 

In this section, we analyze the basic information about the 

formal concept lattice that is implemented in rough set theory. 

An algebraic structure has been defined in the form of a formal 

context and analysis has been made on the properties using the 

condition of the join (meet) operator. An indiscernibility 

matrix is examined with the knowledge obtained from the 

reduct and core. 

 

2.1 Formal concept analysis 

 

Definition 2.1.1: Let us consider the formal context (O, At, 

R) where O and At are the finite non-empty set of objects and 

attributes respectively, R is a binary relation which is a subset 

of a cartesian product of object and attributes i.e., (R⊆O×At) 

where the elements are represented as (g, m)∈R, ∀g∈O, m∈At 

[8, 11, 12]. 

Let a pair of (G, M) be granular that define on an operator 

*. If G⊆O and M⊆At in formal context (O, At, R) then: 

 

𝐺∗ = {𝑚|𝑚 ∈ 𝐴𝑡, ∀𝑔 ∈ 𝐺, 𝑔𝑅𝑚} 

𝑀∗ = {𝑔|𝑔 ∈ 𝑂, ∀𝑚 ∈ 𝑀, 𝑔𝑅𝑚}[11,12] 

 

Definition 2.1.2: Let (O, At, R) be a formal context. For any 

G⊆O, M⊆At, * be an operator on *: 2G→2M as follows: 

 

𝐺∗ = {𝑚 ∈ 𝐴𝑡|𝑚∗ ⊆ 𝐺} 

𝑀∗ = {𝑔 ∈ 𝑂|𝑔∗ ∩ 𝑀 ≠ ∅} 

 

Thus (G, M) is the extent and intent of the formal context 

(O, At, R) [5]. 

 

Definition 2.1.3: Let (O, At, R) be a formal context if G*=M 

and M*=G are the set of attributes and objects respectively 

then the extent and intent of the formal concept are defined as 

(G, M).  

A partially ordered relation is defined in a formal concept 

lattice (L(O, At, R),≤) with respect to the meet ∧ and join ∨. If 

for any ordered pairs (𝐺1, 𝑀1) ≤ (𝐺2, 𝑀2) ⇔ 𝐺1 ⊆ 𝐺2(⇔
𝑀2 ⊆ 𝑀1) is represented as: 

 
(𝐺1, 𝑀1) ∧ (𝐺2, 𝑀2) = (𝐺1 ∩  𝐺2, (𝑀1 ∩ 𝑀2)∗∗) 

(𝐺1, 𝑀1) ∨ (𝐺2, 𝑀2) = ((𝐺1 ∪ 𝐺2)∗∗, 𝑀1 ∪ 𝑀2) [11,13] 

 

Definition 2.1.4: Consider (G1, M1) and (G2, M2) be the two 

formal context on (𝑂, 𝐴𝑡, 𝑅), If 𝑅 is a binary relation which 

can be defined as (G1, M1)≤(G2, M2) then there exist a partial 

relation for ((O, At, R),≤) such that (G1, M1)≤(G3, M3)≤(G2, M2). 

Hence, (G1, M1) is the son concept of (G2, M2) and (G2, M2) is 

the mother concept of (G1, M1) which implies (G1, M1)≤(G2, 

M2) [12]. 

Hence the lattice structure has been analysed using the 

granular context and this generates the Hasse diagram that 

depicted the reduction concepts. 

 

2.2 Reduct and core 

 

Definition 2.2.1: Let us consider (G, M) that represents the 

granular on the formal context, If D is a subset of an attribute 

𝑀  (i.e., 𝐷 ⊆ 𝑀 ) then it satisfies the isomorphic condition 

𝐿(𝐺, 𝑀, 𝑅𝐷) ≅ 𝐿(𝐺, 𝑀, 𝑅). Hence D is said to be the consistent 

set on the granular (G, M). Therefore, if an element d∈D such 

that 𝐿(𝐺, 𝐷 − {𝑑}, 𝑅𝐷−{𝑑}) ≅  𝐿(𝐺, 𝑀, 𝑅) then D is said to be 

the reduct and the core can be obtained from the intersection 

of all the reduct [8]. 

 

2.3 Indiscernibility matrix and function 

 

Definition 2.3.1: Let (G, M) be granular in the formal 

context, if the indiscernibility matrix is defined as IDS=IDS(g, 

m) then the matrix represents the Cartesian product of the 

object and attribute where (𝑔, 𝑚) ∈ (𝐺, 𝑀).  i.e., 

𝐼𝐷𝑆 (𝑔, 𝑚) = {𝑓 ∈  𝐴𝑡| 𝑅(𝑔1, 𝑚1) = 𝑅(𝑔2, 𝑚2)}. 

 

Definition 2.3.2: The indiscernibility function can be 

defined as 𝐼𝐷𝑆𝑀 = ⋀{⋁𝐼𝐷𝑆(𝑔, 𝑚)|∀ 𝑔 ∈  𝐺, 𝑚 ∈  𝑀,
𝐼𝐷𝑆(𝑔, 𝑚) ≠ ∅} which indicate disjunction and conjunction 

operator that can be distinguished to obtain the set of all 

attributes. 

From the above representations, an ordered pair of object 

and attribute were analysed to obtain the basic knowledge 

about the formal context and generalized granular concept. 

Thus, this granular is further extended to determine its reduct 

and core using the indiscernibility function.  

 

 

3. GRANULAR REPRESENTATION ON FORMAL 

LATTICE FOR THE REDUCTION OF ATTRIBUTE 

USING INDISCERNIBILITY MATRIX 

 

Here, we examine the values Va={0, 1}, from an 

information table that describes an indiscernibility relation 

using these values. Thus, the granular has been represented in 

a hasse diagram and an indiscernibility matrix is investigated 

to obtain the reduct. 

 

3.1 Representation of indiscernibility table 

 

Definition 3.1: Consider an information system (O, At, V, 

R) where the non-empty finite set of Object 𝐺 ⊆ 𝑂 , the 

attribute 𝑀 ⊆ 𝐴𝑡, V is the value of the cartesian product of 

objects and attributes, and 𝑅 ⊆ 𝑂 × 𝐴𝑡 
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𝑉𝑎 = {
1; 𝑖𝑓 𝑔𝑅𝑚 ∈ 𝑉
0; 𝑖𝑓𝑔𝑅𝑚 ∉ 𝑉

 

 

where 𝑔 ∈ 𝐺 and 𝑚 ∈ 𝑀. 

 

Definition 3.2: Let us consider (𝑂, 𝐴𝑡, 𝑉𝑎 = {0,1}, 𝑓, 𝑅) to 

be the formal context, where O and At be the non-empty set of 

objects, and attributes respectively, Va is the value, 𝑓: 𝑂 ×
𝐴𝑡 → 𝑉𝑎  is a function and 𝑅 be the binary relation such that 

𝑅 ⊆ 𝑂 × 𝐴𝑡. 

 

Definition 3.3: Let (O, At, Va, R) be a formal context then 

the value of the indiscernibility relation can be defined as: 

 

𝑅(𝑖,𝑗) = {(1,1) ∈ 𝑂 × 𝐴𝑡|∀ 1 ∈ 𝑉𝑎 , (𝑖, 𝑗) ∈ (𝑂 × 𝐴𝑡)} 

 

where, throughout this paper, we represent (i, j) as {ij}. 

 

Definition 3.4: Let (O, At, Va, R) be a formal context, 

consider 𝐺 ⊆ 𝑂  and 𝑀 ⊆ 𝐴𝑡  then the Cartesian product of 

object and attribute is defined as: 

 

𝑅𝑖𝑗 = {(𝑖, 𝑗) ∈ 𝐺 × 𝑀|∀𝑚 ∈ 𝑀, 𝑅𝑚(𝑖) = 𝑅𝑚(𝑗)} 

 

Definition 3.5: Let (G, M, Va={1,0}, R) be the formal 

context, where G is a set of object {g1, g2, .., gn} and M is a set 

of attribute {m1, m2, ... mk} then Va is the value which defined 

as: 

 

𝑉𝑖𝑗 = {
1; 𝑖𝑓 𝑔𝑖 ∈ 𝑚𝑗

0; 𝑖𝑓𝑔𝑖 ∉ 𝑚𝑗
 

 

3.2 Indiscernibility matrix 

 

Definition 3.6: The indiscernibility matrix is defined as 

𝐼𝑖𝑗 = {𝑣𝑖𝑗 ∈ 𝐺 × 𝑀|𝑅𝑖𝑗 = 𝑅𝑘𝑙} . If the matrix satisfies the 

symmetric condition Iij=Iji then take for consideration as Iii=M, 

otherwise (i, j) is a pair of discernible values and Iij≠∅. 

 

𝐼𝐷𝑆𝐹𝑢𝑛 = ⋀{⋁𝑅𝑖𝑗|∀𝑖, 𝑗 ∈ 𝑂, 𝑅𝑖𝑗 ≠ ∅} 

 

Example 3.1: Consider an information table with the 5 

object along with the attribute price, Room, Furniture, also 

with decision attributes Prestigious flat consisting of "Yes" 

and "No". 

 

Table 1. Information table 

 
O/At Price Room Furniture PF 

1 High 1 No Yes 

2 High 3 Yes Yes 

3 High 1 No No 

4 High 2 No Yes 

5 Low 2 Yes No 

 

Table 2. Indiscernibility table 

 
 a b c d e f g 

1 1 0 1 0 0 0 1 

2 1 0 0 0 1 1 0 

3 1 0 1 0 0 0 1 

4 1 0 0 1 0 0 1 

5 0 1 0 1 0 1 0 

From Tables 1 and 2, objects 1 and 3 are considered as 

inconsistent data. Hence, an indiscernibility matrix has been 

framed from Figure 1 for the existence of an indiscernibility 

function (from Figure 2) to obtain the reduct as: 

 

𝐼𝐷𝑆𝐹𝑙𝑎𝑡  = { 𝑀} ∧ {𝑎} ∧  {𝑎 ∨  𝑐 ∨  𝑔} ∧  {𝑎 ∨  𝑔} ∧ {𝑓} ∧
 {𝑑} =  {𝑎 ∧  𝑓} ∨  {𝑎 ∧  𝑑}. 

 

 
 

Figure 1. Hasse diagram from Table 2 

 

 
 

Figure 2. Indiscernibility matrix 

 

Thus, the two reduct are T1={𝑎 ∧  𝑓} and T2={𝑎 ∧  𝑑} can 

be represented as hasse diagram (Figure 3). 

 

 
 

Figure 3. Reduct 

 

 

4. ATTRIBUTE REDUCTION USING WEIGHTED 

ATTRIBUTE CONCEPTS 

 

This section highlights the weighted attribute concept using 

entropy information and the probabilistic values of core and 

non-core elements. Thus, we introduce an algebraic structure 

that consists of objects and attributes with their weighted 

concept. Also, an optimal reduction has been discussed using 

the weighted attribute concept. 

 

2137



 

Definition 4.1: Let (O, At, Va, R) be a formal context, where 

at represents both the conditions and decision attributes (i.e., 

At=cds ∪ des). Hence the probability value of the decision 

attribute is denoted as τdes. 

 

4.1 Entropy information with weighted attribute concepts 

 

Definition 4.2: Let (G, M, Va, R) be the formal context. If 

the probability of an object "i" that holds to an attribute "j" 

then α(vij) is represented as the regular information of 

attributes provided by the set of an object. Thus, the entropy 

information α(vij) is defined as: 

 

𝛼(𝑣𝑖𝑗) = − ∑ 𝑝(𝑣𝑖𝑗)𝑙𝑜𝑔2 (𝑣𝑖𝑗) 

 

Definition 4.3: Let (G, M, Va, R) be the formal context, then 

the attribute 𝑀 provides the information about the condition 

and decision attributes. The probabilistic value of core has 

been determined with the decision attributes based on the 

importance of indispensable function which is referred as: 

 

𝑐𝑜𝑟𝑒[𝑣𝑖𝑗] = ∑ 𝑝(𝑐𝑜𝑟𝑒(𝑣𝑖𝑗)) ∗ 𝜏𝑑𝑒𝑠 

 

Definition 4.4: Let (G, M, Va, R) be the formal context, then 

the weighted attribute concept has been defined as an average 

of entropy information and probabilistic value of core with the 

decision attributes. Hence, the weighted attribute is denoted as: 

 

𝑤𝑖 =
𝑐𝑜𝑟𝑒[𝑣𝑖𝑗] ∗ 𝛼(𝑣𝑖𝑗)

{∑ {𝑐𝑜𝑟𝑒[𝑣𝑖𝑗] ∗ 𝛼(𝑣𝑖𝑗)}
 

 

Definition 4.5: Let (G, M, R) be a formal concept then 

(G,(M, Wi)) be a join (meet) irreducible ordered pair if 𝐷 ⊆
 𝑀  which is a consistency set where the weighted attribute 

concept can be redefined as the sum of attribute weight from 

the reduct. 

 

Definition 4.6: Let T1, T2, T3, …, Tn be the reduct of the 

formal concept (G,(M, W)). If 𝑊𝑖 ∈ 𝑇1, 𝑊𝑗 ∈ 𝑇2  then there 

exist the non-core element wi∈Wi and wj∈Wj and wj≥wi such 

that T2 be the optimal reduct.  

 

Theorem 4.1: Let (G, M, R) be the formal context. If (G,(M, 

Wi)) be the weighted attribute concept then it satisfies 

L0(G,M,R)=L0(G,(M,Wi)). 

 

Proof. Since (G, M, R) be a formal concept then there exist 

𝐺∗ = 𝑀 𝑎𝑛𝑑 𝑀∗ = 𝐺  such that 𝐺 ⊆ 𝑂  and 𝑀 ⊆ 𝐴𝑡  from 

Definition 2.1.2. 

If (𝑔, 𝑚) ∈ 𝐿0(𝐺, 𝑀, 𝑅) then the element g*=m and m*=g 

generate the weight for the attribute in each join(meet) 

irreducible ordered pair. Hence ((𝑚∗)∗ ∈ 𝐿0(𝐺, 𝑀, 𝑅) which 

implies (𝑔, 𝑚) ∈  𝐿0(𝐺, (𝑀, 𝑊𝑖)). Thus, 𝐿0(𝐺, 𝑀, 𝑅) ⊆
𝐿0(𝐺, (𝑀, 𝑊𝑖)). 

Conversely, D is a consistency set and D⊂M this shows that 

𝐿0(𝐺, 𝑀, 𝑅) ⊇ 𝐿0(𝐺, 𝑀, 𝑅𝐷)  therefore 𝐿0(𝐺, 𝑀, 𝑅) ⊇
𝐿0(𝐺, (𝑀, 𝑊𝑖)). 

Hence L0(G,M,R)=L0(G,(M,Wi)). 

 

Theorem 4.2: Let (G, M, R) be the formal context. If 

(G,(M,Wi)) be the weighted attribute concept then it satisfies 

the isomorphic condition as 𝐿0 (𝐺, 𝑀, 𝑅) ≅ 𝐿0(𝐺, (𝑀, 𝑊𝑖)). 

Proof. Let 𝜒 ∶  𝐿0(𝐺, 𝑀, 𝑅) → 𝐿0(𝐺, (𝑀, 𝑊𝑖))  for any 
(𝐺, 𝑀) ∈  𝐿0(𝐺, 𝑀, 𝑅), 𝜒(𝐺, 𝑀) = (𝐺, 𝑀∗∗). Hence from the 

above Theorem 4.2 𝐿0 (𝐺, 𝑀, 𝑅) = 𝐿0(𝐺, (𝑀, 𝑊𝑖)). It is easy 

to prove the isomorphism mapping. Therefore 

𝐿0(𝐺, 𝑀, 𝑅) 𝑎𝑛𝑑 𝐿0(𝐺, (𝑀, 𝑊𝑖))  are isomorphic. i.e., 

𝐿0(𝐺, 𝑀, 𝑅) ≅ 𝐿0(𝐺, (𝑀, 𝑊𝑖)). 

 

Lemma 4.3: Consider (G, M, R) to be a formal concept. If 

(gi,(mi,wi)),(gj,(mj,wj)) be a join (meet) irreducible element 

then the ordered pair implies that gi⊆gj, mj⊆mj and wj≤wi. 

 

Lemma 4.4: Let (G, M, R) be a formal context and D⊆M. 

If D is consistency set then (gi,(mi,wi))⊆ (gj,(mj,wj)) which 

implies (gi, mi)⊆(gj, mj) and wj≤wi. 

 

Proof. Let (G, M, R) be a formal context and if D is a 

consistency set and D⊆M then the formal concept of lattice 

preserves the consistency set of Join (meet) irreducible 

element. By Definition 4.5 and Lemma 4.3, There exist (gi, 

mi)⊆(gj, mj), ∀ (gi, mi), (gj, mj)∈(G,M) such that the weight of 

the attribute concept will be wj≤wi. Hence the reduct of a 

formal concept has a weighted attribute concept that is defined 

as (gi,(mi,wi))⊆(gj,(mj,wj)). 

 

Theorem 4.5: Let (G, M, R) be a formal context, the reduct 

D is the meet (join) irreducible set if and only if (gi,(mi,wi)) be 

a weighted attribute concept. 

 

Proof. (i)⇒(ii): If (G, M, R) be a meet irreducible set then 

there exist a reduct Di such that Di⊆M from Definition 4.5.  

⇒This preserves that there will be an extended set of meet 

irreducible elements ordered pair Di⊂M then Di is a consistent 

set. 

Since Di is a consistent set there exist an element (gi, mi)⊆(gj, 

mj) and also wj≤wi. 

Therefore, By Lemma 4.4: (gi,(mi,wi))⊆(gj,(mj,wj)) which 

preserves the weight of a consistency set. 

Hence, (gi,(mi,wi)) is a weighted attribute concept. 

(ii)⇒(i): If (gi,(mi,wi)) be a weighted attribute concepts then 

there exist an element (gi, mi) in the Reduct of (G, D, R) where 

D⊆M. 

Therefore, By Lemma 4.4 and Definition 4.5: D is a 

consistency set with the element (gi, mi). 

 

Theorem 4.6: Let C be the core and mi, mj, …, mn be the 

noncore element existing in the reduct T1, T2, …, Tn. Suppose 

C is a consistency set on the lattice L then 

C∩(gi,(mi,wi))≠C∩(gj,(mj,wj)) if and only if wj≥wi then wj is an 

optimal reduct. 

 

Proof. (i)⇒(ii): Let C be a consistency set then there exist 

C∩(gi,(mi,wi))≠C∩(gj,(mj,wj)) such that from Theorem 4.5 

(gi,(mi,wi))≤(gj,(mj,wj)) 

Therefore, C∩(gi,(mi,wi))≤C∩(gj,(mj,wj)), since gi⊆gj which 

implies mj⊇mi, wj⊇wi. 

Thus, wj≥wi, by definition 4.6, wj is an optimal reduct. 

(ii)⇒(i): Let wj is an optimal reduct then wj≥wi 

By Lemma 4.3 and 4.4, the lattice L such that 

(gi,(mi,wi))≤(gj,(mj,wj)) which satisfies the result gi⊆gj which 

implies mj⊇mi, wj⊇wi. 

Hence, By theorem 4.5, the consistency set exist with the 

core element C such that C∩(gi,(mi,wi))≤C∩(gj,(mj,wj)) 

Therefore C∩(gi,(mi,wi))≠C∩(gj,(mj,wj)) 

Hence the result. 
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From the above study, we analysis the weight of the core 

and noncore element using the entropy information values. 

This has been generalized and examined by lemma and 

theorems. Hence, we can calculate the weighted attribute 

concept by an example below. 

 

Example 4.1: From Example 3.1, we can obtain the weight 

of an attribute reduction. Therefore, an optimal reduction was 

obtained from the comparative study on noncore element. 

Thus, from Tables 3 and 4 we found that there is no significant 

difference between the noncore elements. Hence it is not 

possible to diagonalize the optimal reduction for the 

information Table 1. 

 

Table 3. Weight for reduct T1={a, f} 

 
Reduct p(vij) α(vij) Core[vij] wi 

a 0.8 0.2575 0.48 0.3275 

f 0.4 0.5288 0.48 0.6725 

 

Table 4. Weight for reduct T2={a, d} 

 
Reduct p(vij) α(vij) Core[vij] wi 

a 0.8 0.2575 0.48 0.3275 

d 0.4 0.5288 0.48 0.6725 

 

From Tables 3 and 4 it is observed that the weight of the 

core and non core element remains same. Hence, it is not 

possible to determine the optimal reduct using the concept of 

weighted attribute concepts.  

 

 

5. AN EMPIRICAL ANALYSATION ON BIOLOGICAL 

DATA 

 

This section investigates statistical data that describes breast 

cancer. These data have been classified from the image of the 

mammograms which has been identified from the test report 

of the patient survey who undergone the process of a breast 

cancer test. The weighted attribute concept helps us to 

determine the optimal reduct and easy to analyze the 

knowledge of the information table. 

 

Work Rule: 

Step 1: Consider an information table with condition and 

decision attributes. 

Step 2: Create an indiscernibility relation table from the 

information table. 

Step 3: Generate a granular hasse diagram from the table. 

Step 4: From the granular, define the indiscernibility matrix 

and find its reduct. 

Step 5: Determine the core and non core element. 

Step 6: Form the table using entropy value and core values 

with probability value of decision attributes. 

Step 7: Identify the non core element weight and analyse 

the weighted attribute concepts for study.  

 

Example 5.1: Table 5 shows a mammogram analysis of the 

effect of detecting breast cancer using machine learning 

technology. The set of the object obtained from the 5 patient 

details which is consist of mammogram image {1, 2, 3, 4, 5} 

and the set of attributes obtained from the extraction of the 

feature of breast cancer that are collected from the knowledge 

of mean, standard deviation, smoothness, third moment, 

uniformity and entropy. From these details, the attribute was 

defined as {Contrast, IDM, Dissimilarity}. The contract is the 

measure of the image inertia or the local variations present in 

images as "a" (9.1-10.9), "b" (11.1-12.9); Inverse Difference 

Moment (IDM)-Homogentiy is the large values of cases which 

describes the largest element of principal diagonal as "c" (3.1-

4), "d" (4.1-5); Dissimilarity is a directional moment that 

measures the image contrast that increases the linearly not 

exponentially as "e" (2.4-2.5),"f" (2.6-2.7), "g" (2.8-2.9); The 

analyzation of imperfect data can be classified by a new 

mathematical approach on Rough Set Theory. The Decision 

data is the specific decision rule of the action, result, and 

outcome. 

 

Table 5. Information table 

 
O/At Contrast IDM Dissimilarity Decision 

1 9.85 4.9 2.4342 Yes 

2 10.19 3.9 2.6045 Yes 

3 10.73 4.3 2.5495 No 

4 10.98 4.1 2.6482 No 

5 12.36 3.1 2.9401 Yes 

 

Table 6. Indiscernibility table 

 
 a b c d e f g 

1 1 0 0 1 1 0 0 

2 1 0 1 0 0 1 0 

3 1 0 0 1 1 0 0 

4 1 0 0 1 0 1 0 

5 0 1 1 0 0 0 1 

 

From Table 6, the structure of the formal concept lattice was 

defined using the data obtained from Table 5. The hasse 

diagram and indiscernibility matrix constructed in Figures 4 

and 5. Therefore the indiscernibility function can be obtain 

attribute reduction without the loss of information the reduct 

can be constructed based on join and meet irreducible context. 

 

 
 

Figure 4. Hasse diagram from Table 6 

 

 
 

Figure 5. Indiscernibility matrix 

2139



 

⟹ 𝐼𝐷𝑆𝐵𝐶 = { 𝑀} ∧  {𝑎} ∧ {𝑎 ∨  𝑑 ∨  𝑒} ∧  {𝑎 ∨  𝑓} ∧ {𝑐} ∧

 {𝑎 ∨  𝑑} ⇒ {𝑎 ∧  𝑐 ∧  𝑑} ∨ {𝑎 ∧  𝑐 ∧  𝑓} 

 

From the above IDSBC, the two-reduction decision are 

T1={a ∧ c ∧ d} and T2={a ∧ c ∧ f}. 

 

 
 

Figure 6. Reduct of breast cancer info 

 

Finally, the reduction of the attribute was examined using 

the probabilistic value of the core. Hence the weighted 

attribute concept has been analysed by Hasse diagram (Figure 

6). Thus, the optimal weight of each element in the core and 

noncore attributes are defined in the Tables 7 and 8. 

 

Table 7. Weight for reduct T1={a, c, d} 

 
Reduct p(vij) α(vij) Core[vij] wi 

a 0.8 0.2575 0.36 0.2096 

c 0.4 0.5288 0.36 0.4304 

d 0.6 0.4422 0.36 0.3599 

 

Table 8. Weight for reduct T2={a, c, f} 

 
Reduct p(vij) α(vij) Core[vij] wi 

a 0.8 0.2575 0.36 0.1958 

c 0.4 0.5288 0.36 0.4021 

f 0.4 0.5288 0.36 0.4021 

 

From the above example, the optimistic reduction obtained 

using the weighted attribute concept that are analyzed from the 

non-core elements. Thus, we investigate the information table 

and determine the minimal attribute of breast cancer that 

classifies the mammogram images. 

From the above systematic study, the weighted attribute 

concept was analyzed from the attribute reduction and 

consistency set. The indiscernibility matrix was formed from 

the granular ordered pair of objects and attributes. The reduct 

was examined through the probability of weighted attribute 

concept of core and non-core elements. The weight of each 

attribute was characterized by the probability values and 

defined the significance of the tuber affected in the 

mammogram images. Hence from the above example the 

attribute contract ranges from a={9.1-10.9} and IDM range 

from c={3.1-4} are the essential attribute. In addition, we 

analyze the attribute IDM that ranges from d={4.1-5} and 

dissimilarity that ranges from f={2.6-2.7} having a clear 

knowledge about the weight that emphasizes with the decision 

attributes. Thus, the weight of noncore element d is lesser than 

the f. Therefore, we come to the conclusion that reduct {a, c, 

f} gives an optimal result than {a, c, d}. 

 

 

6. CONCLUSIONS 

 

Weighted attribute reduction is effective in various fields, 

such as machine learning technology and knowledge 

management. A weighted attribute concept is presented in this 

paper that incorporates entropy information and characteristic 

knowledge of the core into the decision attribute. Using 

weighted attribute concepts, we have identified the degree of 

each attribute and determined its significance. By using an 

algebraic structure, we defined the join (meet) irreducible set 

and discussed its features with the consistency set. The 

weighted attribute concept is also based on the noncore 

elements behaviour. The weight of an attribute reduction has 

therefore been investigated. Further, this classification of core 

and noncore elements illustrates the extensive knowledge of 

the information system. In our study, we examined the 

information data obtained from mammographic images to 

demonstrate a different approach to weighted attributes. 

It has been observed that a weighted concept using the 

probability of decision attribute is effective in the field of 

reduction. This work can be further examined by defining a 

structural operator and analysing the outcome of the features. 
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