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Wave propagation, a phenomenon involving the transfer of energy over time, is a 

significant area of study, particularly with respect to sea waves. Due to their unique 

geometrical properties and inhomogeneous minimum amplitude, sea waves pose 

distinct challenges for numerical solutions. This research focuses on the analysis of 

wave stability against various water velocities and breakwater distances from the 

coastline. The study employs a hybrid approach, utilizing the Finite Element Method 

(FEM) to determine the movement of fluid elements through a porous, submerged 

breakwater. The concept of permeability in breakwaters is integral to this analysis. 

Permeable breakwaters permit a certain proportion of seawater or wave water to pass 

through, while absorbing or reflecting the remaining component of the waves. 

Understanding the permeability of breakwaters can enhance the design effectiveness 

and efficiency, whilst providing insight into potential impacts on coastal ecosystems. 

The results of the study demonstrate that the distance of the breakwater from the 

incoming wave influences both the amplitude and speed of the wave. Specifically, a 

greater distance between the wave and the breakwater results in a decrease in wave 

height, thereby increasing the stability of the simulation. For example, the directional 

and speed components of the movement at [x, y, t] for the first amplitude [20, 2, 15] 

was found to be 0.12515m, the second amplitude [15, 2, 15] 0.13161m, and the third 

amplitude [10, 2, 15] 0.13097m. This demonstrates that the breakwater's distance 

significantly influences wave stability, an important factor to consider in 

future breakwater design and implementation. 
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1. INTRODUCTION

A wave refers to a traveling vibration that moves through a 

medium or a collection of interconnected objects. Practical 

instances of waves are observable in scenarios involving 

surface waves, like ocean waves approaching a shoreline. The 

undulations on the water’s surface result from the interplay 

between moving air masses and the upper layer of the water, 

forming a pattern of crests and troughs influenced by energy 

and momentum. Essentially, surface water waves emerge not 

solely from air movement but can also arise from various 

actions occurring at the water’s depths. Researches [1, 2] 

elucidates that the speed at which surface water waves 

propagate is contingent upon factors such as surface tension, 

hydrostatic pressure, water depth, mass density, and gravity. 

Several factors contribute to the generation of water surface 

waves, including wind currents and vibrations originating 

from the water’s depths, exemplified by occurrences like 

tsunami waves. 

Peng et al. [3] conducted a study on how to reduce the 

strength of waves at sea level using a breakwater in the form 

of a porous block. The first thing to do in this research is to 

form a wave model of the surface of the water through a 

breakwater in the form of a porous block. The formation of the 

model involves utilizing the fundamental equations governing 

the passage of surface waves through porous beams. These 

equations encompass the continuity equation, momentum 

equation, potential wave velocity, considerations of fluid 

within porous media, as well as Laplace and Bernoulli 

equations within both fluid and porous contexts. Moreover, 

kinematic and dynamic boundary conditions are imposed at 

the fluid surface [4]. The resultant model bears remarkable 

resemblance to the shallow water equation. The subsequent 

steps outlined in references [5-7] elucidate the process of 

obtaining a numerical solution from this established model. 

The numerical solution is attained through the finite difference 
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method, employing an implicit scheme corrector and predictor. 

The study’s findings reveal that the amplitude of the wave 

diminishes subsequent to interaction with the breakwater. The 

extent of wave attenuation hinges on factors such as the 

quantity and height of breakwaters. For solving diverse types 

of differential equations, one viable approach is the 

employment of the boundary element method, which is 

grounded in Taylor series expansion principles [8, 9]. 

Research on breakwaters aims to determine the phenomena 

that occur with the energy generated from the movement of 

seawater towards coastal areas, which are shallow areas [10]. 

The development of research on breakwaters has been carried 

out by several mathematicians and physicists who focus on 

breakwater models [11]. In the research that has been done, 

breakwaters with different dimensions will produce different 

results according to the specified model parameters. In terms 

of optimizing the breakwater model, it is influenced by several 

important parameters such as the wave velocity, wave height, 

depth, pressure, and even Newtonian force, which results in 

momentum in the breakwater [12, 13]. Huang et al. [14] 

explained how the analysis of the interaction between models 

of breakwaters used in three-dimensional problems with 

porous breakwater models by developing equations from the 

Navier-Stokes equations resulted in a 3D wave propagation 

model for surface-emerging breakwaters. 

Many simulations of breakwaters have been carried out to 

find out how much wave reduction is produced by both the 

speed and wave height values [15]. Simulation involving 

different parameters will give complex results in its 

completion because it is necessary to use a multi-purpose 

programming model [16]. The results of research with a focus 

on wave propagation stability analysis [17] need to consider 

the magnitude of the reduction of the incident wave so that the 

amplitude value delivered to the shallow area is at a steady 

state point. 

Researches on the stability of wave propagation have 
been carried out [18, 19] to determine the factors that affect 

stability in wave propagation in terms of wave propagation 

reliability, breakwater reliability, and also the probability 

density function (PDF) value. The resulting impact of large 

waves is damage to shallow areas and even coastal areas, 

which are critical areas [20]. The optimal wave splitting 

process aims to reduce the magnitude of wave resonance at 

the harbor by applying the Helmholtz equation, which has 

complex values as the model state equation with 

minimizing wave amplitude as the optimization variable 

[21]. 

The author proposes that a water wave breakwater will 

provide momentum resistance to subsurface currents so that 

the amount of momentum that occurs will be reduced at the 

bottom of the shallow area before the wave propagates to the 

coastal area [22]. The results to be achieved from this study 

are simulations of wave height (𝜆) from variations in the 

depth of the breakwater position from the sea surface. This 

study will also simulate the effect of speed variations on the 

amplitude of the waves that occur. The formation of a 

breakwater model will be carried out by testing the reliability 

of moving against time to reach the stability area against the 

variations in constraints that are carried out. In this study, the 

authors will simulate wave breaking using a submerged 

porous breakwater to find a numerical solution using the 

Hybrid Finite Element Method (HFEM) is a computational 

technique that integrates the attributes of many finite element 

techniques. 

2. LITERATURE REVIEW

2.1 Breakwater simulation 

Submersible breakwaters are facilities built to break waves 

under the surface of the water with the aim of dampening and 

absorbing internal energy from wave propagation underwater. 

Based on the principle of hydrostatic pressure, the greatest 

water pressure is at the bottom of the sea, which is expressed 

by the pressure of water directly proportional to the depth of 

the sea. Hydrostatic pressure is expressed as: 

−𝛿𝑃 = 𝑔𝜌𝛿𝑧 (1) 

where, lim
𝛿𝑧→0

−𝛿𝑃 and the Eq. (1) can be expressed as:

𝜕𝑃

𝜕𝑧
= 𝑔𝜌 (2) 

where, 𝑃, 𝑔, 𝜌, 𝜕𝑧 respectively represent hydrostatic pressure, 

gravitational acceleration, fluid density, and changes in water 

depth [23]. Eq. (1) is written with a negative sign with the 

assumption that the pressure 𝑃 will decrease with increasing 

height which is applied to the problem of hydrostatic pressure 

in the case of an object moving towards the atmosphere. 

For the submerged breakwater problem, Eq. (1) will be an 

increase in 𝜕𝑧 which will result in an increase in pressure 𝑃 so 

that the pressure will be greater in the bottom area. The 

submerged breakwater will absorb some of the energy from 

the bottom area with the aim of reducing the amount of energy 

that is in the surface area. An illustration of the wave breaking 

process with a breakwater is shown in Figure 1. 

Figure 1. Submerged permeable breakwater simulation 

The breakwater will absorb some of the inner energy at the 

bottom of the wave by releasing the wave propagation that hits 

the breakwater, so that a process of changing momentum 

occurs in the wave propagation [24]. The process of breaking 

waves with a submerged type is often used to control large-

scale wave propagation for coastal areas or port areas, which 

maintain the magnitude of wave propagation in coastal areas. 

The permeability of rocks to wave barriers exhibits significant 

variability, which is contingent upon several parameters, 

including rock type, rock size and form, and the spatial 

arrangement of rocks. Permeability refers to the inherent 

capacity of a medium to facilitate the passage of fluids or 

waves. In order to elucidate the permeability characteristics of 

a wave breaker, it is important to acknowledge the existence 

of several kinds of waves, including water waves and seismic 

waves and earthquake occurred. 

The usage of rock formations as wave breakers is a common 

practice that capitalizes on the mechanical and acoustic 

characteristics of the rocks. The configuration of rocks is often 

engineered to mitigate the impact of water waves, such as in 
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coastal regions, where it serves as a protective measure against 

storm waves or tempestuous conditions. Conversely, stone 

arrangements may serve the purpose of mitigating the effects 

of earthquakes through the strategic redirection of seismic 

waves. The permeability of the wave-breaker should be neither 

too high nor excessively low. In the event that the permeability 

is excessively elevated, the waves possess the capacity to 

traverse the wave-breaker with little impedance to achieve the 

intended outcome. 

In the event of poor permeability, the wave breaker may 

effectively mitigate wave activity, although it might 

concurrently induce heightened hydrostatic pressure on the 

breaker structure, potentially resulting in detrimental 

consequences such as rock damage or displacement. The 

measurement of wave breaker permeability often employs 

units that align with the specific wave type targeted for 

obstruction. In the context of water waves, the measurement of 

permeability is often expressed in units of meters per second 

(m/s) or something comparable. The measurement of 

permeability in seismic waves may be determined by 

considering the dimensions of the rock and the coefficient of 

rock elasticity. 

 

2.2 Navier-Stokes equation on moving fluids 

 

The Navier-Stokes equation constitutes a mathematical 

framework that addresses fluid-related challenges pertaining 

to both fluid substances and the attributes intrinsic to them [25-

27]. The modeling inherent in the Navier-Stokes equation 

delineates the manner in which the velocity vector’s 

magnitude evolves across the u and v components as they 

traverse the x and y coordinates over time. In scenarios 

involving vector analysis, it is established that all attributes of 

the fluid are contingent upon spatial dimensions and temporal 

evolution. These attributes can be exemplified by vector 

quantities like velocity (𝑣) and acceleration (a). Let a is a 

vector component of velocity and time vector that can be 

written as: 

 

�⃗� = (
𝑑𝑢

𝑑𝑡
,

𝑑𝑣

𝑑𝑡
)  (3) 

 

denote that �⃗� =
𝑑�⃗⃗�(𝑥,𝑦,𝑡)

𝑑𝑡
, consists of components in Eq. (3), 

then by following the chain rule then the value of �⃗� for each 

component is: 

 

�⃗�𝑥 =
𝑑𝑢

𝑑𝑡
=

𝜕𝑢

𝜕𝑡
+

𝜕𝑢

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑢

𝜕𝑦

𝑑𝑦

𝑑𝑡
  (4) 

 

�⃗�𝑦 =
𝑑𝑣

𝑑𝑡
=

𝜕𝑣

𝜕𝑡
+

𝜕𝑣

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑣

𝜕𝑦

𝑑𝑦

𝑑𝑡
  (5) 

 

For each value of 
𝑑𝑥

𝑑𝑡
,

𝑑𝑦

𝑑𝑡
 is a function of space against time 

which can be written respectively as u, v which results in the 

acceleration value in Eq. (4) and Eq. (5) for each component 

are: 

 

�⃗�𝑥 =
𝑑𝑢

𝑑𝑡
=

𝜕𝑢

𝜕𝑡
+ �⃗�. ∇𝑢  (6) 

 

�⃗�𝑦 =
𝑑𝑣

𝑑𝑡
=

𝜕𝑣

𝜕𝑡
+ �⃗�. ∇𝑣  (7) 

 

Simply, the vector of a can be written as: 

 

�⃗� = (
𝜕

𝜕𝑡
+ �⃗�. ∇) �⃗�  (8) 

2.3 Hybrid Finite Element Method 

 

In general, the combination of Finite Element Method (FEM) 

and Boundary Element Method (BEM) offers a robust 

methodology for the examination of intricate geometric 

quandaries, facilitating a more comprehensive comprehension 

of the dynamics exhibited by physical systems. Both 

approaches provide distinct benefits and may synergistically 

enhance one another to yield precise and effective answers. 

The finite element approach divides the problem domain into 

smaller, non-uniform components. This feature facilitates the 

representation of intricate or non-uniform geometry. The 

boundary element method is a numerical technique that 

operates specifically on the borders of a given domain. Hence, 

the Boundary Element Method (BEM) is highly suitable for 

the analysis of modeling challenges that include infinite or 

extensive bounds. 

The combination of the Finite Element Method (FEM) and 

the Boundary Element Method (BEM), known as FEM-BEM 

or Hybrid FEM, offers a viable approach for addressing 

complex issues. This methodology involves partitioning the 

domains into smaller subdomains using FEM, then afterwards 

using BEM to investigate the interactions between these 

subdomains. By leveraging this hybrid approach, it becomes 

possible to effectively tackle large-scale problems. The Hybrid 

Finite Element Method is used to determine the initial value of 

a function that moves with time [28, 29]. The equation using 

Hybrid Finite elements will provide an efficient solution by 

separating the wave equation from the momentum equation 

and then linearizing [30]. 
 

∫ ∫ (
𝜕2𝜂

𝜕𝑡2 − 𝑐2 𝜕2𝜂

𝑑𝑥2) 𝜂∗𝑑𝑥𝑑𝑡 = ∫ ∫ 𝐵𝜂∗𝑑𝑥𝑑𝑡
𝑐

0

𝑡𝐹
∗

0

𝑟

0

𝑡𝑓
+

0
  (9) 

 

where, r is the region length and 𝑡𝐹
+ = 𝑡𝐹 + 𝜖 , where 𝜖  is a 

small arbitrary parameter [31]. In the above expression 𝑍∗ is 

the fundamental solution of the one-dimensional wave 

operator, given by: 
 

𝜂∗ = −
1

2𝐶
𝐻[𝑐(𝑡𝐹 − 𝑡) − 𝑟]  (10) 

 

in which H is the Heaviside function and 𝑟 = ‖𝑥 − 𝑠‖, 𝑠 and 

x indicating the source and field point positions respectively. 

Integrating the second-order derivatives in Eq. (5) twice by 

parts, the following equation is obtained: 
 

∫ ∫ (
𝜕2𝜂∗

𝜕𝑡2 − 𝑐2 𝜕2𝜂

𝑑𝑥2) 𝜂𝑑𝑥𝑑𝑡 + ∫ [𝜂∗ 𝜕𝜂

𝜕𝑡
−

𝑟

0

𝑟

0

𝑡𝑓
+

0

𝜂
𝜕𝜂∗

𝜕𝑡
]

0

𝑡𝐹
∗

𝑑𝑥 − 𝑐2 ∫ [𝜂∗ 𝜕𝜂

𝜕𝑥
− 𝜂

𝜕𝜂∗

𝜕𝑥
]

0

𝑟

𝑑𝑡 =
𝑡𝐹

∗

0

∫ ∫ 𝐵𝜂∗𝑑𝑥𝑑𝑡
𝑟

0

𝑡𝐹
+

0
  

(11) 

 

Wave transmission (𝐻𝑡) refers to the magnitude of the wave 

that successfully passes beyond an obstruction and is 

determined by the transmission coefficient (𝐾𝑡) , computed 

using the subsequent formula: 
 

𝐾𝑡 =
𝐻𝑡

𝐻𝑖
= √

𝐸𝑡

𝐸𝑖
  (12) 

 

In this equation, 𝐾𝑡  represents the wave transmission, 𝐾𝑖 

stands for the reflected wave, 𝐻𝑡  embodies the value of 𝐻𝑡  

achieved by multiplying 𝐾𝑡  with 𝐻𝑖  (where 𝐻𝑖  signifies the 

initial wave height). Additionally, 𝐸𝑡 denotes the transmitted 

energy, while 𝐸𝑖  signifies the incoming energy. The 

calculation of transmitted wave energy, 𝐸𝑡  is given by the 
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expression 𝐸𝑡 =
1

8
𝜌𝑔𝐻𝑡, where 𝜌 denotes fluid density and 𝑔

signifies gravitational acceleration. 

Theorem Given 𝐽 and ℎ as the proposition function 𝑓, 𝑔 for 

[𝑢0, 𝑣0] ∈ 𝐻0
1(Ω) × 𝐿2(Ω)  there exists a unique function

𝐽 × Ω → ℝ that satisfies the equation. 

𝜕2𝑢

𝜕𝑡2 − Δ𝑢 + 𝑓(𝑢) + 𝑔 (
𝜕𝑢

𝜕𝑡
) = ℎ(𝑡, 𝑥) ∈ 𝐶(𝐽, 𝐻−1(Ω))

That fulfills the condition 𝑣 =value 𝜀 ∈ 𝐶1(𝐽) and all 𝑡 ∈ 𝐽.

𝑑

𝑑𝑡
(𝜀(𝑡)) = ∫ [ℎ(𝑡, 𝑥) − 𝑔 (

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥))]

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥)𝑑𝑥

Ω
 (13) 

Proof. The outcome arising from the presence of distinct 

values is evident within the overarching framework of the 

traditional approach, wherein the classical method converges 

with preliminary estimation mapping over the widest possible 

range. To be more precise, this occurs when the configuration 

is established. 𝐽𝛿 ∩ [−𝛿, 𝛿] for each 𝛿 > 0  for all 𝑃 >
sup  {𝑢0,  𝑣0} , The set 𝑋  endowed with the topology of

𝐶(𝐽𝛿 , 𝑉) ∩ 𝐶1(𝐽𝛿 , 𝐻) is a complete metric space, for the value

𝑣 ∈ 𝑋 , given 𝐶 (𝑣) is the unique solution of 𝑧 ∈ 𝐶(𝐽𝛿 , 𝑉) ∩
𝐶1(𝐽𝛿 , 𝐻) ∩ 𝐶2(𝐽𝛿 , 𝑉′) from the problem:

𝜕2𝑧

𝜕𝑡2 − Δ𝑧 = ℎ(𝑡, 𝑥) − 𝑓(𝑣) − 𝑔 (
𝜕𝑣

𝜕𝑡
) (14) 

𝑧(0) = 𝑢0,
𝜕𝑧

𝜕𝑡
(0) = 𝑣0 (15) 

Some authors stated that the Hybrid Finite Element Method 

(HFEM) is a computational technique that integrates the 

attributes of many finite element techniques (FEM) in order to 

address intricate engineering and physics issues. This 

methodology has been developed with the intention of 

capitalizing on the benefits offered by each individual element 

technique, thereby enhancing accuracy, efficiency, and the 

capacity to address diverse issue scenarios. Finite Element 

Methods (FEMs) are used for the resolution of issues 

occurring in open domains or volumes, while Boundary 

Element Methods (BEMs) are utilized for the resolution of 

problems specifically on domain borders. Instances of its 

use may be seen in the realm of underwater structural 

vibration analysis, wherein Finite Element Methods (FEMs) 

are employed to scrutinize interior structures, such as 

ships, while Boundary Element Methods (BEMs) are 

utilized to simulate the impact of the encompassing water. 

Based on the derivation of the unhindered homogeneous 

wave equation model in Eq. (15), a wave equation model will 

be formed with the damping of the breakwater, which is 

influenced by external forces that inhibit the propagation of 

water waves, namely the breakwater [18]. The wave damping 

process is assumed to be a modified form of the equation 

model by giving a negative value to the wave acceleration 

(−𝑢𝑡𝑡). The magnitude of the negative acceleration illustrates 
that the external force has a direction opposite to the direction 

of wave propagation, which will result in a decrease in wave 

height (𝜆) and a decrease in speed (𝑢𝑡) [32, 33]. Then based 
on the general homogeneous wave equation can be rewritten 

as: 

−𝑢𝑡𝑡 − 𝑐𝑢𝑥𝑥 = 𝑃𝑥(𝑡) → 𝑢𝑡𝑡 + 𝑐𝑢𝑥𝑥 = −𝑃𝑥(𝑡) (16) 

Eq. (16) is solved by using the separating variable method 

on the interval 𝑥(0, 𝐿) , with the initial conditions 𝑢(𝑥, 0),
𝑢𝑡(𝑥, 0) = 𝜓(𝑥) and 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0. Then the solution

of the homogeneous wave equation separator method is 𝑢𝑡𝑡 =
−𝑐2𝑢𝑥𝑥 ,  with 0 < 𝑥 < 𝐿, 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0, ∀𝑡 ≥ 0,
𝑢(𝑥, 0) = 𝜙(𝑥), with 𝑢𝑡(𝑥, 0) = 𝜓(𝑥),  Furthermore, for the

equation 𝑢(𝑥, 𝑡)  it can be written that 𝑢𝑡𝑡 = 𝑋(𝑥)𝑇"(𝑡)  and

𝑢𝑥𝑥 = 𝑋"(𝑥)𝑇(𝑡), then the 𝑢𝑡𝑡 equation, when substituted into

the separable equation above, can be written as:

𝑢𝑡𝑡 = −𝑐2𝑢𝑥𝑥 ↔ 𝑋(𝑥)𝑇"(𝑡) = −𝑐2𝑋"𝑇(𝑡) (17) 

𝑇"(𝑡)

𝑐2𝑇(𝑡)
= −

𝑋"(𝑥)

𝑋(𝑥)

The solution to solving Eq. (17) is for the problem 𝑘 = 𝜇2 =

(
𝑛 𝜋

𝐿
)

2

, it can be written that 𝜆𝑛 =
𝑐𝑛𝜋

𝑙
. So, if the 𝜆𝑛 value is

substituted into Eq. (17) it will produce: 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = ∑ {(𝐴𝑛 +∞
𝑛=1

∞
𝑛=1

𝐵𝑛) cos(𝑡) + (𝐴𝑛 − 𝐵𝑛)
𝑐𝑛𝜋

𝐿
sin(𝑡)} sin

𝑛𝜋

𝐿
𝑥 

(18) 

It can be concluded that Eq. (18) is a homogeneous equation 

in the interval 0 < 𝑥 < 𝐿. That can be written as: 

𝑢(𝑥, 0) = ∑ (𝐴𝑛 + 𝐵𝑛) sin
𝑛𝜋

𝐿
𝑥 = 𝜙(𝑥)∞

𝑛=1  (19) 

3. METHODS

3.1 Research process 

To achieve accurate simulations of wave retention, the study 

employs a sequence of computer-based analytical techniques 

rooted in the optimization process for wave retardation. 

Utilizing the boundary element approach to obtain both 

elemental and comprehensive solutions for a model function, 

the investigation delves into the general equation concerning 

wave retardation versus permeable wave-breakers, as 

documented in existing literature. The outcome is a 

computational exploration that contrasts the wave model 

against a stable permeable wave-breaker, showcasing a 

simulation depicting a notably rapid reduction in wave height. 

The comprehensive examination of shallow water waves 

involves multiple phases. These encompass discretizing the 

general water wave equation, as well as determining the initial 

values and boundary conditions of the model. Subsequently, 

the wave equation needs to be modified to incorporate 

breakwater variables aimed at inducing a negative sea wave 

acceleration (−𝑢𝑡𝑡). This accounts for the opposing resistance

of sea water, intended to counteract the wave’s direction and 

reduce values associated with wavelength (𝜆), wave velocity 

(𝑣), and wave momentum 𝑃𝑥(𝑡).

Once the modified wave equation involving a seawater 

breakwater is established, the subsequent step involves 

conducting simulations. This is accomplished by employing 

the boundary element method and the hybrid finite element 

approach (Finite Element Method) through COMSOL 

Multiphysics 5.6 within the domain of the breakwater model. 

This simulation yields a representation of amplitude, velocity, 

and energy distribution across various iterations of 

propagation scenarios. 

1980



 

3.2 2D shallow water wave modelling 

 

If a crash, explosion, or load as a result of an earthquake 

occurs, a time-dependent signal is produced and transmitted 

across the medium as a wave (voltage). Typically, this kind of 

wave moves in all three directions of space. Under certain 

circumstances and presumptions, idealizing such a medium as 

a one-dimensional medium is equivalent to supposing that a 

large ocean has the same depth of penetration. The wave that 

slows down in the bar will travel back and forth according to 

the way it relies on time. Assume that the wind that is always 

blowing over the sea surface is the type that works on the 

moving wave by looking at the little wave pieces on the surface. 

(i.e., from point 𝑥 to 𝑥 + Δ𝑥) on the axis 𝑥 (see Figure 2). 

 

 
 

Figure 2. Projection of wave force 

 

The differential equation of the ocean waves may be found 

(at the gap (𝑥, 𝑥 + Δ𝑥)) by assuming the newtonian force that 

operate on the section of the sea surface. On the ocean’s 

surface, there are curving lines that show a tense style. The 

projections of the 𝐹1 cos 𝛼 and 𝐹2 cos 𝛼 on the 𝑥-axis, when 

the 𝐹1 operates on the 𝑃-point and the 𝐹1 cos 𝛽 and 𝐹2 cos 𝛽 

operates at the 𝑄 -point. The forces that function in the 

horizontal direction should not change since everything on the 

surface travels vertically and nothing else. So, 𝐹1 cos 𝛼 =
𝐹2 cos 𝛽 = 𝐹  by applying the style’s outcome on the 𝑥-axis 

forces projection rule. Next, the projection of the forces on the 

𝑦-axis is −𝐹 sin 𝛼 and 𝐹2 sin 𝛽. If the speed of change occurs, 

it can be written that: 

 

𝐹2 sin 𝛽 − 𝐹1 cos 𝛼 = 𝜌. Δ𝑥. 𝑢𝑡𝑡 (20) 

 

The product of 𝜌Δ𝑥 corresponds to the mass of a portion of 

seawater, while 𝑢𝑡𝑡 denotes the second order derivative of the 

object’s position, representing the acceleration magnitude of 

the entity. From the Eq. (20), it can be written that: 

 

tan 𝛽 − tan α =
𝜌Δ𝑥

𝐹
. 𝑢𝑡𝑡  (21) 

 

The gradients on 𝑥  and 𝑥 + 𝛥𝑥  are represented by the 

values of tan 𝛽 and tan 𝛼, respectively. This can be expressed 

as tan 𝛼 = 𝑢𝑥(𝑥, 𝑡) and tan 𝛽 = 𝑢𝑥(𝑥, 𝑥 + Δ𝑥) . This 

relationship can be formulated as follows: 

 

tan 𝛽 − tan α =
𝜌Δ𝑥

𝐹
. 𝑢𝑡𝑡  

𝑢𝑥(𝑥, 𝑥 + Δ𝑥, 𝑡) − 𝑢𝑥(𝑥, 𝑡) =
𝜌Δ𝑥

𝐹
. 𝑢𝑡𝑡  

∴
1

Δ𝑥
[𝑢𝑥(𝑥, 𝑥 + Δ𝑥, 𝑡) − 𝑢𝑥(𝑥, 𝑡)] =

𝜌

𝐹
. 𝑢𝑡𝑡  

(22) 

 

For Δ𝑥 → 0,  the function bounded at lim
Δ𝑥→0

1

Δ𝑥
[𝑢𝑥(𝑥, 𝑥 +

Δ𝑥) − 𝑢𝑥(𝑥, 𝑡)] = 𝑢𝑥𝑥, then it can be written that 𝑢𝑥𝑥 =
𝜌

𝐹
. 𝑢𝑡𝑡, 

so that it may be simplified to 𝑐2 =
𝐹

𝜌
. 

 

 

4. RESULT AND DISCUSSIONS 

 

In building a simulation of wave propagation towards a 

breakwater, it is necessary to initialize the wave model by 

determining the geometry of the wave model. At this stage a 

2D wave model will be formed using COMSOL Multiphysics 

5.6 as shown in Figure 3. 

 

 
 

Figure 3. Breakwater geometry model 

 
 

 
 

(a) Inlet model 
 

 
(b) Outlet model 

 

Figure 4. Boundary condition for inlet and outlet model 
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In the wave model, the sides that will be the inlet and outlet 

will be defined with the boundary conditions of each domain. 

The breakwater model walls in Figure 4, is formed with 

geometric constraints. 

 

𝒖. 𝒏 = 0  
−𝛤ℎ . 𝒏 = 0  

−𝛤ℎ . 𝒏 = 𝑔
ℎ2

2
  

(23) 

 

where, the 𝒖 and 𝒏 vectors denote the velocity values at the 

coordinates 𝑢(𝑥, 𝑦, 𝑡) and the momentum of the flux geometry 

model, respectively. The 𝜞ℎ value is the magnitude of the flux 

conservation of the momentum at each coordinate with the 

calculation for each coordinate being 𝒖𝑥 . 𝒒𝑥 +
𝑔ℎ2

2
. 

In the process of meshing the model with finite elements, it 

was found that the size of the elements formed was 185,845 

with 1,772 edges, this resulted in the need for computation in 

the wave model iteration so as to produce a large change in the 

value of the wave propagation with respect to time. In the 

simulation carried out, the research will test how the effect of 

speed on the distribution of wave velocity values after wave 

attenuation with each speed of 1m/s, 1.5m/s, 2m/s. 

Furthermore, the simulation will be continued with the 

modification of the breakwater model to the position length of 

the breakwater with a distance of 10m, 15m and 20m 

respectively. 

Figure 5 shows the wave breaking process with a submerged 

breakwater model that has permeable properties and 

propagates in shallow water. The magnitude of the velocity 

fraction each time is shown in Figure 5 shows the propagation 

of waves that propagate after a break occurs using a porous 

submerged breakwater. The amplitude is generated against 

time and oscillates up to the outlet of the propagation area. The 

convergence of the wave amplitudes shows that the waves 

resulting from the wave splitting process show significant 

results, with as many as 4,836 iterations during 𝑡 = [0,15]. 
 

 
 

Figure 5. Breakwater simulation 

 

Figure 6 shows the solution of the speed of wave 

propagation at 𝑡 = [0, 10]  with the color representation 

showing the critical area experiencing the greatest velocity. 

Furthermore, the representation of the stability of wave 

propagation will be shown in Figure 7. 

Figure 7 shows the propagation of waves that propagate 

after a break occurs using a porous submerged breakwater. The 

amplitude is generated against time and oscillates up to the 

outlet of the propagation area. The convergence of the wave 

amplitudes shows that the waves resulting from the wave 

splitting process show significant results with as many as 

4,836 iterations during 𝑡 = [0, 10]. The resolution of the wave 

amplitude to the elements is shown in Figure 8. 

 

 
 

(a) t=2.5s 
 

 
 

(b) t=3.7s 
 

 
 

(c) t=10s 

 

Figure 6. Simulation of the velocity of the breakwater 

breaking process 

 

 
 

Figure 7. Water wave amplitude breaking 

 

 
 

Figure 8. Wave amplitude simulation in the wave 

breaking process 

 

The completion iteration is carried out for 4.386 for 𝑡 =
[0, 15]. Figure 8 shows that the muted water waves show a 

very critical amplitude before and after the wave breaking 

process is carried out, the convergence of the water waves 

shows that the amplitude on the outlet side becomes lower in 
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the simulation so this shows that the wave breaking process 

will provide amplitude attenuation and wave propagation 

speed the minimum. For parameter variations, a simulation is 

carried out on differences in wave propagation velocity of 

1m/s, 1.5m/s, 2m/s to see differences in the distribution of 

wave speed and amplitude, then the breakwater distance 

parameter with a constant arrival speed of 1m/s shown in 

Figure 9. 

 
 

 
 

(a) Velocity of 1m/s 
 

 
 

(b) Velocity of 1,5m/s 
 

 
 

(c) Velocity of 2m/s 

 

Figure 9. Resistance of breakwaters to changes in speed 

 

The breakwater will dampen the waves and break the wave 

propagation at each coordinate. Changes in the conservation of 

momentum will result in a change in the velocity value for 

each component at the coordinates 𝑢(𝑥, 𝑦, 𝑡). The magnitude 

of the change in velocity that occurs will have an impact on the 

final velocity of the wave amplitude. The offshore simulation 

of the breakwater was carried out by modifying the geometry 

model of the breakwater with constant incoming wave velocity 

𝑣  for distance variations of 10m, 15m, and 20m. The 

difference in the position of the breakwaters gives a different 

wave distribution. The model of the breakwater with changing 

distances is shown in Figure 10. 

 
 

 
 

(a) Distance of 10m 
 

 
 

(b) Distance of 15m 
 

 
 

(c) Distance of 20m 

 

Figure 10. Changes in velocity after wave damping with 

variations in breakwater distance with conditions 𝑣=1m/s 
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4.1 Stability simulation 

 

The stability of wave propagation is indicated by the 

amplitude distribution of sea water waves, given three critical 

points from the breakwater respectively 1.196m, 1.696m, and 

2.196m for variations in the distance of the breakwater, namely 

9.52m, 14.52m, and 19.52m. Simulation of wave amplitude 

distribution for variations in the position of the breakwater is 

shown in Figure 11. 

 
 

 
 

(a) Distance of the breakwater 9.52m 
 

 
 

(b) Distance of the breakwater 14.52m 
 

 
 

(c) Distance of the breakwater 19.52m 

 

Figure 11. Stability simulation with differences wave 

position 

 

From the simulation results it is shown that the difference in 

the distance of the breakwater that is carried out will give a 

difference in the value of the amplitude distribution (𝜆) for 

each position. The computations are carried out on an interval 

of 0<t<15 and show that a short distance will give a large 

amplitude, which means that the wave splitting does not work 

optimally because it gives such a large wave height value. 

Placement of the breakwater with a distance of 19.52m gives 

a low wave height, it can be seen that the wave amplitude starts 

to occur at t=10s the computation is done. The height of each 

wave is shown in Table 1. 

 

Table 1. Amplitude magnitude to variety of position 

 
𝒖(𝒙, 𝒕) 𝒉𝒃=1.196 𝒉𝒃=1.696 𝒉𝒃=2.196 

𝑥=9.52 0.13439 0.13438 0.13097 

𝑥=14.52 0.13988 0.13859 0.13161 

𝑥=19.52 0.043203 0.12468 0.12515 

 
 

 

 
 

(a) Variations in speed 1m/s 
 

 
 

(b) Variations in speed 1.5m/s 
 

 
 

(c) Variations in speed 2m/s 

 

Figure 12. The difference between the change in the value of 

𝜆 and the variation in the speed of the incident wave 

 

Figure 12 represents the change in amplitude that occurs due 

to wave breaking based on variations in propagation speed. 

Waves that come at 2m/s have the biggest wave height, 
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whereas waves at 1m/s have the lowest wave height. The 

simulation results of wave heights for speed variations are 

shown in Table 2. 
 

Table 2. Amplitude magnitude to variety of position 
 

𝒖(𝒙, 𝒕) 𝒉𝒃=1.196 𝒉𝒃=1.696 𝒉𝒃=2.196 

𝑢𝑡=1 0.039990 0.12481 0.12538 

𝑢𝑡=1,5 0.090519 0.12726 0.12909 

𝑢𝑡=2 0.23979 0.21846 0.23229 

 

Table 1 shows the magnitude of the wave height that occurs 

in the interval t(0, 15), which gives the result that for a 

breakwater that is 19.52m, it gives a large wave height on the 

surface that is equal to 0.12515m, which is the minimum wave 

height value from a variation of 9.52m, which is 0.13097m, 

and a distance of 14.52m produces a wave height of 0.13161m. 

To provide a difference in the computational results that have 

been obtained, computations will be carried out on variations 

in the speed of the incoming wave propagation with the 

assumption that the breakwater is positioned at=16.92m with 

variations in speed, namely 1m/s, 1.5m/s, and 2m/s. The 

simulation is shown in Figure 12. 

Table 2 shows the magnitude of the wave height that occurs 

in the interval t(0, 15), which gives the result that the incoming 

wave with=1m/s gives a large wave height on the surface that 

is equal to 0.12538m, which is the minimum wave height value 

of the variation=1.5m/s of 0.12909m, and=2m/s produces a 

wave height of 0.23229m. The advantage of the results 

obtained can be seen that the distance between the breakwaters 

can affect the stability of sea waves with different wave speeds. 

This simulation makes it possible to identify and address 

potential problems or weaknesses in a design prior to 

implementation in the real-world. While simulation software 

such as COMSOL can provide an initial view of how a design 

will perform, validating the design through comparison with 

real-world data and results is essential. This helps ensure that 

the simulation model accurately represents the physical 

phenomena that occur in the field. 
 

 

5. CONCLUSIONS 
 

Based on the research that has been done, it can be 

concluded that the simulation of wave attenuation has a 

significant impact on the value of the wavelength, and the 

magnitude of the wave propagation velocity generated by the 

simulation time is 15 seconds with several simulation 

variations, namely variations in the placement of the 

breakwater at a distance of 10m, 15m, and 20m. the smaller 

the wave height and, consequently, the more stable the 

simulation of the component’s movement’s direction and 

speed on [𝑥, 𝑦, 𝑡] for each 𝜆1 = [20, 2, 15] is 0,12515m, 𝜆2 =
[15, 2, 15] is 0,13161m, and 𝜆3 = [10, 2, 15] is 0,13097m. 
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