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This paper introduces a deep learning-based approach (DLBA) tailored for fault detection 

and condition monitoring in industrial machinery. The presented DLBA architecture is 

assessed utilizing a dataset derived from a CNC milling machine, as part of the University 

of Michigan's System-level Manufacturing and Automation Research Testbed (SMART). 

The results underscore the substantial efficacy of the LSTM model, evidenced by a 

precision of 94% and an F1 score of 95%. These findings serve as a robust foundation for 

the identification of CNC machining failures within the manufacturing industry. The DLBA 

architecture constitutes a comprehensive framework for efficient fault detection, 

incorporating a variety of network models, including MLP, CNN, CNN auto-encoder, 

LSTM, and ResNet. Each model leverages its unique strengths in the analysis of complex 

data. Genetic Algorithm (GA) optimization is employed for parameter tuning across all 

models, enhancing their performance. The findings from this study contribute significantly 

to the development of more reliable and cost-effective predictive maintenance systems, 

enabling manufacturers to detect faults early on, thus preventing expensive downtime and 

mitigating safety risks. 
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1. INTRODUCTION

Predictive maintenance is of paramount importance across 

numerous industrial sectors, providing essential foresight into 

potentially costly and hazardous equipment malfunctions. In 

this arena, troubleshooting serves as a proactive measure to 

forestall technical issues and extend machinery lifespan. Early 

detection of faults empowers companies to take pre-emptive 

action, minimising operational downtime and circumventing 

disruptions to production processes. 

The importance of timely fault detection in precluding 

substantial repair costs and operational interruptions in 

industrial settings has been emphatically highlighted in prior 

research. As Melgarejo and Agudelo [1] elucidated, the 

accurate detection and classification of bearing faults present 

a considerable challenge due to their nuanced manifestations 

and intricate identification prerequisites. The deployment of 

advanced methodologies and efficient signal processing 

techniques is, therefore, indispensable. 

Majidi et al. [2] explore the recognition of patterns in partial 

discharge, an electrical phenomenon associated with electrical 

faults. Through the utilization of parsimonious representation 

and artificial neural networks, the accuracy of fault detection 

in processing complex signals is enhanced. 

Similarly, Azamfar et al. [3] address the diagnosis of 

gearboxes operating under variable conditions. The 

complexity of these systems necessitates robust and adaptive 

measures such as transfer learning and deep convolutional 

networks for effective fault detection. 

The role of Principal Component Analysis (PCA) in early 

failure detection is emphasised by Sarita et al. [4]. The 

development of techniques to identify anomalies at their 

inception using collected data is of utmost importance. 

Amy et al. [5] concentrate on the reliability analysis of 

electronic equipment subjected to shock and vibration. The 

identification of environmental influences on device 

performance and the development of relevant reliability 

measures is crucial. 

Moreover, the presence of unstructured data and noise 

within sensor recordings poses a significant challenge, 

potentially compromising the accuracy of fault detection 

models. Cumulatively, it is apparent that maintenance 

troubleshooting significantly impacts business performance 

by reducing maintenance costs, decreasing downtime, and 

augmenting operational safety. Its application is, therefore, 

vital for companies striving to maintain a competitive edge in 

a rapidly evolving market. 

Notwithstanding the variety of challenges addressed 

through diverse methodologies, deep learning has 

demonstrated substantial advancements in prediction, 

particularly in diagnostics. The progress made in this arena has 

opened new avenues for identifying faults in industrial 

equipment. A plethora of recent research articles exhibit 

notable results, underscoring the effectiveness of deep 

learning in diagnostic applications. 

Yet, amid these promising developments, the challenge of 

selecting the most suitable deep learning model persists. Given 

the myriad of articles leveraging deep learning for diagnostics, 

the ability to discern the optimal model for a given task is 

paramount. Each piece of research often claims to present the 

superior model, compounding the complexity of model 

selection. 
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In view of the plethora of models and the importance of 

informed decision-making, an in-depth comparison of existing 

approaches becomes essential. This study aims to scrutinize 

five of the most frequently employed deep learning network 

models from the past decade to uncover their strengths, 

weaknesses, and to provide recommendations for model 

selection. 

This investigation encompasses various deep network 

models, including the Multilayer Perceptron (MLP), 

Convolutional Neural Network (CNN), CNN autoencoder, 

Long Short-Term Memory (LSTM), and Residual Network 

(ResNet). Each model boasts unique features beneficial for 

analysing complex data and detecting fault signals. 

A dataset derived from a CNC milling machine, part of the 

System-level Manufacturing and Automation Research 

Testbed (SMART) at the University of Michigan, is used for 

model evaluation. A genetic algorithm (GA) is employed for 

parameter optimisation to enhance model performance. The 

primary objective is to present a clear and comprehensive deep 

learning-based architecture for efficient fault detection in 

industrial equipment. 

The results underscore the remarkable effectiveness of the 

LSTM model, exhibiting superior precision, recall, and F1 

score. These findings provide a robust foundation for 

identifying machining failures in manufacturing, promoting 

the adoption of deep learning in predictive maintenance 

systems. 

By combining the advancements in deep learning 

diagnostics with the necessity of model selection, this research 

aims to provide valuable insights for industry practitioners and 

researchers dedicated to improving fault detection in industrial 

equipment. 

By identifying the top-performing models and assessing 

their efficacy, this study contributes to the evolution of deep 

learning-driven diagnostic techniques. This research addresses 

the lack of guidance on model selection and configuration 

specific to CNC machines, fostering the adoption of more 

efficient and reliable methods for fault detection. 

The subsequent sections delve into the various deep 

network models employed, elaborate on the evaluation and 

optimisation processes, and discuss the tangible implications 

of the approach. The potential for enhancing equipment 

reliability and reducing operational costs across the 

manufacturing landscape is underscored. 

 

 

2. RELATED WORK 
 

The deployment of deep learning models for fault diagnosis 

is garnering increased attention within industrial research 

circles. Numerous scholars have delved into a variety of deep 

learning-based approaches to address this complex issue. The 

ensuing works offer insightful perspectives on recent 

progressions in this field. 

A comprehensive review by Saufi et al. [6] grapples with 

the challenges and prospects of employing deep learning 

models for machine fault detection and diagnosis. The authors 

expound on the merits and constraints of diverse deep learning 

models and spotlight their applications across various 

industrial scenarios. 

In an innovative response to the critical challenge of 

pipeline leakages, Obaid et al. [7] have crafted a deep learning 

approach that employs image-based edge detection techniques 

for oil spill identification. Utilizing aerial imagery from drones, 

the study showcases the efficiency of the DexiNed algorithm 

at a pivotal 10-meter height, setting a new standard for 

environmental monitoring in the oil industry. 

Taking a more focused approach, Yang et al. [8] concentrate 

on diagnosing faults in electric motors via deep learning 

algorithms. Four traditional types of deep learning models are 

explored, with the authors accentuating their use in electric 

motor fault detection. 

Neupane and Seok [9] scrutinize the application of deep 

learning methodologies in analysing the Case Western 

Reserve University (CWRU) bearing fault dataset. The 

authors elucidate the challenges associated with leveraging 

deep learning for bearing fault diagnosis and propose a method 

for selecting the most appropriate learning model for a specific 

dataset. 

Further extending the application of deep learning to fault 

diagnosis, Jian et al. [10] propose the use of a specialized deep 

learning algorithm employing stacked autoencoders (SAEs) 

for diagnosing faults in coal mills. The potential of this 

approach in this particular domain is demonstrated. 

In the context of Industry 4.0's transformative impact, 

Mohammed et al. [11] propose an IoT and machine learning-

based predictive maintenance system tailored for electrical 

motors. By integrating cutting-edge ML models and MQTT 

messaging within the Industrial IoT framework, their system 

skillfully anticipates equipment failures, significantly 

streamlining maintenance processes. 

Glaeser et al. [12] delve into the application of deep learning 

for fault detection in industrial cold forging processes. 

Utilizing DLBA for fault detection, the authors employ a 

convolutional neural network classifier to identify defect 

conditions, subsequently utilizing a decision tree model for 

defect classification. 

A particular case study conducted by Rao et al. [13] put 

forth a machine learning approach for diagnosing faults in 

industrial equipment. In this research, the authors utilized 

support vector machines (SVMs) and artificial neural 

networks (ANNs) to classify varying types of faults. 

Addressing critical needs in neonatal care, Mahdi et al. [14] 

introduce a multi-faceted fault detection and monitoring 

system for infant incubators, powered by machine learning 

classifiers and the compact Raspberry Pi 4. Their system's 

adeptness in utilizing Decision Tree, Support Vector Machine, 

and Neural Network algorithms not only elevates care 

standards but also ensures the vital comfort of preterm 

newborns through advanced sensor technology. 

A synthesis of the key insights derived from these studies is 

as follows: 

• Deep learning models can be effectively deployed for the 

detection and diagnosis of faults in industrial machinery. 

• Diverse deep learning models possess distinct strengths 

and weaknesses. The optimal model for a specific application 

is contingent on the unique characteristics of the data. 

• Challenges persist in the deployment of deep learning for 

fault diagnosis, including the requirement for substantial data 

quantities and the complexity of interpreting the output of deep 

learning models. 

Despite the significant progress demonstrated by the 

aforementioned studies in the field of fault detection, they do 

not necessarily offer definitive guidance for researchers 

navigating a particular data set. Consider, for instance, data 

derived from numerically controlled (CNC) machines. The 

objective in this scenario is to halt or schedule maintenance 

programs when specific faults are detected in CNC-controlled 
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equipment. The questions that researchers might pose in this 

context could include: 

• Which models are most suitable for this task? 

• How many layers should be incorporated into these 

models? 

• What is the ideal number of neurons, units, or filters 

required per layer? 

• Which models are best equipped to handle multiple 

outputs? 

 

Table 1. Papers on fault detection on CNC machines 

 
Papers Model Used Accuracy (%) Outputs 

[15] SVM, XGBoost, RF 
62,  

99, 99 
1 

[16] 
DT, ANN, KNN, SVM, 

LR, MNB 

99, 94, 

90, 87, 

60, 57 

1 

[17] LSTM-SVM 99 1 

[18] Autoencoder 100 1 

[19] CNN 95 1 

 

A critical examination of the literature reveals a dearth of 

useful guidance in addressing the posed research questions, as 

the studies cited previously tend to be overly specific or 

excessively broad. What is indeed required is a reproducible 

framework and comparative studies that specifically deal with 

the classification of machining faults in CNC machines. It is 

within this context that the current study is positioned.  

Table 1 presents a compilation of studies that have sought 

to address the problem of identifying machining faults in CNC 

machines. 

Park et al. [15] applied a variety of machine learning 

algorithms to classify machining faults in CNC machines, with 

accuracies of 62%, 99%, and 99% being accomplished 

respectively. However, a reproducible framework for 

comparing different deep learning models was not provided in 

their study. 

Similarly, Shurrab et al. [16] also employed machine 

learning algorithms for fault classification in CNC machines, 

achieving accuracies of 99%, 94%, 90%, 87%, 60%, and 57%, 

respectively. However, their study did not specifically 

concentrate on deep learning models. 

On the other hand, Polat [17] utilized a combination of an 

LSTM network and an SVM to classify data from an EMCO 

Concept Mill CNC, obtaining exceptional results with an 

accuracy of 99%. 

Zhang et al. [18] proposed an autoencoder model to tackle 

the problem of permanent magnet synchronous machine 

(PMSM) fault detection in CNC machines, achieving an 

accuracy of 100%. However, their study did not focus on real-

time fault detection. 

Lastly, Chung et al. [19] proposed a real-time fault detection 

solution for CNC machines using a convolutional neural 

network with binary weights, achieving an accuracy of 

95.07%. However, their work did not include a comparative 

study of different deep learning models. 

The present study casts its focus on fault diagnosis in CNC 

machines [15-19], an area that is attracting burgeoning interest 

in the sphere of industrial research. Despite significant strides 

in the realm of fault detection, conspicuous gaps remain 

evident. The deficiencies that this paper intends to address can 

be summarized as follows: 

• The absence of specific guidance pertaining to model 

selection and configuration in the context of CNC machine 

fault diagnosis. 

• The lack of concrete methodologies for handling multi-

output classification issues in fault diagnosis for CNC 

machines. 

• The dearth of comprehensive, reproducible frameworks 

for tackling the challenges associated with the classification of 

machining faults in CNC machines. 

The current paper endeavors to propose a reproducible deep 

learning approach for fault diagnosis in CNC machines that 

sufficiently addresses these identified gaps. A comparison of 

five state-of-the-art deep learning models is conducted, and 

practical recommendations for model configuration are 

provided. Furthermore, a novel method for resolving multi-

output classification problems in fault diagnosis for CNC 

machines is proposed. The ensuing section of this paper will 

detail the methodology employed. 

 

 
3. METHODOLOGY 

 

The Before presenting the overall architecture, it is 

important to outline its main components. The overall 

architecture we have used is shown in Figure 1. 

After first partitioning our dataset into a training set and a 

test set, we feed this data into a model to train it. The model 

can be of different types such as MLP, CNN, Autoencoder 

CNN, LSTM and ResNet. The model is then optimized using 

a genetic algorithm. Optimizable parameters include the 

number of units, filter size, kernel size, choice of activation 

function and number of layers. Once the optimization is 

complete, a prediction vector is generated for each training 

input. This vector contains three elements: tool condition, 

machine completion and successful visual inspection. The 

following sections provide a more detailed description of each 

of these elements. 

 

3.1 Dataset used 

 

The dataset used in our article is called the "CNC Milling 

Dataset - University of Michigan SMART Lab". The data was 

collected from machining experiments conducted on wax 

blocks using a CNC milling machine at the University of 

Michigan SMART Lab. This dataset offers opportunities for 

studying areas like tool wear detection and inadequate 

clamping detection. 

The dataset comprises multiple files, with "train.csv" being 

the primary one. This file contains general data from 18 

different experiments (Table 2). 

In addition to the "train.csv" file, the dataset also includes 

files named "experiment_01.csv" to "experiment_18.csv". 

Each file contains time series data collected from the 18 

experiments, with a sampling rate of 100ms. Time series 

measurements are available for the CNC motors (X, Y, Z axes, 

and spindle), along with other variables related to the CNC 

machine (Table 2, Table 3). The dataset contains 25,286 

entries, as depicted in Figure 2. Specifically, for the output 

"tool condition" we have 63.1% data in class 1 and 36.9% in 

class 0. Regarding the output "machining finalized" 74.4% of 

the data belongs to class 1, while 25.6% is in class 0. Lastly, 

for the output "passed visual inspection" we have 52.4% data 

in class 0 and 47.6% in class 1. 

These characteristics are repeated for the Y and Z axes as 

well as the spindle (S). Additionally, the characteristics of the 

execution program (refer to Table 4) can be included, resulting 
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in a total of 48 characteristics. 

These features provide detailed information on machining 

operations and CNC parameters, making the dataset a valuable 

resource for research and analysis of machining processes. 

In our study, we used a train-test split approach to partition 

the dataset into training and testing subsets. Specifically, we 

divided the dataset into training data (X_train, y_train) and 

testing data (X_test, y_test) using a ratio of 80:20. We ensured 

that the data shuffling and stratification were applied during 

this process to maintain a balanced distribution of classes. 

While we did not explicitly employ any specific regularization 

techniques, such as dropout or L1, L2 regularization, our 

emphasis was on optimizing hyperparameters using a genetic 

algorithm to mitigate overfitting. The genetic algorithm's 

iterative optimization process, combined with the appropriate 

choice of hyperparameters, serves as a means of promoting 

model generalization and preventing overfitting. 

Having laid the groundwork with the data used, we now 

move on to the essential stage of data preprocessing to 

guarantee the quality and readiness of our dataset for further 

analysis. 

 

 
 

Figure 1. Framework proposed 

 

Table 2. The train.csv file 

 

Features Description 

No Experiment number 

material Material (wax) 

feed_rate Relative feed speed of the cutting tool along the workpiece (mm/s) 

clamp_pressure Pressure used to hold the workpiece in the vice (bar) 

tool_condition Tool condition (unworn or worn) 

machining_finalized Indicator if machining has been completed without moving the part 

passed_visual_inspection Indicator of whether the part has passed visual inspection 

 

Table 3. Characteristics of sub-data sets experiment_01.csv to experiment_18.csv, X axis  

 
Features Description 

X1_ActualPosition Actual position of workpiece X axis (mm) 

X1_ActualVelocity Actual workpiece X-axis speed (mm/s) 

X1_ActualAcceleration Actual X-axis acceleration (mm/s²) 

X1_CommandPosition X axis reference position (mm) 

X1_CommandVelocity X axis reference speed (mm/s) 

X1_CommandAcceleration X-axis reference acceleration (mm/s²) 

X1_CurrentFeedback Current (A) 

X1_DCBusVoltage Voltage (V) 

X1_OutputCurrent Output current (A) 

X1_OutputVoltage Output voltage (V) 

X1_OutputPower Output power (kW) 

 

Table 4. Characteristics of the CNC execution program 

 
Features Description 

M1_CURRENT_PROGRAM_NUMBER Program number under which it is listed on the CNC 

M1_sequence_number Line of G-code being executed 

M1_CURRENT_FEEDRATE Instantaneous spindle feed speed 

Machining_Process Machining step in progress 
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Figure 2. Distribution of outputs criteria 

 

3.2 Data pre-processing 

 

To ensure the robustness and effectiveness of our models, a 

crucial preprocessing step involved the utilization of the 

standard scaler technique on our input data. This approach 

normalized the data by transforming each feature to have a 

mean of zero and a standard deviation of one. By employing 

standard scaler, we not only mitigated the impact of varying 

scales among different features but also facilitated the 

convergence and performance of our models during training. 

This preprocessing step played a pivotal role in ensuring that 

each feature's contribution to the model's performance was 

balanced, and thus, led to more reliable and accurate outcomes. 

The standardized data was then effectively utilized for training 

and evaluating our deep learning models, contributing to the 

overall success of our fault diagnosis approach for CNC 

machines. The formula for standard scaler transformation is 

given by Eq. (1): 

 

x
z





−
=   (1) 

 

where: 

• z represents the standardized value of the feature. 

• x is the original value of the feature. 

• µ is the mean of the feature. 

• σ is the standard deviation of the feature. 

This transformation ensures that the feature's distribution 

has a mean of zero and a standard deviation of one, making it 

suitable for various machine learning algorithms, particularly 

those that are sensitive to the scale of features. Having 

prepared and standardized the data using the standard scaler 

transformation, we can now delve into the optimization 

process with GA that lies at the core of our methodology.  

The application of GA provides us with a systematic 

approach to fine-tuning the hyperparameters of our deep 

learning models. By employing the principles of natural 

selection and evolution, GAs enables us to navigate the vast 

search space of possible configurations efficiently. In the 

subsequent sections, we will delve into the details of our 

approach, starting with an exploration of the Root Mean 

Square Error (RMSE), a pivotal performance metric. 

Understanding RMSE and its role in evaluating model 

accuracy is essential before we proceed to outline how we 

leverage genetic algorithms to discover optimal 

hyperparameters for our multi-layer perceptron (MLP), 

convolutional neural network (CNN), and variational 

autoencoder with convolutional neural network (VAE CNN) 

models. This dual focus on RMSE and genetic algorithms 

empowers us to enhance the models' performance on the CNC 

Milling Dataset and extract meaningful insights from the data. 

3.3 Root Mean Square Error (RMSE) 

 

The Root Mean Square Error (RMSE) is a widely used 

performance metric in regression analysis and machine 

learning to quantify the accuracy of a predictive model's 

predictions. It measures the average squared differences 

between the predicted values and the actual values. RMSE 

provides an intuitive understanding of how well the model's 

predictions align with the true values, considering both the 

magnitude and direction of the errors. The formula for 

calculating RMSE is as follows Eq. (2): 

 

( )
2

1

ˆ
n

i i

i

y y

RMSE
n

=

−

=


  
(2) 

 

where: 

• n is the number of data points. 

• yi represents the actual (true) value of the i-th data 

point. 

• 𝑦̂𝑖 represents the predicted value of the i-th data point. 

In our study, we employ RMSE as the fitness evaluation 

metric within the Genetic Algorithm (GA) optimization 

process. The utilization of RMSE ensures that we prioritize 

model architectures that exhibit accurate predictions on the 

test dataset. The lower the RMSE value, the closer the 

predicted values are to the actual values, indicating better 

model performance. With a comprehensive understanding of 

RMSE and its significance, we proceed to describe the GA 

methodology that we have implemented to optimize our model 

architectures and hyperparameters, aiming to enhance 

predictive accuracy further. 

 
3.4 Genetic Algorithm (GA)  

 

In this paper, we have implemented a specific algorithm for 

optimizing the parameters of our models, as presented in Table 

5. In our methodology, we employed a genetic algorithm to 

optimize the architecture of each model, considering its 

specific type. 

The genetic algorithm employs an iterative approach to 

identify the optimal hyperparameter values [20-22]. The 

hyperparameters considered are as follows: 

 

• Number of filters per CONV1D layer (for models with 

convolutional layers). 

• Kernel size for CONV1D layers. 

• Number of units per LSTM layer. 

• Activation functions: we considered the Relu, sigmoid, 

and tanh activation functions. 
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• Optimizer: We used the Adam, Sgd, and RMSprop 

optimizers. 

• Learning rate: We defined a set of possible learning rates, 

including 0.001, 0.002, 0.005, 0.01, and 0.1. 

 

Table 5. Pseudo-code genetic algorithm used 

 
Algorithm 1: Genetic_Algorithm 

 Output: Best_Individual 

 Begin: 

1  Generate_Initial_Population () 

2  Set best_individuall_overall = None 

3  For each generation G from 1 to N: 

4      Begin 

5         Evaluate_Fitness(Population[G], 

best_individuall_overal) 

6      Select_Parents(Population[G]) 

7      New_Population = [] 

8  While size of New_Population < Population_Size: 

9              Begin 

10                     Parent1 = Select_Parent() 

11                    Parent2 = Select_Parent() 

12                    Child1, Child2 = Crossover (Parent1, Parent2) 

13                  Mutate (Child1) 

14                  Mutate (Child2) 

15                 Add Child1 to New_Population 

16                 Add Child2 to New_Population 

17             End 

18         Population[G+1] = New_Population 

19  Best_Individual= Select_Best_Individual(Population[N], 

best_individuall_overall) 

10 Return Best_Individual 

 End 

 

The rationale behind the chosen hyperparameter ranges in 

our study is a result of a combination of both literature insights 

and experimental tuning. We drew from existing research and 

best practices in the field of deep learning to establish initial 

ranges that are commonly considered effective for each 

hyperparameter. These ranges were aligned with 

recommendations from literature and experienced 

practitioners. However, to tailor these ranges specifically to 

our problem and dataset, we performed extensive 

experimental tuning. Our iterative process involved testing 

various combinations of hyperparameters within different 

ranges to understand their effects on the model's performance. 

This empirical approach allowed us to identify ranges that led 

to optimal results on the CNC Milling Dataset. By considering 

both established guidelines and empirical results, we aimed to 

strike a balance between relying on existing knowledge and 

adapting to the unique characteristics of our problem domain. 

The genetic algorithm evaluated each combination of 

hyperparameters using a predefined evaluation function called 

Fitness, that provides a measure of error on the test data. 

Fitness evaluation is an important step in the genetic algorithm. 

It allows us to evaluate the quality of the individuals and select 

those that will be used for reproduction and mutation. In our 

case, we used the RMSE on the test set as the fitness to 

evaluate the individuals. 

By using the RMSE on the test set as the fitness, we were 

able to select the individuals that achieved the best results on 

the test data. These individuals were then used to create the 

final model. 

We also used other performance metrics to evaluate the 

individuals, such as accuracy and precision. However, we 

found that the RMSE was the most effective metric for 

selecting the best-performing individuals. 

Additionally, we incorporated a mutation function to 

facilitate a broader exploration of the hyperparameter space. 

The mutation function randomly selected a target attribute 

from the defined hyperparameters and introduced a mutation 

by randomly selecting a new value within the corresponding 

value range. 

The choice of specific population size and generations in 

our genetic algorithm was made to strike a balance between 

computational efficiency and thorough exploration of the 

hyperparameter space. A population size of 50 and 50 

generations were selected based on empirical experimentation 

to ensure an adequate diversity of solutions while keeping the 

computational complexity manageable. This approach 

allowed us to explore a range of potential solutions and 

evolutionary paths within a reasonable computational 

timeframe. The parameters were fine-tuned through iterative 

testing, taking into consideration the trade-off between 

exploration and exploitation of the search space. Our objective 

was to ensure that the genetic algorithm has sufficient 

iterations to converge towards an optimal solution while 

avoiding excessive computational demands. 

Finally, we selected the top individuals from the final 

population to compose our ultimate model. We employed an 

external variable to store the best individual overall for each 

population. Finally, we compared this overall best individual 

with the best individual from the last population to accurately 

identify the ultimate best individual. This selected model was 

trained using the training data and evaluated on the test set. We 

recorded the highest accuracy achieved, as well as the model's 

architecture represented by these best individuals. 

In summary, our methodology utilized a genetic algorithm. 

to optimize the overall architecture of each network by 

considering hyperparameters such as the number of filters, 

activation functions, optimizers, and learning rates. This 

approach enabled us to determine an optimal architecture for 

our model, resulting in commendable performance on the test 

data. 

 

3.5 Multi-Layers Perceptron (MLP)  

 

The Multilayer Perceptron (MLP) is a widely utilized 

artificial neural network in deep learning [23-25]. It comprises 

multiple layers of neurons, including an input layer, one or 

more hidden layers, and an output layer. Each neuron in the 

hidden and output layers is connected to all neurons in the 

preceding and succeeding layers, forming a dense network 

structure. The calculation for the activation of a neuron in a 

hidden layer is defined by Eq. (3). 

 
( 1)

( ) ( ) ( 1) ( )

1

ln
l l l l

j ij i j

i

a w a b

−

−

=

 
= + 

 
   

(3) 

 

where, 𝑎𝑗
(𝑙)

 is the activation of the neuron 𝑗 in the layer 𝑙, 𝑤𝑖𝑗
(𝑙)

 

is the weight between the neuron 𝑖  in the layer l-1 and the 

neuron j in the layer 𝑙, 𝑎𝑖
(𝑙−1)

 is the activation of the neuron i 

in the layer 𝑙 − 1, 𝑏𝑗
(𝑙)

 is the bias of the neuron j in the layer l 

and σ is the activation function. 

The calculation of the loss function is given by Eq. (4).  

 

( )
1

1
ˆ( , ) ,

m

i i

i

J L y y
m =

= w b   (4) 

 

where, J is the loss function, w and b are the MLP weights and 
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biases, m is the number of training examples, yi is the true label 

of the example 𝑖, 𝑦̂𝑖 is the MLP prediction for the example i is 

L is the specific loss function. 

The table summarizes the hyperparameter bounds for the 

MLP model: 

• Hidden layer sizes define the number of neurons per 

hidden layer in the model. The permitted values are: 

(50),(100),(50,50),(100,100),(50,100) and (50,100,200). 

• Activation: specifies the activation function for the model 

layers. The permitted values are Relu and sigmoid. 

• optimizer: indicates the optimizer to be used to drive the 

model. The permitted values are Adam and Sgd. 

• Learning rate sets the learning rate for the optimizer. The 

permitted values are 0.001,0.01 and 0.1. 

The MLP we have implemented consists of 1, 2 or three 

layers depending on the feedback from our genetic algorithm. 

Its configuration in terms of neurons per layer and activation 

functions is given in Table 6.  

The MLP model is a versatile and powerful tool for machine 

learning. It can be used for a variety of tasks, including 

classification, regression, and clustering. The MLP model we 

have implemented is configurable with a variety of 

hyperparameters, which allows us to optimize the model for a 

specific task. 

 

Table 6. AG configuration for MLP 

 
Hyperparameters Values 

hidden_layer_sizes [(50), (100), (50, 50), (100, 100), (50, 100), 

(50, 100, 200)] 

activation Relu, sigmoid, tanh 

optimizer Adam, Sgd 

learning_rate [0.001, 0.01, 0.1] 

 

3.6 Convolutional neural networks (CNN) 

 

The CNN model is designed to automatically extract 

relevant features from input data [26]. In our case, the input 

data is 48-column data resized in sequence of 1. These 

variables include measurements of CNC motor position, speed, 

acceleration, current and voltage. 

Our CNN model consists of three Conv1D layers that 

perform convolution operations on the input sequences. Each 

Conv1D layer is followed by an activation function that 

introduces non-linearity into the model. This allows the model 

to capture complex, non-linear patterns in the input data. 

After the convolution layers, the extracted features are 

flattened and fed into a dense layer with three outputs 

corresponding to the classification classes. The dense layer 

uses a sigmoid activation function that assigns probabilities to 

each class. The essential equations for CNN networks are 

summarized in equations Eqs. (5)-(7). 

For each convolution layer: 

 

( )

( )

[ ] [ 1] [ ] [ ]

[ ] [ ]

Conv1D , ,

ReLU

l l l l

l l

Z A W b

A Z

−=

=
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For the last convolution layer: 
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[ 1] [ 1]
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− −

=

=

  
(6) 

 

For the Fully Connected Layer: 

( )

[ ] [ 1] [ ] [ ]

[ ] [ ]Sigmoid

L L L L

L L

Z A W b

A Z

−=  +

=

  
(7) 

 

where: 

• l is the layer index (from 1 to L-1 for convolution layers, 

and L for the dense layer). 

• A[l-1] is the input activation of the l-1. 

• W[l] is the matrix of layer weights l. 

• b[l] is the bias vector of the layer l. 

• Z[l] is the weighted activation of the l. 

• Conv1D represents the convolution operation in one 

dimension. 

• ReLU is the ReLU (Rectified Linear Unit) activation 

function. 

• Sigmoid is the activation function used for independent 

multi-output classification. 

 

Table 7. AG configuration for the CNN 

 
Hyperparameters Values 

filter [16, 20, 64, 128, 200, 250, 300] 

activation Relu, sigmoid, tanh 

optimizer Adam, Sgd 

kernel_size [2, 3, 4, 6, 8, 10] 

learning_rate [0.001, 0.002, 0.005] 

 

Table 7 summarizes the hyperparameter bounds for the 

CNN model: 

• Filter: specifies the number of filters for each convolution 

layer. The acceptable values are 16, 20, 64, 128, 200, 250 

and 300. 

• Activation: determines the activation function to be used. 

Permitted values are Relu, sigmoid and tanh. 

• Optimizer indicates the optimizer to be used for training 

the model. The permitted values are Adam, Sgd and 

RMSprop. 

• Kernel size: determines the size of the kernel for each 

convolution layer. The permitted values are 2, 3, 4, 6, 8 

and 10. 

• Learning rate sets the learning rate for the optimizer. The 

permitted values are 0.001, 0.002 and 0.005. 

In this article, the CNN model we have implemented is 

made up of three CONV1D layers depending on the feedback 

from our genetic algorithm. Its configuration in terms of filters 

per layer and activation functions is given in Table 7.  

The Convolutional Neural Network (CNN) stands as a 

robust asset in the realm of machine learning tasks that 

encompass the handling of sequential data or images. Its 

applicability spans a wide range of objectives, such as 

classification, regression, and the identification of anomalies. 

The CNN model we've constructed comes with a flexible array 

of hyperparameters, affording us the opportunity to tailor the 

model's configuration precisely to a given task. 

 

3.7 Variational Autoencoder with Convolutional Neural 

Network (VAE CNN) 
 

The method used in this section for modelling and analyzing 

the data is the Variational Autoencoder with Convolutional 

Neural Network (VAE CNN). The VAE CNN is a powerful 

model that combines the advantages of variational 

autoencoders and convolutional neural networks to learn a 

latent representation of the data and generate accurate 

reconstructions [27, 28]. 
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The architecture of the CNN VAE consists of two main 

parts: the encoder and the decoder. The encoder takes the input 

data and transforms it into a reduced-dimension latent 

representation. The decoder, on the other hand, takes the latent 

representation as input and attempts to reconstruct the original 

data. This approach makes it possible to learn a meaningful 

representation of the data while retaining the essential 

information. 

In our implementation, we use convolution layers (Conv1D) 

to encode and decode the data. Convolution layers are used to 

extract important features from the data by considering the 

spatial relationships between different points. Using 

convolution filters and pooling operations, the model can 

capture complex patterns and structures in the data. 

The CNN VAE encoder comprises several convolution 

layers that progressively reduce the dimensionality of the data. 

Next, the means and logarithms of the latent space variances 

are calculated from the outputs of the convolution layers. 

Using a reparameterization function, samples are generated in 

the latent space, allowing exploration and interpolation of 

different representations of the data. 

The CNN VAE decoder takes input latent space samples 

and reconstructs them using Conv1DTranspose layers. These 

transposed layers allow the dimensionality of the data to be 

increased until the initial input shape is reached. 

During CNN VAE training, the loss function is defined as 

the sum of two terms: the reconstruction loss and the KL 

divergence. The reconstruction loss measures the difference 

between the input data and the reconstructions generated by 

the model. The KL divergence is used to regularize the 

distribution of the latent space and promote a structured latent 

representation. 

The VAE CNN model is optimized using a specified AG 

optimizer, and hyperparameters such as the number of filters, 

kernel size, latent dimension, and learning rate are tuned to 

obtain the best performance on the data. 

Once the latent representation has been learned, we use a 

dense 5-layer MLP model for classification. 

Using this VAE CNN approach, we can learn a meaningful 

latent representation of the CNC Milling Dataset, capturing the 

complex patterns and structures inherent in the data. In 

addition, the model can generate accurate reconstructions, 

allowing the quality of the learned representation to be 

validated. 

In this article, the configuration of the VAE CNN model is 

given in Table 8.  

 

Table 8. GA configuration for CNN VAE 

 
Hyperparameters Values 

filter [16 ,20 ,64 ,128 ,200, 250 ,300] 

activation [Relu, sigmoid, tanh] 

optimizer [Adam, Sgd, RMSprop] 

kernel_size [2 ,3 ,4 ,6,8 ,10] 

learning_rate [0.001, 0.002, 0.005] 

latent_dim [2 ,3 ,4 ,6,8 ,10, 12] 

 

• Filter: This is the number of filters per convolution layer 

in the VAE model encoder. In this configuration, the GA 

will randomly extract an array of size 2 corresponding to 

our CNN layers. 

• Activation: This is the activation function used in the 

convolution and dense layers of the model. In this case, 

activation is defined as Relu, which corresponds to the 

ReLU (Rectified Linear Unit) activation function. 

• Optimizer: This is the optimizer used to update the model 

weights during training. Three options are provided: 

Adam, Sgd (Stochastic Gradient Descent) and RMSprop 

(Root Mean Square Propagation). In this configuration, 

the Adam optimizer is used. 

• Kernel size: This is the size of the kernel (or filter) used 

in convolution layers. 

• Latent dim: This is the dimension of the latent space, i.e., 

the reduced data representation space. 

• Learning rate: This is the learning rate of the optimizer. It 

determines the size of the model weight update steps 

during training.  

 

These parameters (Table 8) are used to define the 

architecture of the VAE model and to perform optimization 

and evaluation on the input data. Each parameter controls a 

specific aspect of the model, such as the number of filters, the 

activation function, the optimizer, the kernel size, the latent 

space dimension and the learning rate, allowing different 

parameters to be explored during the genetic optimization 

process. 

In summary, the Variational Autoencoder with 

Convolutional Neural Network (VAE CNN) merges the 

strengths of variational autoencoders and convolutional neural 

networks, providing a robust means to learn a condensed 

representation of data and generate precise reconstructions. By 

employing convolution layers to extract intricate patterns and 

spatial relationships, the encoder transforms input data into a 

meaningful latent representation. The decoder then 

reconstructs the original data from this latent space. With the 

integration of convolutional filters and pooling operations, the 

model adeptly captures complex structures within the data. 

Regularized through the combination of reconstruction loss 

and KL divergence, the VAE CNN achieves a balanced latent 

distribution. The optimized VAE CNN, defined by 

hyperparameters specified in Table 8, demonstrates its 

effectiveness in capturing intricate patterns within the CNC 

Milling Dataset while enabling reliable classification through 

its learned representation. 

 
3.8 Long Short-Term Memory (LSTM) 

 

The LSTM model is a type of recurrent neural network that 

can capture long-term dependencies in data sequences [29, 30]. 

LSTM can be described by Eqs. (8)-(13):  

• Forget gate equation: 

 

 ( )1,t f t t ff W h x b −=  +   (8) 

 

• Input gate equation: 

 

 ( )1,t i t t ii W h x b −=  +   (9) 

 

• Output gate equation: 

 

 ( )1,t o t t oo W h x b −=  +   (10) 

 

• Equation for the candidate cell gate: 

 

 ( )1tanh ,t c t t cC W h x b−=  +   (11) 

 

• Cell state equation : 

1368



 

1t t t t tC f C i C−=  +    (12) 

 

• LSTM output equation : 

 

( )tanht t th o C=    (13) 

 

In these equations ht is the output at time t, xt is the input at 

time t, Wf, Wi, Wo, Wc are the weight matrices, bf, bi, bo, bc are 

the bias vectors, σ is the sigmoid function and tanh is the 

hyperbolic tangent function. 

In this article, the configuration of the LSTM model is given 

in Table 9. 

 

Table 9. AG configuration for LSTM 

 
Hyperparameters Values 

units [2 to 500] 

activation [Relu, sigmoid, tanh] 

optimizer [Adam, Sgd, RMSprop] 

learning_rate [0.001, 0.002, 0.005] 

 

We have different options for each parameter. For example, 

for the units parameter, the GA will try several configurations 

from among the values 2, 16, 20, 64, 128, 200, 250 and 500. 

The same applies to the other parameters. 

By considering our data as sequences, LSTM can play an 

important role. The Long Short-Term Memory (LSTM) model 

emerges as a powerful recurrent neural network capable of 

capturing intricate temporal dependencies. Utilizing a series of 

equations as described Eq. (8) through Eq. (13) the LSTM 

framework introduces the forget, input, output, and candidate 

cell gates to manage information flow over sequential time 

steps. The architecture's adaptability is reflected in Table 9, 

where hyperparameters such as units, activation functions, 

optimizers, and learning rates are meticulously tuned. The 

LSTM model, by its nature, is suited to handling data 

sequences, making it an ideal candidate for applications 

demanding the recognition of long-term relationships and 

patterns. 

 

3.9 Residual Network (ResNet) 

 

The ResNet model is a deep neural network architecture that 

introduces residual connections to facilitate learning and 

optimization. These residual connections allow the model to 

better capture relevant features by avoiding gradient vanishing 

problems and facilitating the flow of information across layers 

[31, 32]. 

To optimize the number of Conv1D filters and layers in 

each ResNet block, we used a genetic algorithm. This genetic 

algorithm searches the space of hyperparameters by evaluating 

different combinations of Conv1D filters and layers, then 

selecting the best performing combinations. 

The genetic algorithm evaluates each combination using a 

performance metric, such as accuracy or precision, and selects 

the combinations that produce the best results. It then performs 

mutation and crossover operations to generate new 

combinations, while preserving the characteristics of the best-

performing combinations. 

This iterative process of selection, mutation and crossover 

is repeated over several generations until the best performing 

combinations converge on an optimal solution. Ultimately, the 

genetic algorithm allows us to find the optimal configuration 

of Conv1D filters and layers for each block of the ResNet 

model. 

Using this approach, we can build a ResNet model of 4 

CNN blocks with filter and Conv1D layer configurations 

specifically adapted to our problem. This allows us to make 

the most of the characteristics of the data and improve the 

performance of our model. 

In summary, our methodology involves using a ResNet 

model of 4 CNN blocks with residual connections and 

optimizing the Conv1D filter and layer configurations using a 

genetic algorithm. This approach enables us to obtain a model 

adapted to our specific problem and to improve the 

performance of our classification system. The configuration of 

the ResNet model is given in Table 10. 

 

Table 10. AG configuration for ResNet 

 
Hyperparameters Values 

filter [16, 20, 64, 128, 200, 250 ,300] 

activation [Relu, sigmoid, tanh] 

optimizer [Adam, Sgd, RMSprop] 

kernel_size 2 

learning_rate [0.001, 0.01, 0.1] 

 

 

4. RESULTS AND ANALYSIS 

 

In this section, we present the results obtained by the 

different deep network models that we have studied for the 

detection of faults in industrial equipment. We compared the 

performance of the Multilayer Perceptron (MLP), the 

Convolutional Neural Network (CNN), the CNN auto-encoder, 

the Long Short-Term Memory (LSTM) and the Residual 

Network (ResNet) on a dataset from a CNC milling machine 

in the System-level Manufacturing and Automation Research 

Testbed (SMART) at the University of Michigan. 

First, we applied a special parameter optimization process 

to all these models using a special genetic algorithm (GA). 

This allowed us to find the best combinations of parameters 

for each model, thereby maximizing their performance. The 

optimized parameters included the number of units in the 

hidden layers, the activation functions, the optimizers chosen 

and the learning rates. This approach enabled us to obtain 

models specifically adapted to our problem of detecting faults 

in industrial equipment.  

To assess the performance of our models, it is important to 

present several metrics: 

• Precision: This metric measures the accuracy of positive 

predictions made by the model. It is calculated as the 

number of true positive predictions divided by the total 

number of predictions made for the positive class. A high 

precision indicates that the model is good at avoiding false 

positives. 

• Recall: This metric measures the ability of the model to 

correctly identify positive instances from the actual 

positive cases in the dataset. It is calculated as the number 

of true positive predictions divided by the total number of 

actual positive cases. A high recall indicates that the 

model is good at avoiding false negatives. 

• F1-score: This metric provides a balanced view of both 

precision and recall. It is calculated as the harmonic mean 

of precision and recall. A high F1-score indicates that the 

model is good at both avoiding false positives and false 

negatives. 
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• Support: This metric represents the number of actual 

occurrences of each class in the test dataset. It is important 

to consider support when interpreting the evaluation 

metrics, as it provides context for understanding the scale 

of each class's presence. 

By collectively considering precision, recall, F1-score, and 

support, we gain a comprehensive understanding of our 

models' strengths and limitations in classifying the different 

fault categories in the CNC Milling Dataset. These metrics 

allow us to make informed decisions about model selection 

and fine-tuning, ultimately contributing to the overall success 

of our fault diagnosis framework. 

 

4.1 MLP model 

 

In the MLP section of our study, we evaluated the 

performance of the MLP (Multilayer Perceptron) model for 

fault detection on three different criteria: tool condition, 

machine completion and visual inspection. The results 

obtained are presented in Tables 11-13. 

 

Table 11. Performance MLP on output tool condition  

 
 Precision  Recall F1-Score Support 

0 0.81 0.70 0.75 2106 

1 0.81 0.88 0.84 2952 

Accuracy   0.81 5058 

Macro avg 0.81 0.79 0.80 5058 

Weighted avg 0.81 0.81 0.80 5058 

 

Table 11 shows the results of fault detection on tool status. 

We obtain a precision of 0.81 for class 0 and 0.81 for class 1. 

Recall is 0.70 for class 0 and 0.88 for class 1. The F1 score is 

0.75 for class 0 and 0.84 for class 1. These results demonstrate 

a satisfactory overall performance of the MLP model in 

detecting tool state failures. 

 

Table 12. Performance MLP on output machine finalized 

 
 Precision  Recall F1-Score Support 

0 0.77 0.66 0.71 1165 

1 0.90 0.94 0.92 3893 

Accuracy   0.88 5058 

Macro avg 0.84 0.80 0.82 5058 

Weighted avg 0.87 0.88 0.87 5058 

 

Table 13. Performance MLP on output passed visual 

inspection 

 
 Precision  Recall F1-Score Support 

0 0.75 0.76 0.76 2430 

1 0.78 0.76 0.77 2628 

Accuracy   0.76 5058 

Macro avg 0.76 0.76 0.76 5058 

Weighted avg 0.76 0.76 0.76 5058 

 

Table 12 shows the results of fault detection on machine 

finalization. We obtain a precision of 0.77 for class 0 and 0.90 

for class 1. Recall is 0.66 for class 0 and 0.94 for class 1. The 

F1 score is 0.71 for class 0 and 0.92 for class 1. These results 

demonstrate the high performance of the MLP model in 

detecting faults in the finalization of the machine. 

Table 13 shows the results of fault detection on successful 

visual inspection. We obtain a precision of 0.75 for class 0 and 

0.78 for class 1. Recall is 0.76 for class 0 and 0.76 for class 1. 

The F1 score is 0.76 for class 0 and 0.77 for class 1. 

The overall accuracy of 82% is encouraging, and the model 

can identify faults with a high degree of confidence. However, 

there are some areas where the model could be improved. For 

example, the precision for the "passed visual inspection" class 

is relatively low, indicating that the model may be making a 

high number of false positives in this case. 

 
4.2 CNN model 

 

In the CNN section of our study, we used the CNN 

(Convolutional Neural Network) model for fault detection on 

three different criteria: tool condition, machine completion 

and visual inspection. The results obtained are presented in 

Tables 14-16. 

 

Table 14. Performance CNN on output tool condition  

 
 Precision  Recall F1-Score Support 

0 0.85 0.76 0.80 2370 

1 0.80 0.88 0.84 2688 

Accuracy   0.82 5058 

Macro avg 0.83 0.82 0.82 5058 

Weighted avg 0.82 0.82 0.82 5058 

 

Table 15. Performance CNN on output machine finalized 

 
 Precision  Recall F1-Score Support 

0 0.79 0.79 0.79 1257 

1 0.93 0.93 0.93 3801 

Accuracy   0.89 5058 

Macro avg 0.86 0.86 0.86 5058 

Weighted avg 0.89 0.89 0.89 5058 

 

Table 16. Performance CNN on output passed visual 

inspection 

 

 Precision  Recall F1-Score Support 

0 0.80 0.84 0.82 2467 

1 0.84 0.80 0.82 2591 

Accuracy   0.82 5058 

Macro avg 0.82 0.82 0.82 5058 

Weighted avg 0.82 0.82 0.82 5058 

 

While the CNN model demonstrates solid performance, 

there are nuances to consider. Despite high precision and recall 

scores in some cases, there remains room for improvement in 

achieving balanced performance across all metrics. A potential 

implication is the model's vulnerability to misclassifications in 

specific fault categories. This can lead to costly errors if not 

mitigated. Further investigation is required to determine the 

underlying reasons behind the model's varying performance 

and to fine-tune its hyperparameters. 

In summary, the CNN model exhibits robust performance 

in various fault detection criteria, achieving an overall 

accuracy of 85%. However, an in-depth analysis reveals 

potential challenges and the need for further refinement. 

 
4.3 VAE CNN model 

 

The results obtained for VAE are presented in Tables 17-19. 

It is noteworthy that the VAE CNN model achieves lower 

results compared to the previous models. This difference could 

be attributed to the model's emphasis on generalization. The 

VAE is known for its ability to generate data, underscoring the 

importance of robust generalizability in various applications. 

Despite these relatively lower scores, the VAE CNN model 
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remains an intriguing option for fault detection, considering its 

potential for generating valuable insights and data. The VAE 

CNN model's relatively lower performance could indicate 

challenges in effectively capturing complex patterns and 

representations inherent in the dataset. The focus on data 

generation might have led to a trade-off between predictive 

performance and generalization. This suggests the need for 

more advanced architectures and careful hyperparameter 

tuning to enhance the model's performance. While the model's 

accuracy of 76% is lower compared to other models, its 

potential to contribute to data generation and exploration 

remains intriguing, making it an avenue worthy of further 

exploration and refinement. 

In conclusion, the VAE CNN model exhibits promising 

potential despite its relatively lower performance on various 

fault detection criteria. The model's emphasis on data 

generation and generalization underscores its unique 

capabilities, opening the door for future advancements and 

improvements. 

 

Table 17. Performance VAE on output tool condition  

 
 Precision  Recall F1-Score Support 

0 0.69 0.69 0.69 2370 

1 0.73 0.72 0.72 2688 

Accuracy   0.71 5058 

Macro avg 0.71 0.71 0.71 5058 

Weighted avg 0.71 0.71 0.71 5058 

 

Table 18. Performance VAE on output machine finalized 

 

 Precision  Recall F1-Score Support 

0 0.75 0.52 0.61 1257 

1 0.86 0.94 0.90 3801 

Accuracy   0.84 5058 

Macro avg 0.80 0.73 0.75 5058 

Weighted avg 0.83 0.84 0.83 5058 

 

Table 19. Performance VAE on output passed visual 

inspection 

 
 Precision  Recall F1-Score Support 

0 0.79 0.63 0.70 2467 

1 0.71 0.84 0.77 2591 

Accuracy   0.74 5058 

Macro avg 0.75 0.74 0.74 5058 

Weighted avg 0.75 0.74 0.74 5058 

 

4.4 ResNet model 

 

The results presented in this section concern the Resnet 

model, and Tables 20-23 summarize the results in terms of 

performance on all the criteria. 

The ResNet model showcases robust performance across 

various fault detection criteria, with an overall accuracy of 

84%. Its balanced precision, recall, and F1-scores indicate its 

proficiency in classifying diverse fault categories. The model's 

relatively high accuracy is a testament to its effectiveness in 

generalizing its learning across different fault types, making it 

a promising option for robust fault detection. 

While the ResNet model demonstrates commendable 

performance, interpretability of the model's decisions could be 

a challenge, as deep learning architectures often lack 

transparency. Additionally, fine-tuning the hyperparameters 

could potentially enhance the model's performance. Ensuring 

a comprehensive understanding of the model's strengths and 

limitations can guide further development and improvements. 

In conclusion, the ResNet model emerges as a reliable and 

robust contender for fault detection across various criteria. Its 

strong overall accuracy and balanced performance in precision, 

recall, and F1-scores underscore its potential to contribute 

effectively to fault diagnosis tasks. As we progress, the ResNet 

model provides a solid foundation for advancing the field of 

CNC milling fault detection and potentially inspiring further 

research in deep learning-based fault detection methodologies. 
 

Table 20. Performance ResNet on output tool condition  
 

 Precision  Recall F1-Score Support 

0 0.78 0.80 0.79 2106 

1 0.86 0.84 0.85 2952 

Accuracy   0.82 5058 

Macro avg 0.82 0.82 0.82 5058 

Weighted avg 0.82 0.82 0.82 5058 

 

Table 21. Performance ResNet on output machine finalized 
 

 Precision  Recall F1-Score Support 

0 0.81 0.71 0.76 1165 

1 0.92 0.95 0.93 3893 

Accuracy   0.89 5058 

Macro avg 0.86 0.83 0.84 5058 

Weighted avg 0.89 0.89 0.89 5058 

 

Table 22. Performance ResNet on output passed visual 

inspection 
 

 Precision  Recall F1-Score Support 

0 0.81 0.74 0.77 2430 

1 0.78 0.84 0.81 2628 

Accuracy   0.79 5058 

Macro avg 0.79 0.79 0.79 5058 

Weighted avg 0.79 0.79 0.79 5058 

 

4.5 LSTM model 
 

The results obtained for LSTM are presented in Tables 23-

25. 

The outcomes of this section, as encapsulated in Table 23-

25, showcase the LSTM model's prowess in consistently 

delivering top-tier performance. 

Tool Condition Detection (Table 23): The LSTM model 

shines with precision scores of 0.91 for class 0 (healthy tool) 

and a remarkable 0.94 for class 1 (faulty tool). These figures 

highlight the model's exceptional precision in distinguishing 

between tool conditions. Recall rates of 0.93 for both classes 

affirm the model's robustness in correctly identifying instances 

from both categories. The corresponding F1-scores of 0.92 and 

0.94 underscore the model's balanced precision and recall 

performance. With an overall accuracy of 93%, the LSTM 

model showcases its prowess in accurately classifying tool 

conditions. 

Machine Finalization Detection (Table 24): For machine 

finalization detection, the LSTM model demonstrates a 

precision of 0.93 for class 0 and an impressive 0.96 for class 

1. These precision scores underscore the model's ability to 

identify both successful and problematic machine finalizations 

with high precision. Recall rates of 0.90 for class 0 and an 

outstanding 0.97 for class 1 highlight the model's robustness 

in accurately identifying instances from both categories. The 

resulting F1-scores of 0.91 and 0.97 further emphasize the 

model's balanced performance. An accuracy of 95% 

accentuates the LSTM model's exceptional generalization. 
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Table 23. Performance LSTM on output tool condition  

 

 Precision  Recall F1-Score Support 

0 0.93 0.90 0.91 1322 

1 0.96 0.97 0.97 3736 

Accuracy   0.95 5058 

Macro avg 0.95 0.94 0.94 5058 

Weighted avg 0.95 0.95 0.95 5058 

 

Table 24. Performance LSTM on output machine finalized 

 
 Precision  Recall F1-Score Support 

0 0.94 0.93 0.94 2658 

1 0.92 0.94 0.93 2400 

Accuracy   0.93 5058 

Macro avg 0.93 0.93 0.93 5058 

Weighted avg 0.93 0.93 0.93 5058 

 

Table 25. Performance LSTM on output passed visual 

inspection 

 

Model 
Hidden 

Layers 
Activation Optimizer 

Learning 

Rate 

MLP 
(50, 

100) 

sigmoid, 

tanh 
Adam 0.001 

CNN 
(250, 200, 

128) 
tanh RMSprop 0.005 

VAE 
(64, 

300) 
tanh Sgd 0.002 

LSTM 

(351, 

374, 

129) 

tanh RMSprop 0.005 

ResNet 
(16, 

128) 
Relu, tanh Sgd 0.1 

 

Visual Inspection Detection (Table 25): During visual 

inspection detection, the LSTM model exhibits precision 

scores of 0.94 for class 0 and 0.92 for class 1. These figures 

exemplify the model's proficiency in accurately differentiating 

between instances of successful and unsuccessful visual 

inspections. Recall rates of 0.93 for both classes underline the 

model's ability to correctly identify instances from both 

categories. The F1-scores of 0.94 and 0.93 highlight the 

model's balanced performance. An accuracy of 93% further 

cements the LSTM model's robust generalization. 

The LSTM model's standout performance lies in its ability 

to consistently deliver high precision and recall across all fault 

detection criteria. Its balanced F1-scores indicate that it 

effectively maintains a harmony between precision and recall. 

With an impressive overall accuracy of 94%, the LSTM model 

demonstrates exceptional capabilities in classifying various 

fault categories accurately. 

The LSTM model's remarkable performance holds 

significant implications for industrial equipment fault 

detection and predictive maintenance systems. Its ability to 

excel across different criteria underscores its potential to 

enhance industrial operations by facilitating early fault 

detection and minimizing downtime. The model's suitability 

for real-world applications positions it as a key player in the 

evolution of efficient and reliable fault detection mechanisms. 

In summary, Table 26 provides a comprehensive overview 

of the different models employed in this study, highlighting 

key aspects of their architectures and hyperparameter 

configurations. The Multi-Layer Perceptron (MLP) model 

incorporates two hidden layers with neuron sizes of 50 and 100, 

utilizing the Adam optimizer with a learning rate of 0.001. On 

the other hand, the Convolutional Neural Network (CNN) 

exhibits a more complex structure with hidden layers of sizes 

250, 200, and 128, employing the tanh activation function 

along with the RMSprop optimizer and a learning rate of 0.005. 

The Variational Autoencoder (VAE) model follows a similar 

path with hidden layers of sizes 64 and 300, using the tanh 

activation function in combination with the SGD optimizer 

and a learning rate of 0.002. The Long Short-Term Memory 

(LSTM) model showcases its architecture with hidden layers 

of sizes 351, 374, and 129, integrating the tanh activation 

function and RMSprop optimizer with a learning rate of 0.005. 

Lastly, the ResNet model, distinguished by hidden layers of 

sizes 16 and 128, aligns with the SGD optimizer and a higher 

learning rate of 0.1. This comprehensive comparison 

underscores the diversity of the models employed in this study, 

paving the way for a thorough evaluation of their performance 

on the CNC Milling Dataset. 

As we reflect upon the outcomes of our comprehensive 

study, it becomes evident that our findings resonate deeply 

with the overarching research goals we initially outlined. The 

intent of our investigation was to meticulously compare and 

evaluate the performance of five prominent deep learning 

network models in the domain of fault diagnosis for CNC 

machines. The conclusions drawn from our analysis 

substantiate the significance of such an endeavor. By 

empirically assessing the strengths and limitations of the 

Multilayer Perceptron (MLP), Convolutional Neural Network 

(CNN), CNN autoencoder, Long Short-Term Memory 

(LSTM), and Residual Network (ResNet), we have 

contributed a holistic understanding of their applicability in 

the context of complex industrial data analysis. 

Furthermore, our findings coalesce harmoniously with 

existing literature in the field of fault diagnosis for CNC 

machines. While previous research efforts have made strides 

in the domain, our study addresses certain crucial gaps that 

have been identified in the current state of research. By 

providing specific guidance on model selection, configuration, 

and multi-output classification challenges, our research 

advances the literature's understanding of tackling intricate 

fault diagnosis scenarios. The alignment of our findings with 

previous work underscores the validity and relevance of our 

study's objectives and outcomes. 

Our research goes beyond theoretical exploration, offering 

practical implications that resonate with manufacturers 

seeking to enhance their fault diagnosis and predictive 

maintenance practices. The elucidation of the strengths and 

weaknesses of each deep learning model equips manufacturers 

with actionable insights for informed decision-making. 

Manufacturers can now tailor their model selection based on 

their specific industrial requirements and data characteristics. 

By implementing the most suitable model, manufacturers can 

proactively identify and address faults, thereby minimizing 

operational disruptions, reducing downtime, and optimizing 

overall production efficiency. 

In conclusion, our study's profound alignment with original 

research objectives and existing literature reaffirms its 

significance. The practical implications extend well beyond 

research realms, offering manufacturers a roadmap to bolster 

their operational efficiency and reliability through informed 

model selection and proactive fault detection strategies. By 

merging theory with practicality, our research seeks to 

catalyze the evolution of industrial fault diagnosis in the 

context of CNC machines. 
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Table 26. Comparison of all models 

 

Model 
Hidden 

Layers 
Activation Optimizer 

Learning 

Rate 

MLP 
(50, 

100) 

sigmoid, 

tanh 
Adam 0.001 

CNN 
(250, 200, 

128) 
tanh RMSprop 0.005 

VAE 
(64, 

300) 
tanh Sgd 0.002 

LSTM 

(351, 

374, 

129) 

tanh RMSprop 0.005 

ResNet 
(16, 

128) 
Relu, tanh Sgd 0.1 

 

 

5. DISCUSSIONS 
 

Our investigation has culminated in a comprehensive 

analysis of various deep network models applied to the realm 

of industrial equipment fault detection, as outlined in Table 27. 

This section affords us the opportunity to connect our findings 

back to the core research aims that propelled this study into 

motion. The central objective was to scrutinize the efficacy of 

five prevalent deep learning models in the domain of fault 

detection, culminating in the attainment of predictive 

maintenance excellence. Our exploration has not only fulfilled 

this intent but also delivered a myriad of key insights and 

practical implications that are poised to revolutionize the 

landscape of industrial fault diagnosis. 

Our study ventures into novel terrain, shedding light on the 

performance dynamics of the Multilayer Perceptron (MLP), 

Convolutional Neural Network (CNN), Variational 

Autoencoder (VAE), Long Short-Term Memory (LSTM), and 

Residual Network (ResNet) models. These models, each 

bearing unique attributes tailored for intricate data analysis 

and fault signal detection, uncover the intricate relationships 

between machine conditions and signals of impending faults. 

The VAE model, though yielding relatively lower 

performance than its counterparts, unveils a significant facet - 

its potential as a tool for data generation. This unique ability 

to synthesize data makes the VAE a remarkable avenue for 

further exploration, potentially transcending its initial 

performance drawbacks. 

The MLP model showcases commendable performance 

across diverse criteria, highlighting its potential as a reliable 

tool for fault detection across multiple dimensions. Achieving 

accuracies of 82% in tool condition detection, 88% in machine 

completion, and 76% in visual inspection, the MLP model 

emerges as a versatile contender for real-world industrial 

applications. 

The ResNet model further solidifies the landscape of fault 

detection, attaining an overall accuracy of 84%. Its capabilities 

shine particularly bright in tool condition detection (79%), 

machine completion (92%), and visual inspection (78%), 

positioning the ResNet as a robust solution with potential 

implications for predictive maintenance frameworks. 

The CNN model, showcasing its prowess, achieves an 

impressive 85% overall accuracy in fault detection across 

various criteria. Its aptitude for capturing pertinent features 

bolsters its reputation as a viable approach for intricate fault 

signal analysis. 

The LSTM model, incontestably the frontrunner, 

demonstrates the pinnacle of performance with a remarkable 

94% overall accuracy. Its skill in capturing temporal 

dependencies stands as a testament to its potential in 

unravelling the complexities of CNC machine data, propelling 

it to the forefront of predictive maintenance systems 

development. 

Our study does not exist in isolation; it intersects with 

previous research, particularly [15, 16]. While our LSTM 

model's accuracy may not reach the heights of decision tree-

based models, the true value lies in its capability to generalize. 

Our 95% LSTM accuracy, albeit not the highest, excels in 

capturing temporal dependencies, outperforming decision 

trees and confirming the significance of our approach. 

In conclusion, our study emerges as a pivotal milestone in 

the quest for superior fault diagnosis and predictive 

maintenance in industrial equipment. The LSTM model, with 

its unmatched performance, serves as a beacon for future 

research endeavours. The implications are clear: harnessing 

deep learning models for early fault detection, manufacturers 

can champion operational efficiency and reliability. The 

synthesis of theory and practice laid forth in our study sets the 

stage for a new era of data-driven decision-making, poised to 

transform industrial maintenance landscapes. 

 

Table 27. Global accuracy of all models  

 
Models Precision  

VAE CNN 76% 

MLP 82% 

ResNet 84% 

CNN 85% 

LSTM 94% 

 
 

6. CONCLUSION 

 

Our research delved into the extensive realm of industrial 

equipment fault detection using deep learning models. 

Throughout this study, we scrutinized and compared the 

performance of five prominent deep network architectures: 

Multilayer Perceptron (MLP), Convolutional Neural Network 

(CNN), Variational Autoencoder with CNN (VAE CNN), 

Long Short-Term Memory (LSTM), and Residual Network 

(ResNet). Our investigation was driven by the imperative of 

informed decision-making in model selection and 

configuration for fault diagnosis in CNC machines. 

The results obtained through our rigorous evaluation shed 

light on the strengths and weaknesses of each model. The MLP 

model showcased its efficacy in detecting faults across diverse 

criteria, achieving notable accuracies in tool condition 

detection, machine completion, and successful visual 

inspection. Meanwhile, the CNN model excelled in capturing 

relevant features for fault detection, achieving commendable 

performance across the evaluated aspects. The VAE CNN, 

despite yielding lower results, remains an intriguing option 

due to its data generation capability. The ResNet model 

exhibited substantial effectiveness, particularly in fault 

detection and the development of predictive maintenance 

systems. However, the pinnacle of our study was the LSTM 

model, which triumphed in capturing temporal dependencies 

and achieved a remarkable overall accuracy of 94%. 

In relation to the original research aims, our study 

successfully unravelled the strengths, weaknesses, and 

capabilities of each model, providing valuable insights for 

future decision-making. Furthermore, we addressed existing 

gaps in the field by providing specific guidance on model 

selection and configuration, and by offering a comprehensive 
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framework for solving multi-output classification problems in 

fault diagnosis on CNC machines. 

Our findings contribute to the existing literature by 

confirming the potential of deep learning-based approaches in 

fault detection, even amidst the complexities of industrial 

equipment. While our LSTM accuracy may not rival decision 

tree-based models in certain aspects, its prowess in avoiding 

overfitting and capturing temporal dependencies adds a unique 

layer of significance to our research. 

From a practical standpoint, our results hold implications 

for manufacturers seeking robust fault diagnosis solutions. 

The success of our models in analysing complex data and 

detecting fault signals opens doors to the development of 

predictive maintenance systems. With the ability to detect 

anomalies and predict potential malfunctions, manufacturers 

can proactively address issues, minimize downtime, and 

optimize equipment performance. 

Nonetheless, our study is not without limitations. We 

acknowledge the need for further exploration in 

hyperparameter optimization and the extension of our 

approach to diverse industrial equipment types and larger 

datasets. As the field of deep learning continues to evolve, we 

anticipate that the insights gained from our research will 

contribute to the ongoing enhancement of predictive 

maintenance practices in the manufacturing industry. 
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