
Enhancing Fault Detection in CNC Machinery: A Deep Learning and Genetic Algorithm

Approach

Paul Menounga Mbilong1* , Zineb Aarab2 , Fatima-Zahra Belouadha1 , Mohammed Issam Kabbaj1

1 Computer Science Department, Ecole Mohammadia d'Ingénieurs, Mohammed V University, Rabat 10090, Morocco
2 LRIT Associated Unit to CNRST (URAC 29), Faculty of Sciences, Mohammed V University, Rabat BP 1014, Morocco

Corresponding Author Email: paulmbilong@research.emi.ac.ma

https://doi.org/10.18280/isi.280525 ABSTRACT

Received: 15 June 2023

Revised: 30 August 2023

Accepted: 9 October 2023

Available online: 31 October 2023

This paper introduces a deep learning-based approach (DLBA) tailored for fault detection

and condition monitoring in industrial machinery. The presented DLBA architecture is

assessed utilizing a dataset derived from a CNC milling machine, as part of the University

of Michigan's System-level Manufacturing and Automation Research Testbed (SMART).

The results underscore the substantial efficacy of the LSTM model, evidenced by a

precision of 94% and an F1 score of 95%. These findings serve as a robust foundation for

the identification of CNC machining failures within the manufacturing industry. The DLBA

architecture constitutes a comprehensive framework for efficient fault detection,

incorporating a variety of network models, including MLP, CNN, CNN auto-encoder,

LSTM, and ResNet. Each model leverages its unique strengths in the analysis of complex

data. Genetic Algorithm (GA) optimization is employed for parameter tuning across all

models, enhancing their performance. The findings from this study contribute significantly

to the development of more reliable and cost-effective predictive maintenance systems,

enabling manufacturers to detect faults early on, thus preventing expensive downtime and

mitigating safety risks.

Keywords:

industrial maintenance, long short-term

memory, convolutional neural network,

residual network, variational autoencoder,

genetic algorithm, predictive maintenance,

fault detection

1. INTRODUCTION

Predictive maintenance is of paramount importance across

numerous industrial sectors, providing essential foresight into

potentially costly and hazardous equipment malfunctions. In

this arena, troubleshooting serves as a proactive measure to

forestall technical issues and extend machinery lifespan. Early

detection of faults empowers companies to take pre-emptive

action, minimising operational downtime and circumventing

disruptions to production processes.

The importance of timely fault detection in precluding

substantial repair costs and operational interruptions in

industrial settings has been emphatically highlighted in prior

research. As Melgarejo and Agudelo [1] elucidated, the

accurate detection and classification of bearing faults present

a considerable challenge due to their nuanced manifestations

and intricate identification prerequisites. The deployment of

advanced methodologies and efficient signal processing

techniques is, therefore, indispensable.

Majidi et al. [2] explore the recognition of patterns in partial

discharge, an electrical phenomenon associated with electrical

faults. Through the utilization of parsimonious representation

and artificial neural networks, the accuracy of fault detection

in processing complex signals is enhanced.

Similarly, Azamfar et al. [3] address the diagnosis of

gearboxes operating under variable conditions. The

complexity of these systems necessitates robust and adaptive

measures such as transfer learning and deep convolutional

networks for effective fault detection.

The role of Principal Component Analysis (PCA) in early

failure detection is emphasised by Sarita et al. [4]. The

development of techniques to identify anomalies at their

inception using collected data is of utmost importance.

Amy et al. [5] concentrate on the reliability analysis of

electronic equipment subjected to shock and vibration. The

identification of environmental influences on device

performance and the development of relevant reliability

measures is crucial.

Moreover, the presence of unstructured data and noise

within sensor recordings poses a significant challenge,

potentially compromising the accuracy of fault detection

models. Cumulatively, it is apparent that maintenance

troubleshooting significantly impacts business performance

by reducing maintenance costs, decreasing downtime, and

augmenting operational safety. Its application is, therefore,

vital for companies striving to maintain a competitive edge in

a rapidly evolving market.

Notwithstanding the variety of challenges addressed

through diverse methodologies, deep learning has

demonstrated substantial advancements in prediction,

particularly in diagnostics. The progress made in this arena has

opened new avenues for identifying faults in industrial

equipment. A plethora of recent research articles exhibit

notable results, underscoring the effectiveness of deep

learning in diagnostic applications.

Yet, amid these promising developments, the challenge of

selecting the most suitable deep learning model persists. Given

the myriad of articles leveraging deep learning for diagnostics,

the ability to discern the optimal model for a given task is

paramount. Each piece of research often claims to present the

superior model, compounding the complexity of model

selection.

Ingénierie des Systèmes d’Information
Vol. 28, No. 5, October, 2023, pp. 1361-1375

Journal homepage: http://iieta.org/journals/isi

1361

https://orcid.org/0000-0001-5464-4803
https://orcid.org/0000-0002-0546-8804
https://orcid.org/0000-0002-2355-4204
https://orcid.org/0000-0002-8595-0456
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280525&domain=pdf

In view of the plethora of models and the importance of

informed decision-making, an in-depth comparison of existing

approaches becomes essential. This study aims to scrutinize

five of the most frequently employed deep learning network

models from the past decade to uncover their strengths,

weaknesses, and to provide recommendations for model

selection.

This investigation encompasses various deep network

models, including the Multilayer Perceptron (MLP),

Convolutional Neural Network (CNN), CNN autoencoder,

Long Short-Term Memory (LSTM), and Residual Network

(ResNet). Each model boasts unique features beneficial for

analysing complex data and detecting fault signals.

A dataset derived from a CNC milling machine, part of the

System-level Manufacturing and Automation Research

Testbed (SMART) at the University of Michigan, is used for

model evaluation. A genetic algorithm (GA) is employed for

parameter optimisation to enhance model performance. The

primary objective is to present a clear and comprehensive deep

learning-based architecture for efficient fault detection in

industrial equipment.

The results underscore the remarkable effectiveness of the

LSTM model, exhibiting superior precision, recall, and F1

score. These findings provide a robust foundation for

identifying machining failures in manufacturing, promoting

the adoption of deep learning in predictive maintenance

systems.

By combining the advancements in deep learning

diagnostics with the necessity of model selection, this research

aims to provide valuable insights for industry practitioners and

researchers dedicated to improving fault detection in industrial

equipment.

By identifying the top-performing models and assessing

their efficacy, this study contributes to the evolution of deep

learning-driven diagnostic techniques. This research addresses

the lack of guidance on model selection and configuration

specific to CNC machines, fostering the adoption of more

efficient and reliable methods for fault detection.

The subsequent sections delve into the various deep

network models employed, elaborate on the evaluation and

optimisation processes, and discuss the tangible implications

of the approach. The potential for enhancing equipment

reliability and reducing operational costs across the

manufacturing landscape is underscored.

2. RELATED WORK

The deployment of deep learning models for fault diagnosis

is garnering increased attention within industrial research

circles. Numerous scholars have delved into a variety of deep

learning-based approaches to address this complex issue. The

ensuing works offer insightful perspectives on recent

progressions in this field.

A comprehensive review by Saufi et al. [6] grapples with

the challenges and prospects of employing deep learning

models for machine fault detection and diagnosis. The authors

expound on the merits and constraints of diverse deep learning

models and spotlight their applications across various

industrial scenarios.

In an innovative response to the critical challenge of

pipeline leakages, Obaid et al. [7] have crafted a deep learning

approach that employs image-based edge detection techniques

for oil spill identification. Utilizing aerial imagery from drones,

the study showcases the efficiency of the DexiNed algorithm

at a pivotal 10-meter height, setting a new standard for

environmental monitoring in the oil industry.

Taking a more focused approach, Yang et al. [8] concentrate

on diagnosing faults in electric motors via deep learning

algorithms. Four traditional types of deep learning models are

explored, with the authors accentuating their use in electric

motor fault detection.

Neupane and Seok [9] scrutinize the application of deep

learning methodologies in analysing the Case Western

Reserve University (CWRU) bearing fault dataset. The

authors elucidate the challenges associated with leveraging

deep learning for bearing fault diagnosis and propose a method

for selecting the most appropriate learning model for a specific

dataset.

Further extending the application of deep learning to fault

diagnosis, Jian et al. [10] propose the use of a specialized deep

learning algorithm employing stacked autoencoders (SAEs)

for diagnosing faults in coal mills. The potential of this

approach in this particular domain is demonstrated.

In the context of Industry 4.0's transformative impact,

Mohammed et al. [11] propose an IoT and machine learning-

based predictive maintenance system tailored for electrical

motors. By integrating cutting-edge ML models and MQTT

messaging within the Industrial IoT framework, their system

skillfully anticipates equipment failures, significantly

streamlining maintenance processes.

Glaeser et al. [12] delve into the application of deep learning

for fault detection in industrial cold forging processes.

Utilizing DLBA for fault detection, the authors employ a

convolutional neural network classifier to identify defect

conditions, subsequently utilizing a decision tree model for

defect classification.

A particular case study conducted by Rao et al. [13] put

forth a machine learning approach for diagnosing faults in

industrial equipment. In this research, the authors utilized

support vector machines (SVMs) and artificial neural

networks (ANNs) to classify varying types of faults.

Addressing critical needs in neonatal care, Mahdi et al. [14]

introduce a multi-faceted fault detection and monitoring

system for infant incubators, powered by machine learning

classifiers and the compact Raspberry Pi 4. Their system's

adeptness in utilizing Decision Tree, Support Vector Machine,

and Neural Network algorithms not only elevates care

standards but also ensures the vital comfort of preterm

newborns through advanced sensor technology.

A synthesis of the key insights derived from these studies is

as follows:

• Deep learning models can be effectively deployed for the

detection and diagnosis of faults in industrial machinery.

• Diverse deep learning models possess distinct strengths

and weaknesses. The optimal model for a specific application

is contingent on the unique characteristics of the data.

• Challenges persist in the deployment of deep learning for

fault diagnosis, including the requirement for substantial data

quantities and the complexity of interpreting the output of deep

learning models.

Despite the significant progress demonstrated by the

aforementioned studies in the field of fault detection, they do

not necessarily offer definitive guidance for researchers

navigating a particular data set. Consider, for instance, data

derived from numerically controlled (CNC) machines. The

objective in this scenario is to halt or schedule maintenance

programs when specific faults are detected in CNC-controlled

1362

equipment. The questions that researchers might pose in this

context could include:

• Which models are most suitable for this task?

• How many layers should be incorporated into these

models?

• What is the ideal number of neurons, units, or filters

required per layer?

• Which models are best equipped to handle multiple

outputs?

Table 1. Papers on fault detection on CNC machines

Papers Model Used Accuracy (%) Outputs

[15] SVM, XGBoost, RF
62,

99, 99
1

[16]
DT, ANN, KNN, SVM,

LR, MNB

99, 94,

90, 87,

60, 57

1

[17] LSTM-SVM 99 1

[18] Autoencoder 100 1

[19] CNN 95 1

A critical examination of the literature reveals a dearth of

useful guidance in addressing the posed research questions, as

the studies cited previously tend to be overly specific or

excessively broad. What is indeed required is a reproducible

framework and comparative studies that specifically deal with

the classification of machining faults in CNC machines. It is

within this context that the current study is positioned.

Table 1 presents a compilation of studies that have sought

to address the problem of identifying machining faults in CNC

machines.

Park et al. [15] applied a variety of machine learning

algorithms to classify machining faults in CNC machines, with

accuracies of 62%, 99%, and 99% being accomplished

respectively. However, a reproducible framework for

comparing different deep learning models was not provided in

their study.

Similarly, Shurrab et al. [16] also employed machine

learning algorithms for fault classification in CNC machines,

achieving accuracies of 99%, 94%, 90%, 87%, 60%, and 57%,

respectively. However, their study did not specifically

concentrate on deep learning models.

On the other hand, Polat [17] utilized a combination of an

LSTM network and an SVM to classify data from an EMCO

Concept Mill CNC, obtaining exceptional results with an

accuracy of 99%.

Zhang et al. [18] proposed an autoencoder model to tackle

the problem of permanent magnet synchronous machine

(PMSM) fault detection in CNC machines, achieving an

accuracy of 100%. However, their study did not focus on real-

time fault detection.

Lastly, Chung et al. [19] proposed a real-time fault detection

solution for CNC machines using a convolutional neural

network with binary weights, achieving an accuracy of

95.07%. However, their work did not include a comparative

study of different deep learning models.

The present study casts its focus on fault diagnosis in CNC

machines [15-19], an area that is attracting burgeoning interest

in the sphere of industrial research. Despite significant strides

in the realm of fault detection, conspicuous gaps remain

evident. The deficiencies that this paper intends to address can

be summarized as follows:

• The absence of specific guidance pertaining to model

selection and configuration in the context of CNC machine

fault diagnosis.

• The lack of concrete methodologies for handling multi-

output classification issues in fault diagnosis for CNC

machines.

• The dearth of comprehensive, reproducible frameworks

for tackling the challenges associated with the classification of

machining faults in CNC machines.

The current paper endeavors to propose a reproducible deep

learning approach for fault diagnosis in CNC machines that

sufficiently addresses these identified gaps. A comparison of

five state-of-the-art deep learning models is conducted, and

practical recommendations for model configuration are

provided. Furthermore, a novel method for resolving multi-

output classification problems in fault diagnosis for CNC

machines is proposed. The ensuing section of this paper will

detail the methodology employed.

3. METHODOLOGY

The Before presenting the overall architecture, it is

important to outline its main components. The overall

architecture we have used is shown in Figure 1.

After first partitioning our dataset into a training set and a

test set, we feed this data into a model to train it. The model

can be of different types such as MLP, CNN, Autoencoder

CNN, LSTM and ResNet. The model is then optimized using

a genetic algorithm. Optimizable parameters include the

number of units, filter size, kernel size, choice of activation

function and number of layers. Once the optimization is

complete, a prediction vector is generated for each training

input. This vector contains three elements: tool condition,

machine completion and successful visual inspection. The

following sections provide a more detailed description of each

of these elements.

3.1 Dataset used

The dataset used in our article is called the "CNC Milling

Dataset - University of Michigan SMART Lab". The data was

collected from machining experiments conducted on wax

blocks using a CNC milling machine at the University of

Michigan SMART Lab. This dataset offers opportunities for

studying areas like tool wear detection and inadequate

clamping detection.

The dataset comprises multiple files, with "train.csv" being

the primary one. This file contains general data from 18

different experiments (Table 2).

In addition to the "train.csv" file, the dataset also includes

files named "experiment_01.csv" to "experiment_18.csv".

Each file contains time series data collected from the 18

experiments, with a sampling rate of 100ms. Time series

measurements are available for the CNC motors (X, Y, Z axes,

and spindle), along with other variables related to the CNC

machine (Table 2, Table 3). The dataset contains 25,286

entries, as depicted in Figure 2. Specifically, for the output

"tool condition" we have 63.1% data in class 1 and 36.9% in

class 0. Regarding the output "machining finalized" 74.4% of

the data belongs to class 1, while 25.6% is in class 0. Lastly,

for the output "passed visual inspection" we have 52.4% data

in class 0 and 47.6% in class 1.

These characteristics are repeated for the Y and Z axes as

well as the spindle (S). Additionally, the characteristics of the

execution program (refer to Table 4) can be included, resulting

1363

in a total of 48 characteristics.

These features provide detailed information on machining

operations and CNC parameters, making the dataset a valuable

resource for research and analysis of machining processes.

In our study, we used a train-test split approach to partition

the dataset into training and testing subsets. Specifically, we

divided the dataset into training data (X_train, y_train) and

testing data (X_test, y_test) using a ratio of 80:20. We ensured

that the data shuffling and stratification were applied during

this process to maintain a balanced distribution of classes.

While we did not explicitly employ any specific regularization

techniques, such as dropout or L1, L2 regularization, our

emphasis was on optimizing hyperparameters using a genetic

algorithm to mitigate overfitting. The genetic algorithm's

iterative optimization process, combined with the appropriate

choice of hyperparameters, serves as a means of promoting

model generalization and preventing overfitting.

Having laid the groundwork with the data used, we now

move on to the essential stage of data preprocessing to

guarantee the quality and readiness of our dataset for further

analysis.

Figure 1. Framework proposed

Table 2. The train.csv file

Features Description

No Experiment number

material Material (wax)

feed_rate Relative feed speed of the cutting tool along the workpiece (mm/s)

clamp_pressure Pressure used to hold the workpiece in the vice (bar)

tool_condition Tool condition (unworn or worn)

machining_finalized Indicator if machining has been completed without moving the part

passed_visual_inspection Indicator of whether the part has passed visual inspection

Table 3. Characteristics of sub-data sets experiment_01.csv to experiment_18.csv, X axis

Features Description

X1_ActualPosition Actual position of workpiece X axis (mm)

X1_ActualVelocity Actual workpiece X-axis speed (mm/s)

X1_ActualAcceleration Actual X-axis acceleration (mm/s²)

X1_CommandPosition X axis reference position (mm)

X1_CommandVelocity X axis reference speed (mm/s)

X1_CommandAcceleration X-axis reference acceleration (mm/s²)

X1_CurrentFeedback Current (A)

X1_DCBusVoltage Voltage (V)

X1_OutputCurrent Output current (A)

X1_OutputVoltage Output voltage (V)

X1_OutputPower Output power (kW)

Table 4. Characteristics of the CNC execution program

Features Description

M1_CURRENT_PROGRAM_NUMBER Program number under which it is listed on the CNC

M1_sequence_number Line of G-code being executed

M1_CURRENT_FEEDRATE Instantaneous spindle feed speed

Machining_Process Machining step in progress

1364

Figure 2. Distribution of outputs criteria

3.2 Data pre-processing

To ensure the robustness and effectiveness of our models, a

crucial preprocessing step involved the utilization of the

standard scaler technique on our input data. This approach

normalized the data by transforming each feature to have a

mean of zero and a standard deviation of one. By employing

standard scaler, we not only mitigated the impact of varying

scales among different features but also facilitated the

convergence and performance of our models during training.

This preprocessing step played a pivotal role in ensuring that

each feature's contribution to the model's performance was

balanced, and thus, led to more reliable and accurate outcomes.

The standardized data was then effectively utilized for training

and evaluating our deep learning models, contributing to the

overall success of our fault diagnosis approach for CNC

machines. The formula for standard scaler transformation is

given by Eq. (1):

x
z





−
= (1)

where:

• z represents the standardized value of the feature.

• x is the original value of the feature.

• µ is the mean of the feature.

• σ is the standard deviation of the feature.

This transformation ensures that the feature's distribution

has a mean of zero and a standard deviation of one, making it

suitable for various machine learning algorithms, particularly

those that are sensitive to the scale of features. Having

prepared and standardized the data using the standard scaler

transformation, we can now delve into the optimization

process with GA that lies at the core of our methodology.

The application of GA provides us with a systematic

approach to fine-tuning the hyperparameters of our deep

learning models. By employing the principles of natural

selection and evolution, GAs enables us to navigate the vast

search space of possible configurations efficiently. In the

subsequent sections, we will delve into the details of our

approach, starting with an exploration of the Root Mean

Square Error (RMSE), a pivotal performance metric.

Understanding RMSE and its role in evaluating model

accuracy is essential before we proceed to outline how we

leverage genetic algorithms to discover optimal

hyperparameters for our multi-layer perceptron (MLP),

convolutional neural network (CNN), and variational

autoencoder with convolutional neural network (VAE CNN)

models. This dual focus on RMSE and genetic algorithms

empowers us to enhance the models' performance on the CNC

Milling Dataset and extract meaningful insights from the data.

3.3 Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) is a widely used

performance metric in regression analysis and machine

learning to quantify the accuracy of a predictive model's

predictions. It measures the average squared differences

between the predicted values and the actual values. RMSE

provides an intuitive understanding of how well the model's

predictions align with the true values, considering both the

magnitude and direction of the errors. The formula for

calculating RMSE is as follows Eq. (2):

()
2

1

ˆ
n

i i

i

y y

RMSE
n

=

−

=


(2)

where:

• n is the number of data points.

• yi represents the actual (true) value of the i-th data

point.

• 𝑦̂𝑖 represents the predicted value of the i-th data point.

In our study, we employ RMSE as the fitness evaluation

metric within the Genetic Algorithm (GA) optimization

process. The utilization of RMSE ensures that we prioritize

model architectures that exhibit accurate predictions on the

test dataset. The lower the RMSE value, the closer the

predicted values are to the actual values, indicating better

model performance. With a comprehensive understanding of

RMSE and its significance, we proceed to describe the GA

methodology that we have implemented to optimize our model

architectures and hyperparameters, aiming to enhance

predictive accuracy further.

3.4 Genetic Algorithm (GA)

In this paper, we have implemented a specific algorithm for

optimizing the parameters of our models, as presented in Table

5. In our methodology, we employed a genetic algorithm to

optimize the architecture of each model, considering its

specific type.

The genetic algorithm employs an iterative approach to

identify the optimal hyperparameter values [20-22]. The

hyperparameters considered are as follows:

• Number of filters per CONV1D layer (for models with

convolutional layers).

• Kernel size for CONV1D layers.

• Number of units per LSTM layer.

• Activation functions: we considered the Relu, sigmoid,

and tanh activation functions.

1365

• Optimizer: We used the Adam, Sgd, and RMSprop

optimizers.

• Learning rate: We defined a set of possible learning rates,

including 0.001, 0.002, 0.005, 0.01, and 0.1.

Table 5. Pseudo-code genetic algorithm used

Algorithm 1: Genetic_Algorithm

 Output: Best_Individual

 Begin:

1 Generate_Initial_Population ()

2 Set best_individuall_overall = None

3 For each generation G from 1 to N:

4 Begin

5 Evaluate_Fitness(Population[G],

best_individuall_overal)

6 Select_Parents(Population[G])

7 New_Population = []

8 While size of New_Population < Population_Size:

9 Begin

10 Parent1 = Select_Parent()

11 Parent2 = Select_Parent()

12 Child1, Child2 = Crossover (Parent1, Parent2)

13 Mutate (Child1)

14 Mutate (Child2)

15 Add Child1 to New_Population

16 Add Child2 to New_Population

17 End

18 Population[G+1] = New_Population

19 Best_Individual= Select_Best_Individual(Population[N],

best_individuall_overall)

10 Return Best_Individual

 End

The rationale behind the chosen hyperparameter ranges in

our study is a result of a combination of both literature insights

and experimental tuning. We drew from existing research and

best practices in the field of deep learning to establish initial

ranges that are commonly considered effective for each

hyperparameter. These ranges were aligned with

recommendations from literature and experienced

practitioners. However, to tailor these ranges specifically to

our problem and dataset, we performed extensive

experimental tuning. Our iterative process involved testing

various combinations of hyperparameters within different

ranges to understand their effects on the model's performance.

This empirical approach allowed us to identify ranges that led

to optimal results on the CNC Milling Dataset. By considering

both established guidelines and empirical results, we aimed to

strike a balance between relying on existing knowledge and

adapting to the unique characteristics of our problem domain.

The genetic algorithm evaluated each combination of

hyperparameters using a predefined evaluation function called

Fitness, that provides a measure of error on the test data.

Fitness evaluation is an important step in the genetic algorithm.

It allows us to evaluate the quality of the individuals and select

those that will be used for reproduction and mutation. In our

case, we used the RMSE on the test set as the fitness to

evaluate the individuals.

By using the RMSE on the test set as the fitness, we were

able to select the individuals that achieved the best results on

the test data. These individuals were then used to create the

final model.

We also used other performance metrics to evaluate the

individuals, such as accuracy and precision. However, we

found that the RMSE was the most effective metric for

selecting the best-performing individuals.

Additionally, we incorporated a mutation function to

facilitate a broader exploration of the hyperparameter space.

The mutation function randomly selected a target attribute

from the defined hyperparameters and introduced a mutation

by randomly selecting a new value within the corresponding

value range.

The choice of specific population size and generations in

our genetic algorithm was made to strike a balance between

computational efficiency and thorough exploration of the

hyperparameter space. A population size of 50 and 50

generations were selected based on empirical experimentation

to ensure an adequate diversity of solutions while keeping the

computational complexity manageable. This approach

allowed us to explore a range of potential solutions and

evolutionary paths within a reasonable computational

timeframe. The parameters were fine-tuned through iterative

testing, taking into consideration the trade-off between

exploration and exploitation of the search space. Our objective

was to ensure that the genetic algorithm has sufficient

iterations to converge towards an optimal solution while

avoiding excessive computational demands.

Finally, we selected the top individuals from the final

population to compose our ultimate model. We employed an

external variable to store the best individual overall for each

population. Finally, we compared this overall best individual

with the best individual from the last population to accurately

identify the ultimate best individual. This selected model was

trained using the training data and evaluated on the test set. We

recorded the highest accuracy achieved, as well as the model's

architecture represented by these best individuals.

In summary, our methodology utilized a genetic algorithm.

to optimize the overall architecture of each network by

considering hyperparameters such as the number of filters,

activation functions, optimizers, and learning rates. This

approach enabled us to determine an optimal architecture for

our model, resulting in commendable performance on the test

data.

3.5 Multi-Layers Perceptron (MLP)

The Multilayer Perceptron (MLP) is a widely utilized

artificial neural network in deep learning [23-25]. It comprises

multiple layers of neurons, including an input layer, one or

more hidden layers, and an output layer. Each neuron in the

hidden and output layers is connected to all neurons in the

preceding and succeeding layers, forming a dense network

structure. The calculation for the activation of a neuron in a

hidden layer is defined by Eq. (3).

(1)

() () (1) ()

1

ln
l l l l

j ij i j

i

a w a b

−

−

=

 
= + 

 


(3)

where, 𝑎𝑗
(𝑙)

 is the activation of the neuron 𝑗 in the layer 𝑙, 𝑤𝑖𝑗
(𝑙)

is the weight between the neuron 𝑖 in the layer l-1 and the

neuron j in the layer 𝑙, 𝑎𝑖
(𝑙−1)

 is the activation of the neuron i

in the layer 𝑙 − 1, 𝑏𝑗
(𝑙)

 is the bias of the neuron j in the layer l

and σ is the activation function.

The calculation of the loss function is given by Eq. (4).

()
1

1
ˆ(,) ,

m

i i

i

J L y y
m =

= w b (4)

where, J is the loss function, w and b are the MLP weights and

1366

biases, m is the number of training examples, yi is the true label

of the example 𝑖, 𝑦̂𝑖 is the MLP prediction for the example i is

L is the specific loss function.

The table summarizes the hyperparameter bounds for the

MLP model:

• Hidden layer sizes define the number of neurons per

hidden layer in the model. The permitted values are:

(50),(100),(50,50),(100,100),(50,100) and (50,100,200).

• Activation: specifies the activation function for the model

layers. The permitted values are Relu and sigmoid.

• optimizer: indicates the optimizer to be used to drive the

model. The permitted values are Adam and Sgd.

• Learning rate sets the learning rate for the optimizer. The

permitted values are 0.001,0.01 and 0.1.

The MLP we have implemented consists of 1, 2 or three

layers depending on the feedback from our genetic algorithm.

Its configuration in terms of neurons per layer and activation

functions is given in Table 6.

The MLP model is a versatile and powerful tool for machine

learning. It can be used for a variety of tasks, including

classification, regression, and clustering. The MLP model we

have implemented is configurable with a variety of

hyperparameters, which allows us to optimize the model for a

specific task.

Table 6. AG configuration for MLP

Hyperparameters Values

hidden_layer_sizes [(50), (100), (50, 50), (100, 100), (50, 100),

(50, 100, 200)]

activation Relu, sigmoid, tanh

optimizer Adam, Sgd

learning_rate [0.001, 0.01, 0.1]

3.6 Convolutional neural networks (CNN)

The CNN model is designed to automatically extract

relevant features from input data [26]. In our case, the input

data is 48-column data resized in sequence of 1. These

variables include measurements of CNC motor position, speed,

acceleration, current and voltage.

Our CNN model consists of three Conv1D layers that

perform convolution operations on the input sequences. Each

Conv1D layer is followed by an activation function that

introduces non-linearity into the model. This allows the model

to capture complex, non-linear patterns in the input data.

After the convolution layers, the extracted features are

flattened and fed into a dense layer with three outputs

corresponding to the classification classes. The dense layer

uses a sigmoid activation function that assigns probabilities to

each class. The essential equations for CNN networks are

summarized in equations Eqs. (5)-(7).

For each convolution layer:

()

()

[] [1] [] []

[] []

Conv1D , ,

ReLU

l l l l

l l

Z A W b

A Z

−=

=

(5)

For the last convolution layer:

()

()

[1] [2] [1] [1]

[1] [1]

Conv1D , ,

ReLU

L L L L

L L

Z A W b

A Z

− − − −

− −

=

=

(6)

For the Fully Connected Layer:

()

[] [1] [] []

[] []Sigmoid

L L L L

L L

Z A W b

A Z

−=  +

=

(7)

where:

• l is the layer index (from 1 to L-1 for convolution layers,

and L for the dense layer).

• A[l-1] is the input activation of the l-1.

• W[l] is the matrix of layer weights l.

• b[l] is the bias vector of the layer l.

• Z[l] is the weighted activation of the l.

• Conv1D represents the convolution operation in one

dimension.

• ReLU is the ReLU (Rectified Linear Unit) activation

function.

• Sigmoid is the activation function used for independent

multi-output classification.

Table 7. AG configuration for the CNN

Hyperparameters Values

filter [16, 20, 64, 128, 200, 250, 300]

activation Relu, sigmoid, tanh

optimizer Adam, Sgd

kernel_size [2, 3, 4, 6, 8, 10]

learning_rate [0.001, 0.002, 0.005]

Table 7 summarizes the hyperparameter bounds for the

CNN model:

• Filter: specifies the number of filters for each convolution

layer. The acceptable values are 16, 20, 64, 128, 200, 250

and 300.

• Activation: determines the activation function to be used.

Permitted values are Relu, sigmoid and tanh.

• Optimizer indicates the optimizer to be used for training

the model. The permitted values are Adam, Sgd and

RMSprop.

• Kernel size: determines the size of the kernel for each

convolution layer. The permitted values are 2, 3, 4, 6, 8

and 10.

• Learning rate sets the learning rate for the optimizer. The

permitted values are 0.001, 0.002 and 0.005.

In this article, the CNN model we have implemented is

made up of three CONV1D layers depending on the feedback

from our genetic algorithm. Its configuration in terms of filters

per layer and activation functions is given in Table 7.

The Convolutional Neural Network (CNN) stands as a

robust asset in the realm of machine learning tasks that

encompass the handling of sequential data or images. Its

applicability spans a wide range of objectives, such as

classification, regression, and the identification of anomalies.

The CNN model we've constructed comes with a flexible array

of hyperparameters, affording us the opportunity to tailor the

model's configuration precisely to a given task.

3.7 Variational Autoencoder with Convolutional Neural

Network (VAE CNN)

The method used in this section for modelling and analyzing

the data is the Variational Autoencoder with Convolutional

Neural Network (VAE CNN). The VAE CNN is a powerful

model that combines the advantages of variational

autoencoders and convolutional neural networks to learn a

latent representation of the data and generate accurate

reconstructions [27, 28].

1367

The architecture of the CNN VAE consists of two main

parts: the encoder and the decoder. The encoder takes the input

data and transforms it into a reduced-dimension latent

representation. The decoder, on the other hand, takes the latent

representation as input and attempts to reconstruct the original

data. This approach makes it possible to learn a meaningful

representation of the data while retaining the essential

information.

In our implementation, we use convolution layers (Conv1D)

to encode and decode the data. Convolution layers are used to

extract important features from the data by considering the

spatial relationships between different points. Using

convolution filters and pooling operations, the model can

capture complex patterns and structures in the data.

The CNN VAE encoder comprises several convolution

layers that progressively reduce the dimensionality of the data.

Next, the means and logarithms of the latent space variances

are calculated from the outputs of the convolution layers.

Using a reparameterization function, samples are generated in

the latent space, allowing exploration and interpolation of

different representations of the data.

The CNN VAE decoder takes input latent space samples

and reconstructs them using Conv1DTranspose layers. These

transposed layers allow the dimensionality of the data to be

increased until the initial input shape is reached.

During CNN VAE training, the loss function is defined as

the sum of two terms: the reconstruction loss and the KL

divergence. The reconstruction loss measures the difference

between the input data and the reconstructions generated by

the model. The KL divergence is used to regularize the

distribution of the latent space and promote a structured latent

representation.

The VAE CNN model is optimized using a specified AG

optimizer, and hyperparameters such as the number of filters,

kernel size, latent dimension, and learning rate are tuned to

obtain the best performance on the data.

Once the latent representation has been learned, we use a

dense 5-layer MLP model for classification.

Using this VAE CNN approach, we can learn a meaningful

latent representation of the CNC Milling Dataset, capturing the

complex patterns and structures inherent in the data. In

addition, the model can generate accurate reconstructions,

allowing the quality of the learned representation to be

validated.

In this article, the configuration of the VAE CNN model is

given in Table 8.

Table 8. GA configuration for CNN VAE

Hyperparameters Values

filter [16 ,20 ,64 ,128 ,200, 250 ,300]

activation [Relu, sigmoid, tanh]

optimizer [Adam, Sgd, RMSprop]

kernel_size [2 ,3 ,4 ,6,8 ,10]

learning_rate [0.001, 0.002, 0.005]

latent_dim [2 ,3 ,4 ,6,8 ,10, 12]

• Filter: This is the number of filters per convolution layer

in the VAE model encoder. In this configuration, the GA

will randomly extract an array of size 2 corresponding to

our CNN layers.

• Activation: This is the activation function used in the

convolution and dense layers of the model. In this case,

activation is defined as Relu, which corresponds to the

ReLU (Rectified Linear Unit) activation function.

• Optimizer: This is the optimizer used to update the model

weights during training. Three options are provided:

Adam, Sgd (Stochastic Gradient Descent) and RMSprop

(Root Mean Square Propagation). In this configuration,

the Adam optimizer is used.

• Kernel size: This is the size of the kernel (or filter) used

in convolution layers.

• Latent dim: This is the dimension of the latent space, i.e.,

the reduced data representation space.

• Learning rate: This is the learning rate of the optimizer. It

determines the size of the model weight update steps

during training.

These parameters (Table 8) are used to define the

architecture of the VAE model and to perform optimization

and evaluation on the input data. Each parameter controls a

specific aspect of the model, such as the number of filters, the

activation function, the optimizer, the kernel size, the latent

space dimension and the learning rate, allowing different

parameters to be explored during the genetic optimization

process.

In summary, the Variational Autoencoder with

Convolutional Neural Network (VAE CNN) merges the

strengths of variational autoencoders and convolutional neural

networks, providing a robust means to learn a condensed

representation of data and generate precise reconstructions. By

employing convolution layers to extract intricate patterns and

spatial relationships, the encoder transforms input data into a

meaningful latent representation. The decoder then

reconstructs the original data from this latent space. With the

integration of convolutional filters and pooling operations, the

model adeptly captures complex structures within the data.

Regularized through the combination of reconstruction loss

and KL divergence, the VAE CNN achieves a balanced latent

distribution. The optimized VAE CNN, defined by

hyperparameters specified in Table 8, demonstrates its

effectiveness in capturing intricate patterns within the CNC

Milling Dataset while enabling reliable classification through

its learned representation.

3.8 Long Short-Term Memory (LSTM)

The LSTM model is a type of recurrent neural network that

can capture long-term dependencies in data sequences [29, 30].

LSTM can be described by Eqs. (8)-(13):

• Forget gate equation:

 ()1,t f t t ff W h x b −=  + (8)

• Input gate equation:

 ()1,t i t t ii W h x b −=  + (9)

• Output gate equation:

 ()1,t o t t oo W h x b −=  + (10)

• Equation for the candidate cell gate:

 ()1tanh ,t c t t cC W h x b−=  + (11)

• Cell state equation :

1368

1t t t t tC f C i C−=  +  (12)

• LSTM output equation :

()tanht t th o C=  (13)

In these equations ht is the output at time t, xt is the input at

time t, Wf, Wi, Wo, Wc are the weight matrices, bf, bi, bo, bc are

the bias vectors, σ is the sigmoid function and tanh is the

hyperbolic tangent function.

In this article, the configuration of the LSTM model is given

in Table 9.

Table 9. AG configuration for LSTM

Hyperparameters Values

units [2 to 500]

activation [Relu, sigmoid, tanh]

optimizer [Adam, Sgd, RMSprop]

learning_rate [0.001, 0.002, 0.005]

We have different options for each parameter. For example,

for the units parameter, the GA will try several configurations

from among the values 2, 16, 20, 64, 128, 200, 250 and 500.

The same applies to the other parameters.

By considering our data as sequences, LSTM can play an

important role. The Long Short-Term Memory (LSTM) model

emerges as a powerful recurrent neural network capable of

capturing intricate temporal dependencies. Utilizing a series of

equations as described Eq. (8) through Eq. (13) the LSTM

framework introduces the forget, input, output, and candidate

cell gates to manage information flow over sequential time

steps. The architecture's adaptability is reflected in Table 9,

where hyperparameters such as units, activation functions,

optimizers, and learning rates are meticulously tuned. The

LSTM model, by its nature, is suited to handling data

sequences, making it an ideal candidate for applications

demanding the recognition of long-term relationships and

patterns.

3.9 Residual Network (ResNet)

The ResNet model is a deep neural network architecture that

introduces residual connections to facilitate learning and

optimization. These residual connections allow the model to

better capture relevant features by avoiding gradient vanishing

problems and facilitating the flow of information across layers

[31, 32].

To optimize the number of Conv1D filters and layers in

each ResNet block, we used a genetic algorithm. This genetic

algorithm searches the space of hyperparameters by evaluating

different combinations of Conv1D filters and layers, then

selecting the best performing combinations.

The genetic algorithm evaluates each combination using a

performance metric, such as accuracy or precision, and selects

the combinations that produce the best results. It then performs

mutation and crossover operations to generate new

combinations, while preserving the characteristics of the best-

performing combinations.

This iterative process of selection, mutation and crossover

is repeated over several generations until the best performing

combinations converge on an optimal solution. Ultimately, the

genetic algorithm allows us to find the optimal configuration

of Conv1D filters and layers for each block of the ResNet

model.

Using this approach, we can build a ResNet model of 4

CNN blocks with filter and Conv1D layer configurations

specifically adapted to our problem. This allows us to make

the most of the characteristics of the data and improve the

performance of our model.

In summary, our methodology involves using a ResNet

model of 4 CNN blocks with residual connections and

optimizing the Conv1D filter and layer configurations using a

genetic algorithm. This approach enables us to obtain a model

adapted to our specific problem and to improve the

performance of our classification system. The configuration of

the ResNet model is given in Table 10.

Table 10. AG configuration for ResNet

Hyperparameters Values

filter [16, 20, 64, 128, 200, 250 ,300]

activation [Relu, sigmoid, tanh]

optimizer [Adam, Sgd, RMSprop]

kernel_size 2

learning_rate [0.001, 0.01, 0.1]

4. RESULTS AND ANALYSIS

In this section, we present the results obtained by the

different deep network models that we have studied for the

detection of faults in industrial equipment. We compared the

performance of the Multilayer Perceptron (MLP), the

Convolutional Neural Network (CNN), the CNN auto-encoder,

the Long Short-Term Memory (LSTM) and the Residual

Network (ResNet) on a dataset from a CNC milling machine

in the System-level Manufacturing and Automation Research

Testbed (SMART) at the University of Michigan.

First, we applied a special parameter optimization process

to all these models using a special genetic algorithm (GA).

This allowed us to find the best combinations of parameters

for each model, thereby maximizing their performance. The

optimized parameters included the number of units in the

hidden layers, the activation functions, the optimizers chosen

and the learning rates. This approach enabled us to obtain

models specifically adapted to our problem of detecting faults

in industrial equipment.

To assess the performance of our models, it is important to

present several metrics:

• Precision: This metric measures the accuracy of positive

predictions made by the model. It is calculated as the

number of true positive predictions divided by the total

number of predictions made for the positive class. A high

precision indicates that the model is good at avoiding false

positives.

• Recall: This metric measures the ability of the model to

correctly identify positive instances from the actual

positive cases in the dataset. It is calculated as the number

of true positive predictions divided by the total number of

actual positive cases. A high recall indicates that the

model is good at avoiding false negatives.

• F1-score: This metric provides a balanced view of both

precision and recall. It is calculated as the harmonic mean

of precision and recall. A high F1-score indicates that the

model is good at both avoiding false positives and false

negatives.

1369

• Support: This metric represents the number of actual

occurrences of each class in the test dataset. It is important

to consider support when interpreting the evaluation

metrics, as it provides context for understanding the scale

of each class's presence.

By collectively considering precision, recall, F1-score, and

support, we gain a comprehensive understanding of our

models' strengths and limitations in classifying the different

fault categories in the CNC Milling Dataset. These metrics

allow us to make informed decisions about model selection

and fine-tuning, ultimately contributing to the overall success

of our fault diagnosis framework.

4.1 MLP model

In the MLP section of our study, we evaluated the

performance of the MLP (Multilayer Perceptron) model for

fault detection on three different criteria: tool condition,

machine completion and visual inspection. The results

obtained are presented in Tables 11-13.

Table 11. Performance MLP on output tool condition

 Precision Recall F1-Score Support

0 0.81 0.70 0.75 2106

1 0.81 0.88 0.84 2952

Accuracy 0.81 5058

Macro avg 0.81 0.79 0.80 5058

Weighted avg 0.81 0.81 0.80 5058

Table 11 shows the results of fault detection on tool status.

We obtain a precision of 0.81 for class 0 and 0.81 for class 1.

Recall is 0.70 for class 0 and 0.88 for class 1. The F1 score is

0.75 for class 0 and 0.84 for class 1. These results demonstrate

a satisfactory overall performance of the MLP model in

detecting tool state failures.

Table 12. Performance MLP on output machine finalized

 Precision Recall F1-Score Support

0 0.77 0.66 0.71 1165

1 0.90 0.94 0.92 3893

Accuracy 0.88 5058

Macro avg 0.84 0.80 0.82 5058

Weighted avg 0.87 0.88 0.87 5058

Table 13. Performance MLP on output passed visual

inspection

 Precision Recall F1-Score Support

0 0.75 0.76 0.76 2430

1 0.78 0.76 0.77 2628

Accuracy 0.76 5058

Macro avg 0.76 0.76 0.76 5058

Weighted avg 0.76 0.76 0.76 5058

Table 12 shows the results of fault detection on machine

finalization. We obtain a precision of 0.77 for class 0 and 0.90

for class 1. Recall is 0.66 for class 0 and 0.94 for class 1. The

F1 score is 0.71 for class 0 and 0.92 for class 1. These results

demonstrate the high performance of the MLP model in

detecting faults in the finalization of the machine.

Table 13 shows the results of fault detection on successful

visual inspection. We obtain a precision of 0.75 for class 0 and

0.78 for class 1. Recall is 0.76 for class 0 and 0.76 for class 1.

The F1 score is 0.76 for class 0 and 0.77 for class 1.

The overall accuracy of 82% is encouraging, and the model

can identify faults with a high degree of confidence. However,

there are some areas where the model could be improved. For

example, the precision for the "passed visual inspection" class

is relatively low, indicating that the model may be making a

high number of false positives in this case.

4.2 CNN model

In the CNN section of our study, we used the CNN

(Convolutional Neural Network) model for fault detection on

three different criteria: tool condition, machine completion

and visual inspection. The results obtained are presented in

Tables 14-16.

Table 14. Performance CNN on output tool condition

 Precision Recall F1-Score Support

0 0.85 0.76 0.80 2370

1 0.80 0.88 0.84 2688

Accuracy 0.82 5058

Macro avg 0.83 0.82 0.82 5058

Weighted avg 0.82 0.82 0.82 5058

Table 15. Performance CNN on output machine finalized

 Precision Recall F1-Score Support

0 0.79 0.79 0.79 1257

1 0.93 0.93 0.93 3801

Accuracy 0.89 5058

Macro avg 0.86 0.86 0.86 5058

Weighted avg 0.89 0.89 0.89 5058

Table 16. Performance CNN on output passed visual

inspection

 Precision Recall F1-Score Support

0 0.80 0.84 0.82 2467

1 0.84 0.80 0.82 2591

Accuracy 0.82 5058

Macro avg 0.82 0.82 0.82 5058

Weighted avg 0.82 0.82 0.82 5058

While the CNN model demonstrates solid performance,

there are nuances to consider. Despite high precision and recall

scores in some cases, there remains room for improvement in

achieving balanced performance across all metrics. A potential

implication is the model's vulnerability to misclassifications in

specific fault categories. This can lead to costly errors if not

mitigated. Further investigation is required to determine the

underlying reasons behind the model's varying performance

and to fine-tune its hyperparameters.

In summary, the CNN model exhibits robust performance

in various fault detection criteria, achieving an overall

accuracy of 85%. However, an in-depth analysis reveals

potential challenges and the need for further refinement.

4.3 VAE CNN model

The results obtained for VAE are presented in Tables 17-19.

It is noteworthy that the VAE CNN model achieves lower

results compared to the previous models. This difference could

be attributed to the model's emphasis on generalization. The

VAE is known for its ability to generate data, underscoring the

importance of robust generalizability in various applications.

Despite these relatively lower scores, the VAE CNN model

1370

remains an intriguing option for fault detection, considering its

potential for generating valuable insights and data. The VAE

CNN model's relatively lower performance could indicate

challenges in effectively capturing complex patterns and

representations inherent in the dataset. The focus on data

generation might have led to a trade-off between predictive

performance and generalization. This suggests the need for

more advanced architectures and careful hyperparameter

tuning to enhance the model's performance. While the model's

accuracy of 76% is lower compared to other models, its

potential to contribute to data generation and exploration

remains intriguing, making it an avenue worthy of further

exploration and refinement.

In conclusion, the VAE CNN model exhibits promising

potential despite its relatively lower performance on various

fault detection criteria. The model's emphasis on data

generation and generalization underscores its unique

capabilities, opening the door for future advancements and

improvements.

Table 17. Performance VAE on output tool condition

 Precision Recall F1-Score Support

0 0.69 0.69 0.69 2370

1 0.73 0.72 0.72 2688

Accuracy 0.71 5058

Macro avg 0.71 0.71 0.71 5058

Weighted avg 0.71 0.71 0.71 5058

Table 18. Performance VAE on output machine finalized

 Precision Recall F1-Score Support

0 0.75 0.52 0.61 1257

1 0.86 0.94 0.90 3801

Accuracy 0.84 5058

Macro avg 0.80 0.73 0.75 5058

Weighted avg 0.83 0.84 0.83 5058

Table 19. Performance VAE on output passed visual

inspection

 Precision Recall F1-Score Support

0 0.79 0.63 0.70 2467

1 0.71 0.84 0.77 2591

Accuracy 0.74 5058

Macro avg 0.75 0.74 0.74 5058

Weighted avg 0.75 0.74 0.74 5058

4.4 ResNet model

The results presented in this section concern the Resnet

model, and Tables 20-23 summarize the results in terms of

performance on all the criteria.

The ResNet model showcases robust performance across

various fault detection criteria, with an overall accuracy of

84%. Its balanced precision, recall, and F1-scores indicate its

proficiency in classifying diverse fault categories. The model's

relatively high accuracy is a testament to its effectiveness in

generalizing its learning across different fault types, making it

a promising option for robust fault detection.

While the ResNet model demonstrates commendable

performance, interpretability of the model's decisions could be

a challenge, as deep learning architectures often lack

transparency. Additionally, fine-tuning the hyperparameters

could potentially enhance the model's performance. Ensuring

a comprehensive understanding of the model's strengths and

limitations can guide further development and improvements.

In conclusion, the ResNet model emerges as a reliable and

robust contender for fault detection across various criteria. Its

strong overall accuracy and balanced performance in precision,

recall, and F1-scores underscore its potential to contribute

effectively to fault diagnosis tasks. As we progress, the ResNet

model provides a solid foundation for advancing the field of

CNC milling fault detection and potentially inspiring further

research in deep learning-based fault detection methodologies.

Table 20. Performance ResNet on output tool condition

 Precision Recall F1-Score Support

0 0.78 0.80 0.79 2106

1 0.86 0.84 0.85 2952

Accuracy 0.82 5058

Macro avg 0.82 0.82 0.82 5058

Weighted avg 0.82 0.82 0.82 5058

Table 21. Performance ResNet on output machine finalized

 Precision Recall F1-Score Support

0 0.81 0.71 0.76 1165

1 0.92 0.95 0.93 3893

Accuracy 0.89 5058

Macro avg 0.86 0.83 0.84 5058

Weighted avg 0.89 0.89 0.89 5058

Table 22. Performance ResNet on output passed visual

inspection

 Precision Recall F1-Score Support

0 0.81 0.74 0.77 2430

1 0.78 0.84 0.81 2628

Accuracy 0.79 5058

Macro avg 0.79 0.79 0.79 5058

Weighted avg 0.79 0.79 0.79 5058

4.5 LSTM model

The results obtained for LSTM are presented in Tables 23-

25.

The outcomes of this section, as encapsulated in Table 23-

25, showcase the LSTM model's prowess in consistently

delivering top-tier performance.

Tool Condition Detection (Table 23): The LSTM model

shines with precision scores of 0.91 for class 0 (healthy tool)

and a remarkable 0.94 for class 1 (faulty tool). These figures

highlight the model's exceptional precision in distinguishing

between tool conditions. Recall rates of 0.93 for both classes

affirm the model's robustness in correctly identifying instances

from both categories. The corresponding F1-scores of 0.92 and

0.94 underscore the model's balanced precision and recall

performance. With an overall accuracy of 93%, the LSTM

model showcases its prowess in accurately classifying tool

conditions.

Machine Finalization Detection (Table 24): For machine

finalization detection, the LSTM model demonstrates a

precision of 0.93 for class 0 and an impressive 0.96 for class

1. These precision scores underscore the model's ability to

identify both successful and problematic machine finalizations

with high precision. Recall rates of 0.90 for class 0 and an

outstanding 0.97 for class 1 highlight the model's robustness

in accurately identifying instances from both categories. The

resulting F1-scores of 0.91 and 0.97 further emphasize the

model's balanced performance. An accuracy of 95%

accentuates the LSTM model's exceptional generalization.

1371

Table 23. Performance LSTM on output tool condition

 Precision Recall F1-Score Support

0 0.93 0.90 0.91 1322

1 0.96 0.97 0.97 3736

Accuracy 0.95 5058

Macro avg 0.95 0.94 0.94 5058

Weighted avg 0.95 0.95 0.95 5058

Table 24. Performance LSTM on output machine finalized

 Precision Recall F1-Score Support

0 0.94 0.93 0.94 2658

1 0.92 0.94 0.93 2400

Accuracy 0.93 5058

Macro avg 0.93 0.93 0.93 5058

Weighted avg 0.93 0.93 0.93 5058

Table 25. Performance LSTM on output passed visual

inspection

Model
Hidden

Layers
Activation Optimizer

Learning

Rate

MLP
(50,

100)

sigmoid,

tanh
Adam 0.001

CNN
(250, 200,

128)
tanh RMSprop 0.005

VAE
(64,

300)
tanh Sgd 0.002

LSTM

(351,

374,

129)

tanh RMSprop 0.005

ResNet
(16,

128)
Relu, tanh Sgd 0.1

Visual Inspection Detection (Table 25): During visual

inspection detection, the LSTM model exhibits precision

scores of 0.94 for class 0 and 0.92 for class 1. These figures

exemplify the model's proficiency in accurately differentiating

between instances of successful and unsuccessful visual

inspections. Recall rates of 0.93 for both classes underline the

model's ability to correctly identify instances from both

categories. The F1-scores of 0.94 and 0.93 highlight the

model's balanced performance. An accuracy of 93% further

cements the LSTM model's robust generalization.

The LSTM model's standout performance lies in its ability

to consistently deliver high precision and recall across all fault

detection criteria. Its balanced F1-scores indicate that it

effectively maintains a harmony between precision and recall.

With an impressive overall accuracy of 94%, the LSTM model

demonstrates exceptional capabilities in classifying various

fault categories accurately.

The LSTM model's remarkable performance holds

significant implications for industrial equipment fault

detection and predictive maintenance systems. Its ability to

excel across different criteria underscores its potential to

enhance industrial operations by facilitating early fault

detection and minimizing downtime. The model's suitability

for real-world applications positions it as a key player in the

evolution of efficient and reliable fault detection mechanisms.

In summary, Table 26 provides a comprehensive overview

of the different models employed in this study, highlighting

key aspects of their architectures and hyperparameter

configurations. The Multi-Layer Perceptron (MLP) model

incorporates two hidden layers with neuron sizes of 50 and 100,

utilizing the Adam optimizer with a learning rate of 0.001. On

the other hand, the Convolutional Neural Network (CNN)

exhibits a more complex structure with hidden layers of sizes

250, 200, and 128, employing the tanh activation function

along with the RMSprop optimizer and a learning rate of 0.005.

The Variational Autoencoder (VAE) model follows a similar

path with hidden layers of sizes 64 and 300, using the tanh

activation function in combination with the SGD optimizer

and a learning rate of 0.002. The Long Short-Term Memory

(LSTM) model showcases its architecture with hidden layers

of sizes 351, 374, and 129, integrating the tanh activation

function and RMSprop optimizer with a learning rate of 0.005.

Lastly, the ResNet model, distinguished by hidden layers of

sizes 16 and 128, aligns with the SGD optimizer and a higher

learning rate of 0.1. This comprehensive comparison

underscores the diversity of the models employed in this study,

paving the way for a thorough evaluation of their performance

on the CNC Milling Dataset.

As we reflect upon the outcomes of our comprehensive

study, it becomes evident that our findings resonate deeply

with the overarching research goals we initially outlined. The

intent of our investigation was to meticulously compare and

evaluate the performance of five prominent deep learning

network models in the domain of fault diagnosis for CNC

machines. The conclusions drawn from our analysis

substantiate the significance of such an endeavor. By

empirically assessing the strengths and limitations of the

Multilayer Perceptron (MLP), Convolutional Neural Network

(CNN), CNN autoencoder, Long Short-Term Memory

(LSTM), and Residual Network (ResNet), we have

contributed a holistic understanding of their applicability in

the context of complex industrial data analysis.

Furthermore, our findings coalesce harmoniously with

existing literature in the field of fault diagnosis for CNC

machines. While previous research efforts have made strides

in the domain, our study addresses certain crucial gaps that

have been identified in the current state of research. By

providing specific guidance on model selection, configuration,

and multi-output classification challenges, our research

advances the literature's understanding of tackling intricate

fault diagnosis scenarios. The alignment of our findings with

previous work underscores the validity and relevance of our

study's objectives and outcomes.

Our research goes beyond theoretical exploration, offering

practical implications that resonate with manufacturers

seeking to enhance their fault diagnosis and predictive

maintenance practices. The elucidation of the strengths and

weaknesses of each deep learning model equips manufacturers

with actionable insights for informed decision-making.

Manufacturers can now tailor their model selection based on

their specific industrial requirements and data characteristics.

By implementing the most suitable model, manufacturers can

proactively identify and address faults, thereby minimizing

operational disruptions, reducing downtime, and optimizing

overall production efficiency.

In conclusion, our study's profound alignment with original

research objectives and existing literature reaffirms its

significance. The practical implications extend well beyond

research realms, offering manufacturers a roadmap to bolster

their operational efficiency and reliability through informed

model selection and proactive fault detection strategies. By

merging theory with practicality, our research seeks to

catalyze the evolution of industrial fault diagnosis in the

context of CNC machines.

1372

Table 26. Comparison of all models

Model
Hidden

Layers
Activation Optimizer

Learning

Rate

MLP
(50,

100)

sigmoid,

tanh
Adam 0.001

CNN
(250, 200,

128)
tanh RMSprop 0.005

VAE
(64,

300)
tanh Sgd 0.002

LSTM

(351,

374,

129)

tanh RMSprop 0.005

ResNet
(16,

128)
Relu, tanh Sgd 0.1

5. DISCUSSIONS

Our investigation has culminated in a comprehensive

analysis of various deep network models applied to the realm

of industrial equipment fault detection, as outlined in Table 27.

This section affords us the opportunity to connect our findings

back to the core research aims that propelled this study into

motion. The central objective was to scrutinize the efficacy of

five prevalent deep learning models in the domain of fault

detection, culminating in the attainment of predictive

maintenance excellence. Our exploration has not only fulfilled

this intent but also delivered a myriad of key insights and

practical implications that are poised to revolutionize the

landscape of industrial fault diagnosis.

Our study ventures into novel terrain, shedding light on the

performance dynamics of the Multilayer Perceptron (MLP),

Convolutional Neural Network (CNN), Variational

Autoencoder (VAE), Long Short-Term Memory (LSTM), and

Residual Network (ResNet) models. These models, each

bearing unique attributes tailored for intricate data analysis

and fault signal detection, uncover the intricate relationships

between machine conditions and signals of impending faults.

The VAE model, though yielding relatively lower

performance than its counterparts, unveils a significant facet -

its potential as a tool for data generation. This unique ability

to synthesize data makes the VAE a remarkable avenue for

further exploration, potentially transcending its initial

performance drawbacks.

The MLP model showcases commendable performance

across diverse criteria, highlighting its potential as a reliable

tool for fault detection across multiple dimensions. Achieving

accuracies of 82% in tool condition detection, 88% in machine

completion, and 76% in visual inspection, the MLP model

emerges as a versatile contender for real-world industrial

applications.

The ResNet model further solidifies the landscape of fault

detection, attaining an overall accuracy of 84%. Its capabilities

shine particularly bright in tool condition detection (79%),

machine completion (92%), and visual inspection (78%),

positioning the ResNet as a robust solution with potential

implications for predictive maintenance frameworks.

The CNN model, showcasing its prowess, achieves an

impressive 85% overall accuracy in fault detection across

various criteria. Its aptitude for capturing pertinent features

bolsters its reputation as a viable approach for intricate fault

signal analysis.

The LSTM model, incontestably the frontrunner,

demonstrates the pinnacle of performance with a remarkable

94% overall accuracy. Its skill in capturing temporal

dependencies stands as a testament to its potential in

unravelling the complexities of CNC machine data, propelling

it to the forefront of predictive maintenance systems

development.

Our study does not exist in isolation; it intersects with

previous research, particularly [15, 16]. While our LSTM

model's accuracy may not reach the heights of decision tree-

based models, the true value lies in its capability to generalize.

Our 95% LSTM accuracy, albeit not the highest, excels in

capturing temporal dependencies, outperforming decision

trees and confirming the significance of our approach.

In conclusion, our study emerges as a pivotal milestone in

the quest for superior fault diagnosis and predictive

maintenance in industrial equipment. The LSTM model, with

its unmatched performance, serves as a beacon for future

research endeavours. The implications are clear: harnessing

deep learning models for early fault detection, manufacturers

can champion operational efficiency and reliability. The

synthesis of theory and practice laid forth in our study sets the

stage for a new era of data-driven decision-making, poised to

transform industrial maintenance landscapes.

Table 27. Global accuracy of all models

Models Precision

VAE CNN 76%

MLP 82%

ResNet 84%

CNN 85%

LSTM 94%

6. CONCLUSION

Our research delved into the extensive realm of industrial

equipment fault detection using deep learning models.

Throughout this study, we scrutinized and compared the

performance of five prominent deep network architectures:

Multilayer Perceptron (MLP), Convolutional Neural Network

(CNN), Variational Autoencoder with CNN (VAE CNN),

Long Short-Term Memory (LSTM), and Residual Network

(ResNet). Our investigation was driven by the imperative of

informed decision-making in model selection and

configuration for fault diagnosis in CNC machines.

The results obtained through our rigorous evaluation shed

light on the strengths and weaknesses of each model. The MLP

model showcased its efficacy in detecting faults across diverse

criteria, achieving notable accuracies in tool condition

detection, machine completion, and successful visual

inspection. Meanwhile, the CNN model excelled in capturing

relevant features for fault detection, achieving commendable

performance across the evaluated aspects. The VAE CNN,

despite yielding lower results, remains an intriguing option

due to its data generation capability. The ResNet model

exhibited substantial effectiveness, particularly in fault

detection and the development of predictive maintenance

systems. However, the pinnacle of our study was the LSTM

model, which triumphed in capturing temporal dependencies

and achieved a remarkable overall accuracy of 94%.

In relation to the original research aims, our study

successfully unravelled the strengths, weaknesses, and

capabilities of each model, providing valuable insights for

future decision-making. Furthermore, we addressed existing

gaps in the field by providing specific guidance on model

selection and configuration, and by offering a comprehensive

1373

framework for solving multi-output classification problems in

fault diagnosis on CNC machines.

Our findings contribute to the existing literature by

confirming the potential of deep learning-based approaches in

fault detection, even amidst the complexities of industrial

equipment. While our LSTM accuracy may not rival decision

tree-based models in certain aspects, its prowess in avoiding

overfitting and capturing temporal dependencies adds a unique

layer of significance to our research.

From a practical standpoint, our results hold implications

for manufacturers seeking robust fault diagnosis solutions.

The success of our models in analysing complex data and

detecting fault signals opens doors to the development of

predictive maintenance systems. With the ability to detect

anomalies and predict potential malfunctions, manufacturers

can proactively address issues, minimize downtime, and

optimize equipment performance.

Nonetheless, our study is not without limitations. We

acknowledge the need for further exploration in

hyperparameter optimization and the extension of our

approach to diverse industrial equipment types and larger

datasets. As the field of deep learning continues to evolve, we

anticipate that the insights gained from our research will

contribute to the ongoing enhancement of predictive

maintenance practices in the manufacturing industry.

REFERENCES

[1] Melgarejo Agudelo, C.F., Blanco Rodriguez, J.J.,

Maradey Lázaro, J.G. (2020). Bearing fault detection and

classification: A framework approach. Volume 7A:

Dynamics, Vibration, and Control. American Society of

Mechanical Engineers.

https://doi.org/10.1115/IMECE2020-24124

[2] Majidi, M., Fadali, M.S., Etezadi-Amoli, M., Oskuoee,

M. (2015). Partial discharge pattern recognition via

sparse representation and ANN. IEEE Transactions on

Dielectrics and Electrical Insulation, 22(2): 1061-1070.

https://doi.org/10.1109/TDEI.2015.7076807

[3] Azamfar, M., Singh, J., Li, X., Lee, J. (2021). Cross-

domain gearbox diagnostics under variable working

conditions with deep convolutional transfer learning.

Journal of Vibration and Control, 27(7-8): 854-864.

https://doi.org/10.1177/1077546320933793

[4] Sarita, K., Devarapalli, R., Kumar, S., Malik, H., García

Márquez, F.P., Rai, P. (2022). Principal component

analysis technique for early fault detection. Journal of

Intelligent & Fuzzy Systems, 42(2): 861-872.

https://doi.org/10.3233/JIFS-189755

[5] Amy, R.A., Aglietti, G.S., Richardson, G. (2009).

Reliability analysis of electronic equipment subjected to

shock and vibration - A review. Shock and Vibration, 16:

45-59. https://doi.org/10.1155/2009/546053

[6] Saufi, S.R., Ahmad, Z.A.B., Leong, M.S., Lim, M.H.

(2019). Challenges and opportunities of deep learning

models for machinery fault detection and diagnosis: A

review. IEEE Access, 7: 122644-122662.

https://doi.org/10.1109/ACCESS.2019.2938227

[7] Obaid, M.H., Hamad, A.H. (2023). Deep learning

approach for oil pipeline leakage detection using image-

based edge detection techniques. Journal Européen des

Systèmes Automatisés, 56(4): 663-673.

https://doi.org/10.18280/jesa.560416

[8] Yang, Y., Haque, M.M.M., Bai, D., Tang, W. (2021).

Fault diagnosis of electric motors using deep learning

algorithms and its application: A review. Energies

(Basel), 14(21): 7017.

https://doi.org/10.3390/en14217017

[9] Neupane, D., Seok, J. (2020). Bearing fault detection and

diagnosis using case western reserve university dataset

with deep learning approaches: A review. IEEE Access,

8: 93155-93178.

https://doi.org/10.1109/ACCESS.2020.2990528

[10] Jian, Y., Qing, X., Zhao, Y., He, L., Qi, X. (2020).

Application of model-based deep learning algorithm in

fault diagnosis of coal mills. Mathematical Problems in

Engineering, 2020: 1-14.

https://doi.org/10.1155/2020/3753274

[11] Mohammed, N.A., Abdulateef, O.F., Hamad, A.H.

(2023). An IoT and machine learning-based predictive

maintenance system for electrical motors. Journal

Européen des Systèmes Automatisés, 56(4): 651-656.

https://doi.org/10.18280/jesa.560414

[12] Glaeser, A., Selvaraj, V., Lee, S., Hwang, Y., Lee, K.,

Lee, N., Lee, S., Min, S. (2021). Applications of deep

learning for fault detection in industrial cold forging.

International Journal of Production Research, 59(16):

4826-4835.

https://doi.org/10.1080/00207543.2021.1891318

[13] Rao, G.S.V., Diwanji, V., Parthasarathi, J. (2012).

Application case study of machine learning techniques

towards a fault diagnosis system for a manufacturing

plant environment. In Proceedings of the 6th

International Conference on Ubiquitous Information

Management and Communication, New York, NY, USA:

ACM, pp. 1-4. https://doi.org/10.1145/2184751.2184798

[14] Mahdi, M.A., Gittaffa, S.A., Issa, A.H. (2022). Multiple

fault detection and smart monitoring system based on

machine learning classifiers for infant incubators using

raspberry Pi 4. Journal Européen des Systèmes

Automatisés, 55(6): 771-778.

https://doi.org/10.18280/jesa.550609

[15] Park, S., Lee, K., Sung, S., Park, D. (2019). Prediction of

the CNC tool wear using the machine learning technique.

2019 International Conference on Computational

Science and Computational Intelligence (CSCI), Las

Vegas, NV, USA, pp. 296-299.

https://doi.org/10.1109/CSCI49370.2019.00059

[16] Shurrab, S., Almshnanah, A., Duwairi, R. (2021). Tool

wear prediction in computer numerical control milling

operations via machine learning. In 12th International

Conference on Information and Communication Systems

(ICICS), Valencia, Spain, pp. 220-227.

https://doi.org/10.1109/ICICS52457.2021.9464580

[17] Polat, K. (2020). The fault diagnosis based on deep long-

term memory model from the vibration signals in the

computer numerical control machines. Journal of the

Institute of Electronics and Computer, 2: 72-92.

https://doi.org/10.33969/JIEC.2020.21006

[18] Zhang, Z., Cao, S., Cao, J. (2018). fault diagnosis of

servo drive system of CNC machine based on deep

learning. In Chinese Automation Congress (CAC), Xi'an,

China, pp. 1873-1877.

https://doi.org/10.1109/CAC.2018.8623472

[19] Chung, C.C., Liang, Y.P., Chang, Y.C., Chang, C.M.

(2023). A binary weight convolutional neural network

hardware accelerator for analysis faults of the CNC

1374

http://dx.doi.org/10.1109/TDEI.2015.7076807
http://dx.doi.org/10.1109/TDEI.2015.7076807
http://dx.doi.org/10.1177/1077546320933793
http://dx.doi.org/10.1177/1077546320933793
http://dx.doi.org/10.3233/JIFS-189755
http://dx.doi.org/10.3233/JIFS-189755
http://dx.doi.org/10.1155/2009/546053
https://doi.org/10.1109/ACCESS.2019.2938227
https://doi.org/10.1109/CSCI49370.2019.00059
https://doi.org/10.1109/CSCI49370.2019.00059

machinery on FPGA. In 2023 International VLSI

Symposium on Technology, Systems and Applications

(VLSI-TSA/VLSI-DAT), HsinChu, pp. 1-4.

https://doi.org/10.1109/VLSI-TSA/VLSI-

DAT57221.2023.10134316

[20] Bouktif, S., Fiaz, A., Ouni, A., Serhani, M. (2018).

Optimal deep learning LSTM model for electric load

forecasting using feature selection and genetic algorithm:

Comparison with machine learning approaches. Energies

(Basel), 11(7): 1636.

https://doi.org/10.3390/en11071636

[21] Pan, Y., Yang, Y., Li, W. (2021). A deep learning trained

by genetic algorithm to improve the efficiency of path

planning for data collection with multi-UAV. IEEE

Access, 9: 7994-8005.

https://doi.org/10.1109/ACCESS.2021.3049892

[22] Levy, E., David, O.E., Netanyahu, N.S. (2014). Genetic

algorithms and deep learning for automatic painter

classification. In Proceedings of the 2014 Annual

Conference on Genetic and Evolutionary Computation,

New York, NY, USA: ACM, pp. 1143-1150.

https://doi.org/10.1145/2576768.2598287

[23] Naskath, J., Sivakamasundari, G., Begum, A.A.S. (2023).

A Study on different deep learning algorithms used in

deep neural nets: MLP SOM and DBN. Wireless

Personal Communications, 128: 2913-2936.

https://doi.org/10.1007/s11277-022-10079-4

[24] Widiasari, I.R., Nugroho, L.E., Widyawan. (2017). Deep

learning multilayer perceptron (MLP) for flood

prediction model using wireless sensor network based

hydrology time series data mining. International

Conference on Innovative and Creative Information

Technology (ICITech), Salatiga, Indonesia, pp. 1-5.

https://doi.org/10.1109/INNOCIT.2017.8319150

[25] Teoh, T.T., Chiew, G., Franco, E.J., Ng, P.C., Benjamin,

M.P., Goh, Y.J. (2018). Anomaly detection in cyber

security attacks on networks using MLP deep learning.

In 2018 International Conference on Smart Computing

and Electronic Enterprise (ICSCEE), Shah Alam,

Malaysia, pp. 1-5.

https://doi.org/10.1109/ICSCEE.2018.8538395

[26] Kiangala, K.S., Wang, Z. (2020). An effective predictive

maintenance framework for conveyor motors using dual

time-series imaging and convolutional neural network in

an industry 4.0 environment. IEEE Access, 8: 121033-

121049.

https://doi.org/10.1109/ACCESS.2020.3006788

[27] Zhang, S., Ye, F., Wang, B., Habetler, T.G. (2021).

Semi-supervised bearing fault diagnosis and

classification using variational autoencoder-based deep

generative models. IEEE Sensors Journal, 21(5): 6476-

6486. https://doi.org/10.1109/JSEN.2020.3040696

[28] Remadna, I., Terrissa, L.S., Al Masry, Z., Zerhouni, N.

(2023). RUL prediction using a fusion of attention-based

convolutional variational AutoEncoder and ensemble

learning classifier. IEEE Transactions on Reliability,

72(1): 106-124.

https://doi.org/10.1109/TR.2022.3190639

[29] Bruneo, D., De Vita, F. (2019). On the use of LSTM

networks for predictive maintenance in smart industries.

In IEEE International Conference on Smart Computing

(SMARTCOMP), Washington, DC, USA, pp. 241-248.

https://doi.org/10.1109/SMARTCOMP.2019.00059

[30] Rahhal, J.S., Abualnadi, D. (2020). IOT based predictive

maintenance using LSTM RNN estimator. In

International Conference on Electrical, Communication,

and Computer Engineering (ICECCE), Istanbul, Turkey,

pp. 1-5.

https://doi.org/10.1109/ICECCE49384.2020.9179459

[31] Wei, H., Zhang, Q., Shang, M., Gu, Y. (2021). Extreme

learning Machine-based classifier for fault diagnosis of

rotating Machinery using a residual network and

continuous wavelet transform. Measurement, 183:

109864.

https://doi.org/10.1016/j.measurement.2021.109864

[32] Ahmed, M., Kamal, K., Ratlamwala, T.A.H., Hussain, G.,

Alqahtani, M., Alkahtani, M., Alzabidi, A. (2023). Tool

health monitoring of a milling process using acoustic

emissions and a ResNet deep learning model. Sensors,

23(6): 3084. https://doi.org/10.3390/s23063084

1375

