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In the dynamically evolving landscape of cybersecurity, safeguarding IT infrastructures has 

emerged as an imperative to thwart the escalation of cyber-attacks. Anomaly-based 

Intrusion Detection Systems (IDS) play a pivotal role in identifying aberrant behaviours 

that elude conventional detection mechanisms. Nonetheless, these systems are not without 

their shortcomings, manifesting as elevated false alarm rates and a diminished efficacy in 

detecting sophisticated attacks. In response to these challenges, a hybrid approach, entailing 

Machine Learning (ML) techniques, was employed to augment the performance of 

anomaly-based IDS in terms of detection accuracy, False Positive (FP) Rate, and detection 

time. The approach encompassed a two-fold optimization strategy: initial feature selection 

predicated on feature importance derived from the XGBoost classifier, followed by 

Bayesian optimization (BO) for hyperparameter tuning. The optimization was conducted 

with respect to two objective functions, namely the ROC-AUC score and the Average 

Precision score, each serving to identify the optimal hyperparameters for their respective 

maximization. Classifiers, including Extreme Gradient Boosting (XGBoost), Random 

Forest (RF), and Stochastic Gradient Descent (SGD), were subjected to training under 

configurations encompassing both the hyperparameters resultant from BO and the default 

hyperparameters, the latter serving as reference models. Evaluation, conducted through a 

multifaceted metric analysis, substantiated the superiority of the optimized models over 

their reference counterparts, with the optimized XGBoost models demonstrating the most 

commendable performance. This paradigm offers a promising avenue for enhancing 

detection precision and mitigating false alarms, thereby fortifying the security of computer 

systems. 
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1. INTRODUCTION

The unprecedented growth of Internet usage in 

contemporary society has significantly permeated various 

domains, encompassing communication, financial 

transactions, and remote employment, among others. Despite 

its immense potential, the Internet concurrently presents 

substantial risks to the security of both communications and 

data. In the wake of escalating advanced cyber-attacks, a 

constant vigilance in information security has been 

necessitated globally, culminating in a formidable challenge. 

IDS, developed as pivotal IT security tools, are employed to 

monitor network traffic, identifying any suspicious or 

malicious activity, and subsequently either alerting system 

administrators or initiating preventive actions. Implemented as 

either hardware or software solutions, these systems are 

integral to safeguarding networks and IT systems against 

potential threats and attacks. In practical terms, IDS are 

classified into two categories: Network IDS (NIDS) and Host 

IDS (HIDS) [1, 2]. HIDS are concerned with the security of 

individual hosts, whereas NIDS analyze network traffic, 

searching for suspicious activities. 

IDS can be categorized into three distinct groups, each 

defined by its respective detection methodology: signature-

based IDS, anomaly-based IDS, and hybrid IDS [3, 4]. 

Operational methods are unique to each type, and their 

applicability extends across various network levels. Signature-

based IDS have been developed to identify intrusions by 

juxtaposing network traffic with a predefined database of 

signatures, each associated with known attacks. Alerts are 

triggered in instances of activity conformance to any database 

signature. While these systems demonstrate efficacy in the 

detection of attacks with pre-established signatures, they are 

substantially limited in their capacity to address novel or zero-

day attacks, as well as diverse and sophisticated attacks. 

Challenges are also present in the management of FP and 

encrypted traffic. Contrastingly, anomaly-based IDS, also 

referred to as behavior-based IDS, are engaged in the 

monitoring of network and user activity patterns, seeking 

anomalies. Profiles of standard behavior are established, with 

deviations of significance prompting alert generation [3, 4]. 

The initial learning phase, essential for comprehending typical 

network and user behavior, necessitates considerable time and 

resource investment. The principal strength of anomaly-based 

detection methods lies in their ability to detect attack incidents 

that have not been previously identified [5]. However, this 

approach is not without its drawbacks; a general trend of 

higher FP rates is observed in comparison to signature-based 

methods, and false negatives (FN) are also produced. The 

adaptability of anomaly-based detection systems to constantly 
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evolving network environments, which are inherently 

complex, is limited. This complexity impedes the creation of 

comprehensive and accurate models capable of accounting for 

all potential traffic variations, resulting in detection gaps. 

Hybrid IDS, on the other hand, amalgamate the strengths of 

both signature-based and anomaly-based systems, striving to 

mitigate the individual limitations of each IDS type and 

enhance overall threat detection efficacy. The performance of 

NIDS is gauged through multiple criteria, including detection 

rate, FP rate, response time, scalability, network impact, and 

the ease of configuration and maintenance [6]. It is imperative 

that the design and implementation of any IDS are undertaken 

with these effectiveness criteria in mind. Recent years have 

witnessed a shift in intrusion detection research towards ML-

based IDS, now recognized as the field's most efficacious 

systems. This recognition is attributed to the systems' ability 

to learn and enhance performance based on historical data 

analysis. 

Effective learning within ML contexts necessitates the 

utilization of extensive datasets, potentially encompassing a 

vast feature space and requiring substantial processing 

durations. Challenges are encountered in the form of 

superfluous information, contributing to dimensional 

complexity and potentially detrimentally impacting system 

performance. Consequently, the implementation of feature 

engineering processes is imperative to diminish the prevalence 

of irrelevant features, ensuring consideration is afforded solely 

to those pertinent to training and testing phases. In the 

conducted study, feature importance measures, ascertained 

through the XGBoost algorithm, were employed for feature 

selection, culminating in the elimination of superfluous 

features, thereby mitigating complexity and data size. 

Conversely, ML algorithms are configured via a myriad of 

hyperparameters, dictating model architecture. These 

hyperparameters, required to be predefined prior to model 

training, cannot be extrapolated directly from training data [7]. 

To tailor a ML model to diverse problems, adjustments to its 

hyperparameters are essential. The selection of an optimal 

configuration for ML models holds significant implications 

for model performance, specifically concerning complexity, 

behavior, and processing speed [8]. 

The definition of hyperparameters constitutes a critical 

component in the construction of proficient ML models. 

Individual algorithms in ML each necessitate distinct 

procedures for hyperparameter configuration. Manual tuning 

is rendered inefficient, attributed to the extensive number of 

hyperparameters, the complexity of models, the laborious 

nature of model evaluations, and the non-linear interactions 

amongst hyperparameters [7]. Hence, the imperative for 

automation in hyperparameter adjustment is evident. 

Techniques designated for the automated adjustment of 

hyperparameters are encompassed under the term 

“hyperparameter optimization (HPO)”. The primary 

advantages of this optimization encompass the diminution of 

human labor in the tuning process, enhancement in the 

performance of ML models, and the facilitation of 

reproducibility in both models and search processes. 

Subsequent to the HPO process, the anticipation is the 

attainment of an optimal ML model architecture [7]. In the 

research at hand, BO was employed as the technique for HPO. 

Within the experimental procedures undertaken, data 

cleansing and scaling were initially performed, followed by 

the application of the XGBoost algorithm to the 

CSE_CICIDS2018-DDOS dataset. The purpose of this 

application was to assess feature importance and to select 

features of paramount relevance. Subsequent to this reduction 

in dataset size, ML algorithms known for their high 

performance-specifically XGBoost, RF, and SGD-were 

employed. This procedure was executed twice, utilizing the 

"Roc_auc_score" and "Average_precision (AP)_score" 

objective functions to ascertain the optimal hyperparameters 

that would maximize the outcomes of these functions. These 

metrics are frequently utilized in the evaluation of model 

performance. The area under the ROC curve (ROC-AUC) 

serves as an invaluable metric for the evaluation of a model's 

proficiency in distinguishing between positive and negative 

instances. In the context of an unbalanced dataset, AP proves 

crucial for assessing a model's precision with respect to 

positive classes. Upon completion of BO, the optimal values 

achieved by each metric were obtained, along with the 

corresponding hyperparameters. Each of the aforementioned 

ML algorithms was subsequently trained with both the 

hyperparameters resultant from the BO and the default 

hyperparameters inherent to each algorithm. In total, three 

models were trained for each algorithm category. The 

inclusion of default hyperparameters served as a baseline, 

facilitating the evaluation of performance enhancements 

attributable to the hyperparameters derived from BO. A three-

tiered performance evaluation was subsequently conducted. 

The first tier entailed a comprehensive evaluation of each 

model, utilizing metrics such as Accuracy, Balanced Accuracy 

(BA), MCC (Matthews Correlation Coefficient), and 

macro_F1_score. The second tier focused on the evaluation of 

individual class performance, employing metrics including 

Precision, Recall, F1-score, FP rate, and the 

Precision_recall_curve with Average_precision_score. The 

final tier encompassed an assessment of the runtime achieved 

by each model, with the aim of identifying the most expedient 

IDS. 

The structure of the remainder of the manuscript is 

delineated as follows: A review of pertinent literature is 

elucidated in Section 2. IDS classifiers and the HPO technique 

employed in this study are detailed in Section 3. Section 4 

provides an overview of the CSE-CICIDS2018 and CSE-

CICIDS2018 DDOS attacks datasets. The methodology 

adopted in this research is expounded upon in Section 5. 

Section 6 presents the evaluation metrics utilized for gauging 

the efficacy of the classifiers under scrutiny, along with an 

exposition of the implementation of the proposed approach, 

the results garnered, and a critical analysis of the approach's 

effectiveness. The manuscript culminates in Section 7, 

offering a conclusion and delineating avenues for future 

research endeavors. 

 

 

2. RELATED WORK 

 

In light of the escalating threats compromising the security 

of information systems, substantial efforts and creativity have 

been channeled by researchers toward ensuring optimal 

protection. A plethora of studies addressing intrusion detection 

and prevention have been conducted, yielding numerous 

innovative solutions aimed at enhancing efficiency. For the 

scope of this research, a comprehensive review was 

undertaken of existing literature in the realm of cyber-attack 

mitigation, with a particular emphasis on IDS. Attention was 

duly given to models pertinent to this manuscript, whilst also 

considering methodologies proposed by other scholars across 
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various domains, with the intention of deriving insights and 

facilitating subsequent comparative analyses. 

The preliminary Investigations primarily centered on 

literature related to feature selection, HPO, and the evaluation 

of learning classifiers. Numerous studies were scrutinized, 

culminating in the selection of works deemed most pertinent 

to the current research endeavors. 

In the study of Kasongo and Sun [2], a filter-based feature 

reduction technique was employed, utilizing the XGBoost 

algorithm, followed by the implementation of diverse ML 

algorithms including Support Vector Machine (SVM), k-

Nearest-Neighbour (kNN), Logistic Regression (LR), 

Artificial Neural Network (ANN), and Decision Tree (DT). 

The UNSW-NB15 intrusion detection dataset served as the 

basis for model training and testing. The authors reported an 

enhancement in the test accuracy of the Decision Tree model, 

from 88.13% to 90.85%, under a binary classification scheme. 

Furthermore, the reported overall accuracies for the DT, ANN, 

LR, KNN, and SVM models were 90.85%, 84.39%, 77.64%, 

84.46%, and 60.89% respectively for binary classification, and 

67.57%, 77.51%, 65.29%, 72.30%, and 53.95% respectively 

for multiclass classification. 

A hybrid approach to network Intrusion detection was 

implemented in the study conducted in the study of Talukder 

et al. [9], wherein SMOTE was employed for data balancing, 

and XGBoost was utilized for the selection of pertinent 

features. Various ML and deep learning (DL) algorithms, 

inclusive of RF, DT, KNN, Multi-Layer Perceptron (MLP), 

Convolutional Neural Network (CNN), and ANN, were 

scrutinized to identify the optimal model. Subsequent 

evaluation on KDDCUP99 and CIC-MalMem-2022 datasets 

yielded accuracy rates of 99.99% and 100%, respectively. 

In the research presented by Bhati et al. [10], a scheme 

elucidating the integration of XGBoost with ensemble-based 

IDS) was proposed. This model was applied for the reduction 

of features, employing the KDDCup99 dataset for training and 

testing of both Adaboost and XGBoost. An accuracy of 

99.95% was achieved, with the study highlighting the superior 

performance of the XGBoost model, attributed to its 

foundation on tree boosting ML algorithms which effectively 

navigate the “bias-variance” trade-off. 

Li et al. [11] introduced a methodology aimed at 

augmenting the capabilities of Deep Neural Networks (DNNs) 

through the pre-processing selection of viable features for 

networking data. This method combined feature correlation 

(CR) with a DNN classifier, culminating in an IDS model 

designed to fortify network security. The application of the 

KDDCUP99 dataset in this study led to the observation that 

the judicious selection of features significantly enhances IDS 

performance. This was quantitatively substantiated by the 

following metrics: 99.4% accuracy, 99.7% precision, 97.9% 

recall, and a F1 score of 98.8. 

In the study presented in the study of Wu et al. [12], a 

hyperparameter tuning algorithm, grounded in BO, was 

introduced and assessed through a series of experiments 

utilizing established datasets such as the MNIST database and 

the CIFAR-10 Dataset. Through this approach, the 

optimization of hyperparameters for diverse ML models, 

including RFs, various ANN (encompassing CNN and 

recurrent neural networks), and deep forest algorithms, was 

facilitated. The findings of the study indicated that the 

application of a Gaussian process-based BO algorithm can 

yield high accuracy even with a limited number of samples, 

simultaneously achieving a substantial reduction in runtime 

when contrasted with manual search methodologies. 

Zhang et al. [13] entailed an exploration of BO, specifically 

employing the Hyperopt library, applied across a spectrum of 

ML algorithms such as Bernoulli Naïve Bayes, logistic linear 

regression, AdaBoost, DT, RF, SVM, and DNN. This 

exploration was conducted with the aid of six datasets, 

facilitating a comparative analysis of the various ML 

algorithms in conjunction with ECFP6 fingerprints. A 

comprehensive set of evaluation metrics, including precision, 

recall, F1 score, accuracy, Cohen’s kappa, Matthews 

correlation, and AUC, were employed. The results posited by 

the authors suggest that, based on a normalized score approach, 

models optimized via Hyperopt either surpassed or exhibited 

comparability to 33 out of 36 models across different datasets. 

The investigation by Cho et al. [14] was centered on four 

cardinal strategies intended to enhance BO, specifically: 

diversification, early termination, parallelization, and cost 

function transformation. The focus was primarily on 

applications involving DNN, necessitating the optimization of 

a substantial number of hyperparameters. To facilitate swift 

empirical evaluation, six reference datasets, encompassing 

pre-evaluated performance across a spectrum of 

hyperparameter configurations, were generated. Additionally, 

six reference DNN – MNIST-LeNet1, MNIST-LeNet2, PTB-

LSTM, CIFAR-10-CNN, CIFAR-10-ResNet, and CIFAR-

100-CNN – were constructed using prevalent deep learning 

datasets and widely adopted DNN architectures. The Deep-BO 

algorithm, crafted by the authors, demonstrated robust and 

superior performance across all benchmark tests, particularly 

excelling in tasks deemed challenging and significantly 

benefiting from the deployment of multiple processors. 

In the research articulated by Arifin et al. [15], grid search 

(GS) was employed as a technique for HPO, aiming to enhance 

the predictions pertaining to student academic performance. 

Various algorithms, including Generalized Linear Models 

(GLM), DL, DT, Support Vector Regression (SVR), RF, and 

Gradient Boosting Regression Trees (GBRT) were subjected 

to assessment through a regression model. The algorithm 

manifesting the minimal error in predictions was subsequently 

selected for hyperparameter tuning. A five-fold cross-

validation was utilized for validation purposes, with the GBRT 

algorithm being identified as yielding the most favorable 

results. 

In the study presented in the study of Hagar and Gawali [16], 

a novel approach was developed, leveraging CNN in 

conjunction with Long Short-Term Memory networks 

(LSTM). The CSE-CICIDS2018 dataset served as the 

foundation for both training and testing phases. Techniques of 

oversampling and undersampling were implemented to derive 

a semi-balanced dataset, enhancing the efficacy of network 

attack detection. The results indicated that the CNN model 

outperformed the RNN-LSTM models in terms of accuracy, 

achieving 98.31%, albeit with the LSTM model demonstrating 

superior performance in terms of lower loss, despite 

necessitating a longer training duration. 

In the study of Kshirsagar and Kumar [17], a feature 

reduction algorithm was proposed, integrating filter-based 

feature reduction techniques such as Information Gain Ratio 

(IGR), Correlation (CR), and ReliefF (ReF). This approach 

entailed generating subsets of features for each classifier based 

on average weight, followed by the application of a Subset 

Combination Strategy (SCS). Consequently, the number of 

features in the CICIDS 2017 Dos dataset and the KDDCup99 

datasets were reduced from 77 to 24 and from 41 to 12, 
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respectively. With the application of the rule-based classifier 

Projective Adaptive Resonance Theory (PART), an accuracy 

rate of 99.96% was achieved in 133.66 seconds for the CIC-

IDS2017 dataset, while for the KDDCUP99 dataset, an 

accuracy rate of 99.32% was achieved in 11.22 seconds. 

In the study of Indrasiri et al. [18], an innovative model was 

introduced, integrating the Extra Boosting Forest (EBF) with 

a stacked ensemble approach, amalgamating tree-based 

models such as the Extra Tree Classifier, Gradient Boosting 

Classifier, and RF. The datasets employed, UNSW-NB15 and 

IoTID20, encompass IoT-based and local network traffic data 

respectively, and were amalgamated to augment the capability 

of the proposed model in accurately detecting malicious traffic 

within both local and IoT networks. Dimensionality reduction 

was performed on each dataset using Principal Component 

Analysis (PCA), truncating the feature set to 30. The outcomes 

revealed that the EBF model markedly outperformed its 

counterparts, achieving maximum accuracy scores of 0.985 

and 0.984 for the multilabel classification of four classes in the 

UNSW-NB15 and IoTID20 datasets, respectively. 

In the study of Waskle et al. [19], a solution was proposed 

wherein PCA was utilized for the purpose of dataset 

dimensionality reduction, and the RF classification algorithm 

was applied for data analysis. The method demonstrated 

superior performance compared to other techniques such as 

SVM, Naïve Bayes, and DT, particularly in terms of accuracy, 

which was recorded at 96.78%. Additionally, the performance 

time and error rate were noted to be 3.24 minutes and 0.21% 

respectively, with the KDDCUP99 dataset serving as the basis 

for these evaluations. 

A review of extant literatures, particularly in the domain of 

IDS, reveals a predominant reliance on the KDDCUP99 

dataset, a resource dating back to the late 1990s. Given the 

significant evolution in attack techniques since that time, the 

current research has opted for the more contemporaneous 

CSE-CICIDS2018 dataset, aiming to provide a more authentic 

evaluation of IDS. The XGBoost Classifier was selected for 

feature selection, owing to its demonstrated high accuracy in 

previous applications. For the optimization of 

hyperparameters, BO was preferred over grid search, as the 

former has been shown to yield robust and high-performing 

models in various studies. The focus of this work encompasses 

a spectrum of ML and DL algorithms, each characterized by 

its unique strengths and limitations. 

 

 

3. BACKGROUND 

 

In this section, the classifiers selected for training and 

evaluation are elucidated, inclusive of the SGD classifier, 

underpinned by SGD; the XGBoost, a boosting model; and the 

RF, an ensemble model. Additionally, the BO, employed for 

HPO, is described. 

 

3.1 SGD 

 

SGD is elucidated as an iterative optimization methodology, 

applicable to unconstrained optimization problems [20]. Its 

utility extends to identifying optimal parameter configurations 

for ML algorithms and optimizing objective functions with 

requisite smoothing properties [21]. Recognized for its 

simplicity and efficacy, SGD is particularly well-suited for 

fitting linear classifiers and regressors under convex loss 

functions [20]. Distinguished from classical Gradient Descent 

by its parameter update mechanism, SGD performs updates 

more frequently and on a smaller scale, typically a single 

example or a mini-batch randomly selected from the dataset. 

This characteristic often facilitates more rapid convergence, 

particularly in instances involving large datasets. 

In studies [20-22], the mathematical formulation of SGD is 

presented as follows: 

Let (x1, y1), … , (xn, yn) be the dataset composed of training 

examples xi and target labels yi with 𝑥𝑖 ∈ 𝐑𝑚 , 𝑦𝑖 ∈ ℛ . The 

objective is to learn the linear score function 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏, 

with model parameters 𝑤 ∈ 𝐑𝑚 and intercept 𝑏 ∈ 𝐑. To find 

the model parameters, we need to minimize the regularized 

learning error provided by: 

 

( )( )
1

1
( , ) , ( )

n

i i

i

E w b L y f x R w
n


=

= +   (1) 

 

where, 𝐿 is a loss function that measures model adjustment 

and 𝑅 a regularization term that penalizes model complexity; 

𝛼 > 0 is a non-negative hyperparameter that controls the 

intensity of regularization. 

The algorithm iterates over the training examples and, for 

each example, updates the model parameters according to the 

following update rule: 

 

( ),( )
T

i iL w x b yR w
w w

w w
 
  +
  − +

   

  (2) 

 

where,  𝜂  is the learning rate that controls the step size of 

updates in parameter space. The intercept 𝑏 is updated in the 

same way, but without regularization.  

While the SGD may exhibit expedited convergence, it is 

important to acknowledge that the stochasticity introduced 

through the random selection of examples can potentially 

compromise the stability of the algorithm, rendering it less 

consistent than its classical Gradient Descent counterpart. 

Nonetheless, it is imperative to highlight that a plethora of 

techniques and variations have been meticulously developed 

and refined to address and ameliorate these challenges. 

Consequently, SGD has firmly established itself as an 

indispensable instrument in the contemporary ML toolkit. 

 

3.2 Xgboost 

 

XGBoost has been recognized as a potent methodology, 

extensively employed across various domains for regression 

and classification tasks. The algorithm has garnered 

significant attention in recent years, attributed to its 

exceptional predictive accuracy and outstanding efficiency, as 

documented in the study of Gupta et al. [23]. A substantial 

enhancement over the traditional GBDT algorithm is 

manifested in XGBoost, with notable improvements observed 

in computational speed, generalization performance, and 

scalability [24]. 

In the realm of ensemble learning algorithms, XGBoost 

distinguishes itself by amalgamating multiple DTs, with the 

aim of optimizing the regularized loss function to augment 

predictive performance. The boosting technique employed by 

XGBoost entails the sequential training of numerous DTs. At 

each iterative stage, a new tree is incorporated with the specific 

objective of rectifying the residual errors manifested in the 

preceding trees. The predictions emanating from individual 
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trees are assigned weights proportional to their performance, 

culminating in the formulation of the final prediction. 

Suppose a training dataset {(𝑥𝑖  , 𝑦𝑖)}𝑖=1
𝑛 , where xi represents 

the features of example i and yi is the corresponding true class 

label. 

The main objective of XGBoost is to build a model 

F(x) that predicts the yi labels by minimizing a regularized loss 

function L(yi, F(xi)). The optimization objective of XGBoost 

can be expressed as follows: 

 

( )( ) ( )i i

1 1

L( ) L y ,F x
n T

j

i j

f
= =

= +     (3) 

 

where  L(yi, F(xi)) is the loss function that measures the 

discrepancy between the prediction F(xi) and the true label yi. 

Commonly used convex loss functions include the logarithmic 

loss function, square loss function, and exponential loss 

function. 𝑇  is the total number of trees in the 

ensemble.𝑓𝑗(𝑥)represents the j-th tree. Ω(𝑓𝑗)is a regularization 

term that penalizes the complexity of the trees to prevent 

overfitting. It is defined as: 

 

( ) 2

1

1

2

L

j j jk

k

f T w 
=

 = +    (4) 

 

where 𝛾 and  are regularization hyperparameters. that control 

the strength of regularization, 𝑇𝑗 is the total number of leaves 

in the tree, 𝐿 is the number of nodes in tree 𝑓𝑗 and 𝑤𝑗𝑘  is the 

weight value of node 𝑘 in tree 𝑓𝑗 . The first term 𝛾 𝑇𝑗  in the 

regularization function penalizes the complexity of the tree 

based on the total number of leaves. The larger 𝑇𝑗 is the higher 

this penalty. The second term 
1

2
∑ 𝑤𝑗𝑘

2𝐿
𝑘=1  of the XGBoost 

objective function, λ controls how much the model is 

penalized for having larger leaf weights. When λ is higher, the 

algorithm encourages smaller leaf weights, which in turn leads 

to simpler trees. This regularization helps prevent overfitting 

by avoiding excessively complex trees that may capture noise 

in the training data. λ and ω are usually given empirically [25]. 

The update of predictions F(x) is performed by adding the 

predictions of individual trees weighted by learning 

coefficients  with the aim to minimize the loss function: 

 

1

1

( ) ( ) ( )
J

t t j

j

F x F x f x−

=

= +    (5) 

 

The learning coefficients  control the step size of the 

update and are another important hyperparameter. XGBoost 

also employs a boosting technique, where each tree is built to 

correct the residual errors of the previous model. This allows 

XGBoost to adapt to the remaining errors as trees are 

constructed. 

 

3.3 RF 

 

Categorized under the umbrella of supervised classification 

algorithms, the RF method stands out as a formidable 

approach in ML, as substantiated by Bernard et al. [26]. This 

method, employing the bagging technique, operates by 

generating predictions based on subsets drawn from the 

original dataset. During the training phase, numerous DTs are 

constructed, each based on a distinct set of observations. The 

predictions emanating from all individual trees are then 

aggregated, culminating in the final prediction [27]. The 

majority ranking principle underpins the final output, serving 

as a mechanism to mitigate the risk of overfitting [28]. Owing 

to its reliance on a collective of results to render a final 

decision, the RF method is classified as an Ensemble 

technique. 

A pivotal strategy in RF involves the reduction of 

correlation amongst trees, a move that contributes to a 

decrease in the model's variance, thereby fostering diversity 

between trees. The overarching goal is to establish a set of 

training trees characterized by the highest possible level of 

independence. Each tree is crafted using a randomly selected 

subset of the training data, and the division of the tree’s nodes 

is guided by random subsets of features [29]. This process 

yields a variety of trees, each unique in its predictions and 

potential errors, owing to their training on diverse data 

samples. The model, through the forced introduction of 

diversity, is thereby safeguarded against overfitting. By either 

averaging the predictions or adopting a majority vote strategy 

(in classification scenarios), the ensemble of trees collectively 

results in a reduction of the overall variance. The errors of one 

tree are effectively counterbalanced by the accurate 

predictions of others [30]. However, it is noteworthy that when 

predictions across trees exhibit high correlation, the utility of 

averaging or voting diminishes, as the trees tend to replicate 

similar errors. The RF method, by promoting diversity and 

minimizing correlation, enhances the stability of predictions, 

leading to a reduction in variance and an improved capacity to 

generalize to unknown data. This fortification of predictive 

performance and delivery of reliable results underscores the 

widespread adoption of RF in ML for both classification and 

regression tasks. 

The application of RF spans both classification and 

regression scenarios. In classification tasks, the method 

derives a class vote from each individual tree, proceeding to 

classify based on the majority vote. Conversely, in regression 

tasks, the predictions for a target point x from each tree are 

simply averaged. For optimal performance in classification 

tasks, it is recommended to set the default value of m (the 

number of variables randomly sampled as candidates at each 

split) to (√𝑝) , and the minimum node size to one. For 

regression tasks, a default value of m set to 𝑝/3 , and a 

minimum node size of five is suggested. It is imperative to 

note, however, that these parameter values are problem-

dependent and should be treated as tuning parameters, 

necessitating careful optimization [29]. 

The Pseudocode of RF for Regression or Classification is 

defined as follow [29] : 

1. For each tree in the forest (b=1 to B): 

(a) Draw a bootstrap sample 𝑍∗𝑜𝑓 𝑠𝑖𝑧𝑒 𝑁  from the 

training data.  

(b) Grow a RF tree 𝑇𝑏  to the bootstrapped data, by 

recursively repeating the following steps for each 

terminal node of the tree, until the minimum node 

size 𝑛𝑚𝑖𝑛 is reached. 

i. Select m variables at random from the p variables. 

ii. Pick the best variable/split-point among the m. 

iii. Split the node into two daughter nodes. 

2. Output the ensemble of trees {𝑇𝑏}1
𝐵 

To make a prediction at a new point x: 

For Regression, the predicted value is calculated as follows: 

𝑓𝑟𝑓
𝐵 (𝑥) =

1

𝐵 
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1  
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For classification: Let �̂�𝑏(𝑥) be the class prediction of the 

b-th RF tree, the predicted value is calculated as follows: 

�̂�𝑟𝑓
𝐵 (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {�̂�𝑏(𝑥)}

1

𝐵
. 

The utility of the RF algorithm extends beyond its 

predictive capacities; it also serves as an instrumental tool for 

feature selection, enabling the identification of feature 

importance [28]. Within the RF framework, the measure of a 

feature’s significance is derived from the improvement in the 

split-criterion at each division in every tree. This measure is 

then cumulatively aggregated across all trees in the forest, 

yielding a separate importance value for each variable [29]. 

Feature importance is computed based on the reduction in 

node impurity, weighted by the likelihood of reaching the 

respective node. This probability is determined by the ratio of 

samples reaching the node to the total number of samples. A 

higher value of this metric signifies greater feature importance 

[27]. 

In the process of bagging, a portion of the data is 

deliberately excluded from the training phase for each tree, 

resulting in what is termed as out-of-bag (oob) data. For any 

given observation i within the training dataset, the error is 

calculated by aggregating the predictions from all trees that 

were not trained with this particular observation. The oob error 

is subsequently computed as the cumulative sum of these 

individual errors across the entire training dataset. This error 

serves as an approximate indicator of the forest's 

generalization error, relying exclusively on predictions 

derived from aggregations of trees within the forest, as 

opposed to predictions from the forest itself [31]. 

 
3.4 BO 

 

The objective of HPO, also referred to as tuning within the 

domain of ML, encompasses the identification and selection 

of an optimal set of hyperparameters for a specified ML 

algorithm. This optimal set is determined based on its ability 

to yield the highest performance, as evaluated on a validation 

dataset. The representation of HPO in scholarly literatures [32-

34] is encapsulated in the following equation: 

 
* argmin ( ),x f x x X=    (6) 

 

where, f(x) represents an objective score to be minimized and 

that will be evaluated on the validation set; x* is the set of 

hyperparameters that produces the lowest value of the score, 

and x can take any value in the X domain.  

The challenge inherent in HPO arises from the 

computational intensity and time-consuming nature of 

evaluating the objective function to ascertain the performance 

score. This complexity is exacerbated when a multitude of 

hyperparameters and intricate models are involved, rendering 

manual execution of the process unfeasible. Techniques such 

as GS and random search, which establish a hyperparameter 

grid and automate the cycle of training, predicting, and 

evaluating, are employed. However, these methods are 

deemed relatively inefficient, as they do not base the selection 

of subsequent hyperparameters on the insights gleaned from 

previous results, as evidenced in the study of Koehrsen [32]. 

BO, on the other hand, seeks to identify the minimum of a 

function f(x) within a bounded set X, presumed to be a subset 

of ℝ𝐷 . This approach involves constructing a probabilistic 

model of f(x), leveraging this model to make informed 

decisions about the next evaluation point in X, while 

accounting for the inherent uncertainty. The principal 

advantage of BO lies in its ability to utilize all available 

information from prior evaluations of f(x), culminating in a 

process capable of locating the minimum of challenging non-

convex functions with a limited number of evaluations [34]. 

In contrast to methods such as random search or GS, BO 

methodologies uniquely maintain a record of previous results 

from evaluations, utilizing these results to inform a 

probabilistic model that correlates hyperparameters with their 

corresponding likelihoods of achieving a particular score on 

the objective function. Through this approach, a surrogate 

function is formulated [20], encapsulating the relationship 

between hyperparameters and performance metrics, as derived 

from prior evaluations. The surrogate function, inherently 

probabilistic, serves to quantify the uncertainty entwined with 

this hyperparameter-performance relationship. Commonly, a 

Gaussian Process model is employed to estimate this function, 

thereby providing a probabilistic distribution across potential 

values of the objective function. Concurrently, an acquisition 

function operates to navigate the search space, selecting 

subsequent values for evaluation. This function takes into 

consideration both the uncertainty inherent in the surrogate 

model and the balance between exploration and exploitation. 

The dual objectives of this acquisition function are to probe 

uncharted regions of the function, where uncertainty prevails, 

and to optimize regions where the function is deemed 

potentially optimal. By synthesizing the surrogate and 

acquisition functions, BO iteratively refines its search, 

balancing exploration and exploitation to converge upon the 

global optimum of the objective function. This process is 

achieved while concurrently minimizing the number of 

evaluations required of the actual function, thereby optimizing 

computational efficiency. 

This process is described in the study of Koehrsen et al. [32, 

35] as follows: 

(1) Build a substitution probability model of the objective 

function 

(2) Find the best-performing hyperparameters on the 

substitution function. 

(3) Apply these hyperparameters to the actual objective 

function. 

(4) Update the substitution model with the new results. 

Repeat steps 2 to 4 until the maximum number of iterations 

or time has been reached. 

This iterative cycle, encompassing steps two to four, is 

repeated until a predefined maximum number of iterations or 

time limit is reached. During each iteration, the surrogate 

probability model is continually refined with new data 

obtained from evaluations of the objective function. This 

process of updating, based on the actual value of the objective 

function, leads to an adjustment in the model's parameters, 

consequently improving its predictive accuracy and 

diminishing uncertainty in areas that have been explored. As 

more data is assimilated, the selection of hyperparameters 

becomes increasingly precise. 

In the context of this study, the Scikit-Optimize Python 

library from Scikit-learn was employed, offering a suite of 

optimization methods grounded in Gaussian processes. 

Specifically, the “gp_minimize” function was utilized, a 

central component of Scikit-Optimize that facilitates efficient 

BO. This function leverages Gaussian processes and 

probabilistic models to navigate the search space for optimal 

parameters systematically. Within a Gaussian process, the 

values of the objective function are presumed to conform to a 
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multivariate Gaussian distribution. The covariance of these 

function values is determined by a Gaussian Process kernel 

applied to the parameters. Following this, the acquisition 

function, predicated on the Gaussian prior, is employed to 

intelligently select the subsequent parameters for evaluation. 

This process is notably more expedient than direct evaluations 

of the objective function [36]. 

 

 

4. CSE-CIC-IDS2018 DATASET EXPLORATION  

 

The CSE-CIC-IDS2018 dataset, a collaborative endeavor 

between the Communications Security Establishment (CSE) 

and the Canadian Cybersecurity Institute (CIC), has been 

implemented on the Amazon Web Services AWS computing 

platform [37]. The primary aim of this project has been to 

devise a systematic methodology for the generation of a 

diverse and comprehensive reference dataset, serving the 

domain of anomaly-based IDS. This dataset is designed to 

reflect the traffic compositions and intrusions prevalent in 

real-world networks, thereby furnishing researchers with a 

robust tool for testing, evaluation, and necessary modifications 

prior to deployment. 

The foundational basis of this approach resides in the 

construction of user profiles, encompassing abstract 

representations of events and behaviors manifesting within the 

network domain. The amalgamation of these profiles has 

resulted in the generation of a diverse array of datasets, each 

characterized by a unique set of attributes, encapsulating a 

segment of the evaluation domain. Organization of the dataset 

has been meticulously conducted on a daily basis, spanning a 

capturing period of 10 days, commencing on Wednesday, 

February 14, 2018, and concluding on Friday, March 2, 2018. 

The resultant dataset encompasses seven distinct attack 

scenarios, namely Brute-force, Heartbleed, Botnet, DoS, 

DDoS, Web attacks, and Infiltration from within the network. 

Comprehensive data within this dataset includes network 

traffic captures and system logs on a per-machine basis, 

augmented by 80 features extracted from the captured traffic 

utilizing CICFlowMeter-V3. The dataset encompasses an 

array of network-related data, including but not limited to, 

source and destination IP addresses, network protocols, and 

TCP flags. Additionally, network flow characteristics such as 

the duration of a flow and the total size of data exchanged are 

also encapsulated within the dataset. A notable inclusion is the 

labeling of data, indicating the nature of the activity as either 

normal or specifying the type of attack. 

Upon analysis of the CSE-CIC-IDS2018 dataset, as 

retrieved from Kaggle, it has been observed to comprise 

16,233,002 examples, each described by 80 features. 

Noteworthy is the absence of certain features (Flow ID, Src IP, 

Src Port, Dst IP) in all recording files, with the exception of 

the file recorded on February 20, 2018. Furthermore, it has 

been discerned that all features in the files recorded on 

February 16, 28, 2018, and March 02, 2018, are categorical in 

nature. Contrastingly, the dataset for the remaining capture 

files predominantly consists of numeric features, with a 

minority of categorical features. A distribution of classes 

within the CSE-CIC-IDS2018 dataset is presented in Table 1. 

Instances of labeling errors have been identified, 

exemplified by the 59 instances in the dataset erroneously 

labeled as “Label”. It is recommended that such 

inconsistencies be addressed during the data cleansing phase 

of data pre-processing, where deletion of inconsistent rows is 

commonly employed. Furthermore, attention should be 

directed towards the elimination of redundant data and the 

rectification of any missing values, ensuring the integrity and 

cleanliness of the dataset. 

The focus of the present study is directed towards the DDOS 

attacks dataset from CSE-CIC-IDS2018, corresponding to the 

data recorded on the fourth and fifth days of the traffic and 

network behavior capture period. This subset of the dataset 

comprises 8,997,323 instances, each described by 80 features. 

These features encompass various data types, including 45 of 

float64 type, 33 of int64 type, and 2 of object type. The 

distribution of class labels within this specific dataset is 

delineated in Table 2. 

 

Table 1. The instances distribution of the CSE-CICIDS 2018 

dataset 

 

Class Label 
Number of Samples in  

CSE-CIC-IDS2018 

Benign 13484708 

DDOS attack-HOIC 686012 

DDoS attacks-LOIC-HTTP 576191 

DoS attacks-Hulk 461912 

Bot 286191 

FTP-BruteForce 193360 

SSH-Bruteforce 187589 

Infilteration 161934 

DoS attacks-SlowHTTPTest 139890 

DoS attacks-GoldenEye 41508 

DoS attacks-Slowloris 10990 

DDOS attack-LOIC-UDP 1730 

Brute Force -Web 611 

Brute Force -XSS 230 

SQL Injection 87 

Label 59 

Total 16,233,002 

 
Table 2. Class label distribution of the CSE-CIC-IDS2018 

DDOS attack dataset 

 

Labels of Classes 
Count of 

Instances 

Representativeness of 

Instances as a 

Percentage  

Benign 7733390 85.95% 

DDOS attack-HOIC 686012 7.62% 

DDoS attacks-LOIC-HTTP 576191 6.40% 

DDOS attack-LOIC-UDP 1730 0.02% 

Total 8,997,323 100.00% 

 

The dataset under investigation is acknowledged for its 

significant imbalance, characterized by a predominant 

"Benign" class, representing 85.95% of the examples, and a 

notably minuscule "DDOS attack-LOIC-UDP" class, 

constituting a mere 0.02%. Classes such as "DDOS attack-

HOIC" and "DDoS attacks-LOIC-HTTP" are also observed to 

have substantially lower representation in comparison to the 

majority class. In response to this imbalance, performance 

metrics that are adept at handling skewed datasets have been 

employed. These include the area under the Receiver 

Operating Characteristic (ROC) curve, the average precision 

derived from the precision-recall curve with the parameter 

“average” set to “macro” for both curves, BA, the macro_F1-

score, and the MCC. Each of these metrics has been carefully 

selected for their capacity to provide a more nuanced and 

balanced evaluation of the model’s performance, taking into 

consideration the inherent imbalance of the dataset. 
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5. THE PROPOSED APPROACH 

 

Figure 1 delineates the architectural framework propounded 

in the present research endeavor. This framework 

encompasses four sequential stages, meticulously designed to 

ensure the integrity and effectiveness of the investigative 

process. In the first stage, dataset preprocessing is conducted, 

an integral component of which comprises the data cleansing 

phase. This is followed by normalization and scaling 

procedures, label encoding, and the meticulous selection of 

pertinent features. The dataset subsequently undergoes 

partitioning in the second stage, resulting in distinct subsets 

designated for training, validation, and testing purposes. The 

third stage is characterized by the implementation of BO, a 

sophisticated approach employed to refine and optimize the 

model’s hyperparameters. The culminating stage encompasses 

model training, utilizing the hyperparameters derived from the 

preceding BO. Model validation and evaluation are 

subsequently conducted, utilizing the test data and a 

comprehensive suite of performance metrics. 

 

 
 

Figure 1. The architecture of the proposed approach 

 

5.1 Dataset preprocessing 

 

Upon the amalgamation of csv files constituting the 

CICIDS2018 DDOS attack dataset, the dataset was subjected 

to a pre-processing phase, a pivotal step in the preparation of 

data for application of ML and DL algorithms. This phase 

holds paramount importance, as it facilitates efficient learning 

from the available data, culminating in precise classifications. 

Inconsistencies within columns of the dataset were 

addressed through deletion, ensuring the elimination of 

potential biases or adverse effects stemming from data of 

suboptimal quality. Values that were missing or infinite were 

managed with precision, the option was used to handle infinite 

values as nan "pd.set_option('mode.use_inf_as_na', True)", 

and then all rows containing nan (null value) were removed 

from our dataset. 

Moreover, the dataset presented challenges due to disparate 

units of measurement and varying value ranges across 

different features. To counteract these challenges and ensure 

comparability across features, normalization and scaling were 

employed. The StandardScaler transformation from Scikit-

learn was utilized, transforming the data such that each feature 

possessed a mean of zero and a variance of one [9]. The 

formula for this transformation, applied to each feature x, is 

expressed as: 

 

( ( ))

( )
St

x mean x
x

std x

−
=   (7) 

 

where 𝑥𝑆𝑡 is the standardized value of feature x, mean(x) is the 

mean of the feature and std(x) is the standard deviation of the 

feature.  

Regarding the treatment of categorical features, notably 

class labels, a transformation into numerical format is requisite 

for their assimilation by ML algorithms. The pre-processing 

phase commonly encompasses the deployment of encoding 

techniques to aptly represent these features. In the context of 

this study, classes from Scikit-learn, namely LabelEncoder 

and OneHotEncoder, were employed. The former was utilized 

for the XGBoost algorithm, while the latter served the RF and 

SGD algorithms. 
 

5.1.1 Features selection 

The pivotal role of feature selection in the ML pipeline is 

acknowledged, its primary aim being the discernment of the 

most pertinent features for a specified problem, whilst 

concurrently eliminating those deemed superfluous or 

redundant. A judicious execution of feature selection not only 

enhances the accuracy of model predictions but also mitigates 

model complexity and expedites the training procedure. The 

overarching goal of this process is the reduction of data 

dimensionality, a reduction achieved without compromising, 

and potentially even augmenting, the performance of the 

model. 

In this study, the "feature importance" methodology of 

XGBoost was employed as the principal mechanism for 

feature selection, guiding the inclusion or exclusion of features 

in the training of models. This approach computes the 

importance of each feature based on its contribution to the 

amelioration of model error in the construction of DTs, 

subsequently assigning an importance score to each feature. 
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An XGBoost model was trained utilizing the CIC-IDS2018 

DDOS attack dataset, and the resultant feature importance 

scores were visualized and arranged in descending order. 

Figure 2 delineates the salient features of the CIC-IDS2018 

DDOS attack dataset as discerned by the deployed XGBoost 

algorithm, presented in the form of a horizontal bar chart. 

The selection of the most pertinent features was conducted 

with a focus on retaining only those with an importance 

surpassing a specified threshold k, while disregarding features 

of lesser significance. To achieve this objective, an 

experimental procedure was undertaken, entailing the 

following steps: 

Initially, the threshold was set to 𝑘1 > 0.0001, resulting in 

29 features meeting the established criterion. Subsequently, 

the threshold was adjusted to 𝑘2 > 0.001, yielding 20 features 

in accordance with the stipulated requirement. Post the 

removal of features deemed irrelevant based on each threshold, 

the modified datasets were subjected to evaluation employing 

the RF, XGBoost, and SGD algorithms. The performance of 

each algorithm was assessed in terms of accuracy and the 

macro-average F1-score. 

 

 
 

Figure 2. Feature importance graph by XGBoost algorithm 

 

The macro-average F1-score was selected as the evaluation 

metric, acknowledging the imbalanced nature of the 

CICIDS2018 DDOS attack dataset. Within the multi-class 

context, this metric is computed by first determining the F1-

score for each individual class, followed by calculating the 

average of these scores. This approach ensures a balanced 

evaluation of model performance, attributing equal weight to 

each class irrespective of their prevalence or disparity. 

Upon analysis of the results, it was observed that both the 

RF and XGBoost algorithms exhibited consistent performance 

across the two threshold settings, achieving an accuracy of 1 

and a macro-average F1-score of 0.98. In contrast, the SGD 

algorithm demonstrated variation in performance between the 

two thresholds. Specifically, the evaluation metrics associated 

with threshold 𝑘1 > 0.0001were notably lower in comparison 

to those recorded for threshold 𝑘2 > 0.001. These findings are 

comprehensively presented in Table 3. 

Based on aforementioned results, the decision was made to 

retain features surpassing the threshold of k2>0.001, resulting 

in a shortlist of the top 20 most pertinent features. These 

selected features are meticulously detailed in Table 4, wherein 

each entry delineates the sequential position of the feature 

within the initial dataset, alongside its respective nomenclature, 

data typology, and corresponding importance score. 

Utilizing the XGBoost algorithm, a selection of features has 

been meticulously identified, demonstrating substantial 

relevance in augmenting the performance of the anomaly-

based intrusion detection model. This is achieved through the 

discernment of atypical patterns and behaviors within network 

traffic. 

The feature 'Bwd Pkt Len Std' is particularly noteworthy, as 

it encapsulates the variability in the size of backward direction 

packets. This is crucial in the context of Denial of Service 

(DDoS) attacks, which are known to precipitate pronounced 

alterations in the distribution of packet sizes, thereby serving 

as a potential hallmark of malicious activity. 
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'TotLen Fwd Pkts' emerges as another significant feature, 

providing utility in the identification of DDoS attacks 

characterized by the transmission of substantial forward 

packets aimed at overwhelming the target. Concurrently, 'Dst 

Port', the feature denoting the destination port, plays a vital 

role in pinpointing attacks meticulously crafted to compromise 

specific services. 

The feature 'Init Fwd Win Byt', representing the initiation 

of sending windows, is deemed pertinent for the detection of 

incipient attacks attempting to forge malicious connections 

through the manipulation of sending windows. Furthermore, 

'Flow IAT Min' quantifies the minimum inter-arrival time 

between consecutive data flows, with DDoS attacks having the 

potential to disrupt standard traffic patterns, manifesting in 

anomalously low values. 

'Fwd IAT Tot' offers insights into the temporal intervals 

between forward packets, where abrupt variations may be 

indicative of traffic anomalies. 'PSH Flag Cnt' and 'ACK Flag 

Cnt' are instrumental in identifying urgent packet 

transmissions and tracking the prevalence of ACK packets, 

respectively, both of which are tactics frequently exploited in 

amplified reflection attacks. 

Additional features such as 'Flow Pkts/s', 'Tot Fwd Pkts', 

'Flow Duration', 'Flow IAT Max', 'Fwd IAT Std', 'Bwd IAT 

Min', 'Idle Mean', 'Idle Max', 'Fwd Pkt Len Mean', 'Fwd Act 

Data Pkt', 'Fwd Pkt Len Std', and 'URG Flag Cnt' are 

elaborated upon, underscoring their integral roles in the 

holistic detection of network irregularities and potential 

security breaches. 

 

Table 3. Thresholds for selecting the most relevant features 

 
Threshold  Models Accuracy Macro Avg F1 Score 

K1>0.0001 RF 1 0.98 

K1>0.0001 XGBoost 1 0.98 

K1>0.0001 SGD 0.88 0.55 

K2>0.001 RF 1 0.98 

K2>0.001 XGBoost 1 0.98 

K2>0.001 SGD 0.95 0.83 

 

Table 4. Features selected by the XGBoost method from the 

CIC-IDS2018 DDOS attacks dataset 
 

Feature 

Number 
Feature 

Data 

Type 

Feature 

Importance Score 

16 Bwd Pkt Len Std  float64 0.436436 

7 TotLen Fwd Pkts  float64 0.187275 

1 Dst Port int64 0.157668 

68 Init Fwd Win Byt int64 0.057977 

22 Flow IAT Min  float64 0.034996 

23 Fwd IAT Tot float64 0.033091 

49 PSH Flag Cnt int64  0.016368 

50 ACK Flag Cnt int64  0.014257 

18 Flow Pkts/s float64 0.012913 

5 Tot Fwd Pkts int64  0.009571 

4 Flow Duration int64  0.006550 

21 Flow IAT Max float64 0.006274 

25 Fwd IAT Std float64 0.004876 

32 Bwd IAT Min float64 0.004392 

76 Idle Mean float64 0.003806 

11 Fwd Pkt Len Mean float64 0.003112 

70 Fwd Act Data Pkt int64  0.002539 

12 Fwd Pkt Len Std  float64 0.001815 

78 Idle Max float64 0.001683 

51 URG Flag Cnt int64  0.001462 

 

In essence, through vigilant monitoring of these pivotal 

aspects of network traffic, the model is adeptly equipped to not 

only identify but also counteract malicious activities, thereby 

substantially fortifying the integrity of network security. 

The next step is to divide the processed data set into a 

training data set comprising 70% of the data, a validation data 

set with 18% and a test data set with 12%. 

 

5.2 BO 

 

In the pursuit of advancing the capabilities of IDS, 

particularly in relation to DDoS attacks, this research 

endeavors to enhance the efficacy of three preeminent 

algorithms extensively applied in the realm of ML: XGBoost, 

RF, and SGD. 

Acknowledging the prevalence of numerous 

hyperparameters within ML algorithms, necessitating 

meticulous tuning to attain optimal results, BO has been 

employed in this study. This method facilitates the 

identification of superior hyperparameter values, with the 

objective of maximizing a designated performance metric. 

Consequently, this approach endeavors to yield enhanced 

model performance while concurrently economizing on time, 

presenting a preferable alternative to exhaustive search 

methodologies such as GS and random search. 

Within the framework of this study, a specific search space 

has been delineated for each algorithm, encapsulating a 

spectrum of potential values for the hyperparameters subject 

to optimization. The hyperparameters subjected to 

examination encompass: for XGBoost, max_depth, 

learning_rate, min_child_weight, gamma, reg_alpha, 

reg_lambda, and n_estimators; for RF, n_estimators, criterion, 

max_depth, and max_features; and for SGD, loss, alpha, 

penalty, and max_iter. Table 5 elucidates the defined search 

spaces and explicates the significance of each hyperparameter. 

For the purpose of the objective function, two distinct 

performance metrics were evaluated: average_precision_score 

and Roc_auc_score, both employing the Average='macro' 

parameter. The rationale behind optimizing these particular 

metrics stems from their relevance in IDS, where it is 

imperative to accurately identify attacks while minimizing the 

rate of FP. This necessitates a balanced trade-off between 

precision and recall, as well as between the rates of FP and FN. 

The metric average_precision quantitatively assesses the 

model’s precision, evaluating its capacity to accurately 

classify positive instances (intrusions) among those predicted 

as positive. Conversely, the metric Roc_auc_score serves as a 

comprehensive indicator of the model’s overall performance. 

The selection of these metrics is strategically aimed at 

identifying the optimal hyperparameters for each algorithm 

under investigation, with the objective of maximizing the 

values of these objective functions. 

The precision-recall curve is delineated, representing 

precision P(r) as a function of recall r. The Average Precision 

(AP) computes the mean value of P(r) over the interval r=0 to 

r=1 [38]. Derived from the prediction scores, AP encapsulates 

the precision-recall curve, presenting it as a weighted average 

of the precisions computed at each respective threshold. The 

increment in recall from the preceding threshold serves as the 

weight in this calculation [39]: 

 

( )1AP n n n

n

R R P−= −   (8) 

 

where 𝑃𝑛 and 𝑅𝑛 are precision and recall at the n-th threshold. 
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The metric average_precision_score has been selected, with 

the specification "average='macro'" implemented for this 

evaluation. Within a multi-class context, the AP is computed 

as the arithmetic mean of the average precision scores 

allocated to each distinct class [40]. It is important to highlight 

that this approach does not account for any potential imbalance 

in label distribution [39]. 

Consequently, the average_precision_score serves as a 

metric that determines the weighted average of precisions 

attained at various thresholds for each class individually, while 

also considering the actual distribution of classes present 

within the data. This metric comprehensively incorporates 

both precision and recall for every individual class, thereby 

offering a holistic insight into the model's performance 

capabilities. 

In relation to the second objective function scrutinized in 

this research, the Roc_auc_score function, also recognized as 

ROC (Receiver Operating Characteristic) AUC (Area Under 

Curve) or AUROC (Area Under the Receiver Operating 

Characteristic Curve), is employed to calculate the area 

beneath the ROC curve, based on the prediction scores [41]. 

 

Table 5. Defined search space for the 3 algorithms studied 

 
Models Defined Search Space 

 space=[Categorical([3,5,6], name="max_depth"), 

 Categorical([0.01, 0.05, 0.1, 0.15, 0.20, 0.25, 0.3], name="learning_rate"), 

 Categorical([1,5,7,10], name="min_child_weight"), 

XGBoost  Categorical([0, 0.1, 0.2, 0.3, 0.5, 1], name= "gamma"), 

 Categorical([0, 0.0001, 0.01, 0.1, 0.5, 1], name="reg_alpha"), 

 Categorical([0, 0.0001, 0.01, 0.1, 0.5, 1], name="reg_lambda"), 

 Categorical([50,80], name="n_estimators")]  

 space=[Categorical([50,80,100,110], name="n_estimators"), 

 Categorical(["gini", "entropy", "log_loss"], name="criterion"), 

RF Categorical([3,5,6, None], name="max_depth"), 

 Categorical(["sqrt", "log2", None], name="max_features")] 

 space=[Categorical(["hinge", "log_loss", "modified_huber", "perceptron"], name="loss"), 

SGD  Categorical([0.0001, 0.001, 0.01, 0.1], name="alpha"), 

 Categorical(['l2', 'l1', 'elasticnet', None], name= "penalty"), 

 Categorical([1000,3000, 5000, 10000], name="max_iter")] 

 

Table 6. BO result 
 

Models Nb_Calls Best HyperParameters (AP) 
Best 

(AP) 
Best HyperParameters (AUC) 

Best 

(AUC) 

SGD 15 
 {'loss': 'perceptron', 'alpha': 0.001, 'penalty': 'l2', 

'max_iter': 10000}  
0.8943 

{'loss': 'perceptron', 'alpha': 0.0001, 'penalty': 

'elasticnet', 'max_iter': 1000}  
 0.9993 

SGD 20 
{'loss': 'perceptron', 'alpha': 0.0001, 'penalty': 'l2', 

'max_iter': 10000} 
0.8954 

{'loss': 'perceptron', 'alpha': 0.001, 'penalty': 'l2', 

'max_iter': 5000}  
0.9994 

SGD 30 
 {'loss': 'hinge', 'alpha': 0.0001, 'penalty': 'l1', 

'max_iter': 5000}  
0.8908 

{'loss': 'perceptron', 'alpha': 0.0001, 'penalty': 

'l2', 'max_iter': 3000}  
 0.9995 

RF 15 
{ n_estimators=100; criterion= entropy; 

max_depth= None; max_features= None} 
0.9948 

{ n_estimators= 110; criterion= entropy; 

max_depth= None; max_features= log2 } 
1.0000 

XGBoost 18 

{ max_depth =3; learning_rate= 0,3; 

min_child_weight = 5; gamma= 0; reg_alpha= 

0,1; reg_lambda= 0,01; n_estimators= 80 } 

0.9967 

{max_depth=6; learning_rate= 0,2; 

min_child_weight= 5; gamma= 0,2; reg_alpha= 

0; reg_lambda= 0,1; n_estimators= 80 } 

1.0000 

 

Table 7. BO runtime 
 

Model Nb_Calls Learning_Period(s)  Predictive_Period (s)  Total Learning and Predictive Period (s)  

SGD_AP 30 2445.785 16.723 2462.507 

SGD_AUC 30 1939.482 16.875 1956.356 

RF_AP 15 29965.195 452.254 30417.449 

RF_AUC 15 64317.759 417.664 64735.423 

XGB_AP 18 41472.845 62.795 41535.640 

XGB_AUC 18 43787.210 65.340 43852.550 

 

The ROC curve itself is a graphical representation, 

delineating the performance of a binary classification system 

across all possible classification thresholds [42]. This curve 

plots the True Positive Rate (TPR) against the False Positive 

Rate (FPR), spanning various threshold values. The TPR is 

represented along the Y-axis, while the FPR is plotted on the 

X-axis. The optimal point on this curve would correspond to a 

FPR of zero coupled with a TPR of one. The overarching 

objective is to simultaneously maximize the TPR and 

minimize the FPR. Generally, a larger AUC is indicative of 

superior model performance [43]. 

ROC curves are predominantly utilized in the realm of 

binary classification, facilitating the distinct definition of the 

TPR and FPR. When venturing into the domain of multi-class 

classification, a clear delineation of TPR or FPR necessitates 

the binarization of the output, a process executable through 

two predominant schemes: the Un-vs-Un scheme, which 

engages in a pairwise comparison of each unique class 

combination, and the Un-vs-Rest scheme, which entails 

comparing each individual class against all remaining classes 

[43]. 

In the context of this research endeavor, the multi-class 
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One-vs-Rest (OvR) strategy, alternatively known as One-vs-

All, was employed. This strategy necessitates the computation 

of an ROC curve for each class within the n_classes. In each 

iteration, a specific class is designated as the positive class, 

while the aggregate of other classes is treated as a singular 

negative class [43]. 

To address and mitigate the issue of class imbalance and 

ensure equitable treatment across all classes, the 'macro' option 

was selected for the Average parameter of the Roc_auc_score 

metric. This entails the computation of the arithmetic mean of 

the metric independently for each class. 

In the iterative optimization process, a maximum number of 

iterations was established for each algorithm under study, 

pertaining to both Roc_auc_score and 

Average_precision_score objective functions. Upon 

completion of this iterative loop, the optimal value and 

corresponding hyperparameters, yielding the most proficient 

performance, were ascertained for each objective function. 

Specifically, the maximum iterations were set at 15 for the RF 

algorithm, 18 for the XGBoost algorithm, and three distinct 

values-15, 20, and 30-were evaluated for the SGD algorithm. 

The subsequent section, Table 6, delineates the optimal 

hyperparameters derived from each objective function for each 

algorithm, while Table 7 enumerates the associated processing 

times. 

Subsequent to the BO, the algorithms under investigation - 

RF, XGBoost, and SGD-were subjected to both the optimized 

hyperparameters and their default settings. The rationale for 

this dual approach was to establish a baseline for performance 

comparison, particularly in the context of DDOS attack 

detection systems. 

The selection of classifiers-XGBoost, RF, and SGD 

Classifiers - was predicated on their distinctive attributes, 

which aligned with the research objectives pertaining to 

precision, speed, robustness, and capacity to manage extensive 

data sets. XGBoost, a boosting model, was chosen for its 

prowess in delivering high accuracy, execution speed, and 

resilience against overfitting, rendering it an exemplary choice 

for anomaly-based intrusion detection. RF, an ensemble model, 

is lauded for its precision, resistance to overfitting, and 

aptitude for handling diverse data types, which are imperative 

in intrusion detection scenarios. Lastly, the SGD classifier, 

grounded in SGD, was selected for its efficiency in processing 

large volumes of data and its expedited computational 

capabilities, both of which are quintessential in IT security 

contexts. 

In scenarios involving imbalanced datasets, the evaluation 

methodology for the performance of multi-class classification 

models encompassed a twofold approach. Initially, a holistic 

assessment was conducted using global metrics - Accuracy, 

BA, MCC, and macro_F1_score - to provide a comprehensive 

view of the algorithms' efficacy. Subsequently, a more 

granular analysis was undertaken, examining individual class 

performances based on Precision, Recall, F1-score, FPR, and 

the Precision-Recall Curve, complemented by the AP Score. 

The final facet of evaluation pertained to the execution times 

of each model, ensuring a thorough appraisal of their 

performance. 
 
 

6. IMPLEMENTATION, RESULTS AND DISCUSSIONS 

 

6.1 Hardware and environment setting 

 

The experiments delineated in this manuscript were 

executed on the Google Colab Pro+ platform, a derivative of 

Google Research. This platform provides a hosted Jupyter 

notebook service, obviating the necessity for configuration, 

and is endowed with 54.8 gigabytes of high RAM for 

computational tasks. The construction, training, evaluation, 

and testing of the ML models were carried out within the 

Scikit-Learn framework, an open-source Python library 

renowned for its simplicity and efficacy, drawing upon the 

capabilities of the NumPy, SciPy, and matplotlib libraries. For 

the implementation of XGBoost, the xgboost Python module 

was integrated into the Scikit-Learn framework, serving dual 

functions as a data selection tool and ML algorithm. 

Sequential model-based optimization, requisite for BO, was 

facilitated through the employment of the scikit-optimize 

module, an open-source tool built upon NumPy, SciPy, and 

Scikit-Learn. The construction of the models was undertaken 

using Jupyter Notebook, with Python as the programming 

language of choice. Data cleaning and feature selection were 

conducted utilizing the Pandas and NumPy frameworks, while 

data visualization was achieved through Matplotlib and the 

Seaborn framework. BO was conducted via Scikit-optimize, 

and Scikit-learn was employed for comprehensive data 

analysis. 

 

6.2 Performance metrics 

 

The evaluation of classification model performance within 

this study hinges on the mathematical computation of various 

metrics, each rooted in the distinct permutations of elements 

within the confusion matrix: True Positives (TP), True 

Negatives (TN), False Positives (FP), and False Negatives 

(FN). Herein, TP denote instances wherein the model 

accurately identifies the positive class, whereas TN pertain to 

cases of correct negative class prediction. Conversely, FP-

categorized as Type I errors-occur when the model 

erroneously predicts the positive class in lieu of the negative 

class. FN, or Type II errors, arise when the model inaccurately 

predicts the negative class, despite the true classification being 

positive. 

Accuracy serves as a pivotal metric within this framework, 

quantifying the overall precision of the classification model. It 

is calculated as the proportion of accurately predicted 

instances (encompassing both TPs and TNs) relative to the 

aggregate number of instances present in the dataset. 

 
TP TN

Accuracy
FP FN TP TN

+
=

+ + +
 (9) 

 

BA is a metric judiciously employed in the context of 

imbalanced datasets, accommodating for disparities in class 

distribution. By computing the average recall, or TP rate, 

across each individual class, BA offers a nuanced and more 

precise portrayal of a model’s performance, particularly in 

scenarios characterized by imbalanced classes. 

 

(    )

2

Sensitivity Specificity
BA

+
=   (10) 

 

where,  

 

 (  ) ,  
TP TN

Sensitivity Recall Specificity
TP FN TN FP

= =
+ +

  

 

MCC serves as a comprehensive metric for evaluating the 

1188



 

performance of binary classification models, encapsulating all 

four components of the confusion matrix: TPs, TNs, FPs, and 

FNs. It effectively quantifies the correlation between the 

observed and predicted classifications, with its values 

spanning from -1, indicative of completely discordant 

predictions, to +1, denoting flawless prediction accuracy. A 

score of 0 from MCC implies that the model's predictions are 

no better than random chance. 

 
( * * )

( )*( )

*( )*( )

TP TN FP FN
MCC

TP FP TP FN

TN FP TN FN

−
=

 
 


+ +

+ +

  

(11) 

 

Recall measures the model's ability to correctly identify all 

positive instances (TPs) out of all actual positives. It is also 

known as the TP rate or sensitivity. 

 

TP
Recall

TP FN
=

+
  (12) 

 

Precision measures the model's ability to correctly predict 

positive instances (TPs) out of all instances predicted as 

positive. It assesses the reliability of positive predictions. 

 
TP

Precision
TP FP

=
+

  (13) 

 

The F1-score is the harmonic mean of precision and recall. 

It provides a single metric that balances both precision and 

recall, making it useful for assessing overall classification 

performance. 

 

2*( * )
1

( )

Precision Recall
f score

Precision Recall
− =

+
  (14) 

 

The macro F1-score is the average F1-score calculated 

separately for each class and then averaged. It measures the 

balance between precision and recall across multiple classes in 

a classification problem. 

 

1

1   

1

N

i

i

F score

MacroF score
N

=

−

− =


  
(15) 

 

The FPR is the ratio of FP predictions to all actual negatives. 

It measures the model's ability to correctly classify negative 

instances. 

 

FP
FPR

FP TN
=

+
  (16) 

 

6.3 Implements, results and discussion 

 

Subsequent to the completion of the data pre-processing 

phase, the derived dataset was partitioned into distinct subsets, 

with 70% allocated for training (training set), 18% for 

validation (validation set), and 12% for testing (test set). The 

application of BO yielded the results delineated in Table 6, 

encompassing the outcomes for all three investigated 

algorithms across the two objective functions: 

Average_precision_score and Roc_auc_score. 

Regarding the SGD model, the decision was made to adopt 

the hyperparameters corresponding to the most elevated value 

attained between AP and AUC. In this instance, a notable AP 

of 0.8954 was achieved at the testing phase, corresponding to 

a BO iteration count (nb_calls) of 20. In contrast, the AUC 

value peaked at 0.995, associated with an nb_calls value of 30. 

It is imperative to underscore that the nb_calls parameter 

serves as the termination criterion for the iterative loop within 

the BO process. A meticulous examination of the results for 

the SGD model divulged a recurring presence of the 

hyperparameter “loss='perceptron'”, featured in five out of the 

six documented outcomes. Furthermore, the hyperparameters 

"alpha=0.0001" and "penalty=l2" manifested in four out of the 

six cases. 

Turning attention to the RF and XGBoost algorithms, it was 

observed that the BO computational duration for both 

objective functions was considerably extensive, as elucidated 

in Table 7. The Colab Pro+ platform, serving as the 

computational environment for the experiments, enforces a 

continuous execution limit of 24 hours, beyond which all 

processing activities are curtailed. This operational constraint 

necessitated the selection of specific iteration numbers for 

these two models. Despite this limitation, both algorithms 

demonstrated exemplary performance, achieving an AUC of 1 

and exhibiting remarkably high PA values, with XGBoost 

marginally outperforming RF in terms of the PA metric. 

Following the application of BO, we proceeded to train, 

validate, and test the three algorithms under study. The 

aggregated results from the evaluation of the SGD, RF, and 

XGB models, utilizing both the optimal hyperparameters 

derived from BO and the default settings of the models, are 

displayed in Table 8. 

These results offer a comprehensive insight into the 

performance of the three algorithms in identifying DDOS 

attack intrusions within the CICIDS2018 dataset, showcasing 

an overall commendable performance. 

Focusing on Accuracy, a metric that reflects a model's 

proficiency in accurately predicting the predominant class, we 

arranged the results yielded by the various models in a 

descending order based on this metric. This exercise resulted 

in the following hierarchy: M8_XGB>M7_XGB>M4_RF> 

M5_RF>M6_RF>M9_XGB>M1_SGD>M2_SGD>M3_SGD, 

with corresponding accuracy values of 0.999969, 0.999963, 

0.999959, 0.999956, 0.999944, 0.999924, 0.997851, 0.997850, 

and 0.989745, respectively. 

In the conducted study, three classifier models, namely 

SGD, RF, and XGBoost (XGB), were scrutinized through the 

lens of BO, with their performances meticulously evaluated 

and ranked based on various metrics. Observations were made 

regarding the superior performance exhibited by the XGBoost 

classifier models M8_XGB and M7_XGB, both outcomes of 

BO. These models demonstrated exceptional efficacy, 

surpassing their counterparts in the RF and SGD classifier 

domains. Notably, the default classifier values of RF and 

XGBoost, as represented by models M6_RF and M9_XGB, 

showcased commendable performance, outstripping all SGD 

classifier models. 

Focusing on BA, a critical metric for gauging a model's 

discriminative capabilities across diverse classes whilst 

accounting for potential class imbalances, the XGBoost 

optimized models were identified as the front runners. The 

ensuing ranking, delineated as M8_XGB>M7_XGB> 

M9_XGB>M5_RF>M6_RF>M4_RF>M3_SGD>M1_SGD> 

M2_SGD, with corresponding values 0.992210>0.990906> 

0.989490>0.973656>0.969503>0.966789>0.871967>0.8664
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70>0.844379, highlighted the lower positioning of SGD 

models. Intriguingly, the M3_SGD model, adhering to the 

classifier's default hyperparameters, outperformed the 

algorithm's optimized counterparts. 

In terms of the MCC, a robust metric providing a holistic 

assessment of model performance, particularly in scenarios 

characterized by class imbalances, the optimized XGBoost 

models once again asserted their dominance. They were 

closely followed by the optimized models from the RF 

ensemble. The rankings, as deduced, were as follows: 

M8_XGB>M7_XGB>M4_RF>M5_RF>M6_RF>M9_XGB>

M1_SGD>M2_SGD>M3_SGD, with corresponding MCC 

values of 

0.999878>0.999853>0.999838>0.999827>0.999779>0.9996

98>0.991598>0.991594>0.959750. It was discerned that 

models operating under default parameter settings (M9_XGB, 

M6_RF, and M3_SGD) were outpaced by their optimized 

counterparts across each algorithm. 

 

Table 8. Result of the global evaluation of the SGD, RF and XGB algorithm 

 
Algorithm Hyperparameter Basis Model Accuracy Balanced_Accuracy MCC Macro_F1_Score 

SGD macro_ap 

M1_Model= SGDClassifier 

(loss='perceptron'; alpha=0,0001; 

penalty=l2; max_iter=10000) 

0.997851 0.866470 0.991598 0.879416 

SGD macro_roc_auc 

M2_Model= SGDClassifier 

(loss='perceptron'; alpha=0,0001; 

penalty=l2; max_iter=3000) 

0.997850 0.844379 0.991594 0.861148 

SGD default hyperparameters 

M3_Model =SGDClassifier  

(loss='hinge'; alpha=0,0001; penalty=l2; 

max_iter=1000) 

0.989745 0.871967 0.959750 0.880472 

RF macro_ap 

M4_Model= RandomForestClassifier 

(n_estimators= 100; criterion= ' 

entropy';max_depth =None; max_features= 

None) 

0.999959 0.966789 0.999838 0.972300 

RF macro_roc_auc 

M5_Model= RandomForestClassifier 

(n_estimators= 110; criterion= ' 

entropy';max_depth =None; max_features= 

' log2 ') 

0.999956 0.973656 0.999827 0.968834 

RF default hyperparameters 

M6_Model= RandomForestClassifier 

(n_estimators= 100; criterion= ' 

gini';max_depth =None; max_features= ' 

sqrt ') 

0.999944 0.969503 0.999779 0.965338 

XGB macro_ap 

M7_Model=XGBClassifier 

(max_depth=3; learning_rate= 0,3; 

min_child_weight= 5; gamma = 0; 

reg_alpha= 0,1; reg_lambda = 0,01; 

n_estimators = 80) 

0.999963 0.990906 0.999853 0.976434 

XGB macro_roc_auc 

M8_Model=XGBClassifier( max_depth=6; 

learning_rate= 0,2; min_child_weight= 5; 

gamma = 0,2; reg_alpha= 0; reg_lambda = 

0,1; n_estimators = 80) 

0.999969 0.992210 0.999878 0.980428 

XGB Default Hyperparameters 

M9_Model=XGBClassifier( max_depth=3; 

learning_rate= 0,1; min_child_weight= 1; 

gamma = 0; reg_alpha= 0; reg_lambda = 1; 

n_estimators = 100) 

0.999924 0.989490 0.999698 0.971938 

 

Table 9. Precision, recall and f1_score results for SGD, RF and XGB models for individual classes  

 
Precision_test M1_SGD M2_SGD M3_SGD M4_RF M5_RF M6_RF M7_XGB M8_XGB M9_XGB 

Benign 99.99% 99.99% 99.48% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

DDOS attack-HOIC 99.35% 99.38% 94.53% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

DDOS attack-LOIC-UDP 62.04% 58.47% 64.56% 91.28% 85.71% 84.57% 85.45% 87.91% 82.74% 

DDoS attacks-LOIC-HTTP 97.67% 97.64% 97.85% 99.96% 99.97% 99.96% 99.99% 99.99% 99,98% 

Recall_test M1_SGD M2_SGD M3_SGD M4_RF M5_RF M6_RF M7_XGB M8_XGB M9_XGB 

Benign 99.77% 99.77% 99.34% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

DDOS attack-HOIC 99.95% 99.94% 99.98% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

DDOS attack-LOIC-UDP 46.96% 38.12% 56.35% 86.74% 89.50% 87.85% 96.41% 96.92% 95.90% 

DDoS attacks-LOIC-HTTP 99.90% 99.91% 93.12% 99.98% 99.96% 99.96% 99.95% 99.96% 99.90% 

f1_score_test M1_SGD M2_SGD M3_SGD M4_RF M5_RF M6_RF M7_XGB M8_XGB M9_XGB 

Benign 99.88% 99.88% 99.41% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

DDOS attack-HOIC 99.65% 99.66% 97.18% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

DDOS attack-LOIC-UDP 53.46% 46.15% 60.18% 88.95% 87.57% 86.18% 90.60% 92.20% 88.84% 

DDoS attacks-LOIC-HTTP 98.78% 98.76% 95.42% 99.97% 99.97% 99.96% 99.97% 99.98% 99.94% 

 

The Macro F1-score, serving as a critical indicator of the 

harmonic balance between precision and recall across various 

classes, was meticulously examined for different models. The 

ensuing analysis yielded a hierarchical ranking as follows: 

M8_XGB>M7_XGB>M4_RF>M9_XGB>M5_RF>M6_RF> 

M3_SGD>M1_SGD>M2_SGD, with corresponding values 
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being 0.980428, 0.976434, 0.972300, 0.971938, 0.968834, 

0.965338, 0.880472, 0.879416, and 0.861148, respectively. 

Notably, the models affiliated with the SGD classifier were 

positioned at the lower end of the spectrum. 

In an exhaustive evaluation across all four metrics, the 

XGBoost model M8_XGB, parameterized as XGBClassifier 

(max_depth=6; learning_rate=0.2; min_child_weight=5; 

gamma=0.2; reg_alpha=0; reg_lambda=0.1; n_estimators=80), 

consistently emerged as the top performer. When delving into 

a comparative analysis of the optimized models versus those 

operating under default values for each algorithm, discerning 

observations were made. Within the XGBoost realm, models 

M8_XGB and M7_XGB exhibited superior performance 

across all metrics in comparison to M9_XGB. In the context 

of the RF ensemble, models M4_RF and M5_RF 

outperformed M6_RF in a majority of metrics, with the 

exception of BA where M4_RF lagged slightly behind M6_RF. 

On the SGD front, models M1_SGD and M2_SGD 

demonstrated prowess in Accuracy and MCC, surpassing 

M3_SGD. However, they fell short in BA and Macro F1-score 

when juxtaposed with M3_SGD. 

Table 9 offers a granular view, encapsulating the precision, 

recall, and F1-score metrics, as garnered by the models in 

relation to the individual classes encompassed within the 

CICIDS2018 DDOS attack dataset. 

At this stage, it is observed that all models pertaining to the 

RF and XGBoost algorithms exhibit impeccable performance, 

achieving a 100% detection and prediction rate for the 

"Benign" and "DDOS-attack-HOIC" classes. In contrast, the 

SGD classifier models present a more nuanced performance 

landscape. 

Specifically, for the "Benign" class, the M3_SGD model is 

outperformed by both M1_SGD and M2_SGD across all three 

evaluation metrics. In the case of the "DDOS-attack-HOIC" 

class, the M3_SGD model once again lags behind, particularly 

in terms of accuracy and F1 score, rendering M1_SGD and 

M2_SGD as more proficient for this specific class. 

When attention is shifted to the "DDOS-attack-LOIC-UDP" 

class, the F1 score reveals that the M8_XGB model excels 

with a commendable score of 92.20%, while M2_SGD is 

situated at the lower end of the spectrum with a score of 

46.15%. In terms of the "DDOS-attack-LOIC-HTTP" class, 

the M8_XGB model maintains its superior stance, achieving 

an impressive score of 99.98%, whereas M3_XGB is 

identified as the underperformer with a score of 95.42%. 

These findings facilitate a comprehensive ranking of the RF 

and XGBoost models based on their precision, recall, and F1 

score metrics, from the highest to the lowest performing. 

However, the classification of models within the SGD 

algorithm remains ambiguous. It is, nonetheless, definitively 

established that M1_SGD and M2_SGD outshine M3_SGD in 

the "Benign," "DDOS-attack-HOIC," and "DDOS-attack-

LOIC-HTTP" classes. Conversely, M3_SGD demonstrates 

superiority over M1_SGD and M2_SGD in the "DDOS-

attack-LOIC-UDP" class, culminating in the conclusion that 

M1_SGD is the overall superior model within the SGD family. 

Comparatively, models under the SGD algorithm are 

observed to perform suboptimally relative to their XGBoost 

and RF counterparts. Consequently, the performance 

hierarchy from the most to least effective is established as 

follows: M8_XGB > M7_XGB > M4_RF > M9_XGB > 

M5_RF > M6_RF > SGD models. 

To discern the relative performance of models within the 

SGD algorithm, the precision-recall curve, illustrating the 

trade-off between precision and recall across varying 

classification thresholds, was employed alongside the average 

precision metric for each class. The insights gleaned from the 

analysis of the precision-recall curves for SGD models are 

meticulously presented in Figure 3. 

The graphical representations elucidated in these precision-

recall curves corroborate the earlier findings, underscoring the 

inability of the three SGD models to accurately classify 

instances of the "DDOS-attack-LOIC-UDP" class. This 

observation is consistent with the previously delineated results 

derived from the class-specific recall and precision metrics. 

In particular, the precision-recall curve for the M3_SGD 

model, when assessed in the context of the "DDOS-attack-

HOIC" class, fails to ascend to the apex of precision, a feat 

achieved by its two counterparts. Additionally, the curve 

pertinent to the "DDOS-attack-LOIC-HTTP" class for the 

M3_SGD model reveals a decrement in precision concomitant 

with an increment in recall, further solidifying the model's 

position as the least efficacious among the SGD classifiers. 

Conversely, the M1_SGD model distinguishes itself 

through superior performance, evidenced by the higher AP 

values across various classes when juxtaposed with the AP 

values of the other two SGD models. Consequently, the 

performance of these models can be hierarchically arranged as 

follows: M1_SGD > M2_SGD > M3_SGD, solidifying 

M1_SGD's standing as the most proficient model within the 

SGD algorithmic framework. 

An examination of the FPR outcomes presented in Table 10 

elucidates the comparative performance of various models, 

revealing discernible trends. The SGDClassifier models 

exhibit a markedly higher FPR across all classes when 

juxtaposed with their RF and XGBClassifier counterparts. 

Specifically, the M3_SGD model manifests exceedingly 

elevated FPR rates for both the Benign and DDOS-attack-

HOIC classes. Conversely, the models M6_RF, M5_RF, 

M8_XGB, and M7_XGB are distinguished by their minimized 

FPR rates. 

 

 
 

Figure 3. Precision_recall curves for SGD models 
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Table 10. The results of the FPR 

 
  M1_SGD M2_SGD M3_SGD M4_RF M5_RF M6_RF M7_XGB M8_XGB M9_XGB 

Benign 3,81E-04 4,01E-04 3,12E-02 1,31E-05 6,57E-06 6,57E-06 6,59E-06 6,59E-06 2,04E-04 

DDOS attack-HOIC 5,46E-04 5,22E-04 4,82E-03 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,01E-06 

DDOS attack-LOIC-

UDP 
4,85E-05 4,57E-05 5,22E-05 1,40E-05 2,52E-05 2,70E-05 2,98E-05 2,42E-05 3,64E-05 

DDoS attacks-LOIC-

HTTP 
1,65E-03 1,67E-03 1,42E-03 2,69E-05 1,89E-05 2,99E-05 6,98E-06 5,98E-06 1,10E-05 

 

Table 11. Runtimes undertaken by the SGD, RF and XGBoost algorithms 

 

Model 
Learning_Period 

(Seconds) 

Validation_Predictive_

Period (Seconds)  

Test_Predictive_Period 

(Seconds) 

Total Execution 

Time (Seconds) 

M1_SGD= SGDClassifier( loss='perceptron'; 

alpha=0,0001; penalty=l2; max_iter=10000) 
45.884 0.336 0.168 46.387 

M2_SGD= SGDClassifier( loss='perceptron'; 

alpha=0,0001; penalty=l2; max_iter=3000) 
47.989 0.389 0.176 48.554 

M3_SGD =SGDClassifier( loss='hinge'; 

alpha=0,0001; penalty=l2; max_iter=1000) 
44.423 0.250 0.172 44.845 

M4_RF= RandomForestClassifier( n_estimators= 

100; criterion= ' entropy';max_depth =None; 

max_features= None) 

4282.952 11.113 7.404 4301.468 

M5_RF= RandomForestClassifier( n_estimators= 

110; criterion= ' entropy';max_depth =None; 

max_features= ' log2 ') 

1641.709 14.140 9.280 1665.129 

M6_RF= RandomForestClassifier( n_estimators= 

100; criterion= ' gini';max_depth =None; 

max_features= ' sqrt ') 

1231.130 12.946 8.642 1252.718 

M7_XGB=XGBClassifier( max_depth=3; 

learning_rate= 0,3; min_child_weight= 5; gamma 

= 0; reg_alpha= 0,1; reg_lambda = 0,01; 

n_estimators = 80) 

538.529 0.660 0.450 539.638 

M8_XGB=XGBClassifier( max_depth=6; 

learning_rate= 0,2; min_child_weight= 5; gamma 

= 0,2; reg_alpha= 0; reg_lambda = 0,1; 

n_estimators = 80) 

541.611 0.808 0.542 542.962 

M9_XGB=XGBClassifier( max_depth=3; 

learning_rate= 0,1; min_child_weight= 1; gamma 

= 0; reg_alpha= 0; reg_lambda = 1; n_estimators 

= 100) 

681.492 0.792 0.526 682.810 

In the context of the DDOS-attack-HOIC class, it is 

noteworthy that the models M6_RF, M5_RF, M8_XGB, 

M7_XGB, and M4_RF achieved a perfect classification with 

zero FPs. As for the "DDOS-attack-LOIC-UDP" class, a low 

FPR was consistently maintained across all classifiers. With 

respect to the "DDoS-attacks-LOIC-HTTP" class, the models 

M8_XGB and M7_XGB outperformed their counterparts, 

achieving the lowest FPR rates, followed by M9_XGB, 

M5_RF, M4_RF, and M6_RF. In stark contrast, the SGD 

models M3_SGD, M1_SGD, and M2_SGD exhibited 

significantly higher FPR rates. 

A consolidated ranking of the models based on their FPR 

performance across all classes yields the following order, from 

lowest to highest FPR: M8_XGB < M7_XGB < M5_RF < 

M4_RF < M6_RF < M9_XGB < M1_SGD < M2_SGD < 

M3_SGD. 

These empirical results corroborate the theoretical 

expectations associated with the deployed algorithms.  

Subsequent analyses focusing on runtime for the processes 

of learning, validation, and testing, as delineated in Table 11 

and Figure 4, reveal that the RF models necessitate longer 

execution times relative to the other classifiers. This is 

particularly evident in the M4_RF model during the learning 

phase, which required a substantial 4282.952s. In stark 

contrast, the SGD models epitomized efficiency, with the 

M3_SGD model necessitating a mere 48.554s, the highest 

within its category. On average, the runtime of RF models was 

approximately 52 times greater than that of the SGD models. 

XGBoost models also exhibited longer runtimes than SGD 

models, albeit to a lesser extent, averaging around 13 times 

longer. 

 

 
 

Figure 4. Execution times achieved by different models 

 

XGBoost emerges as the most proficient model in 

minimizing FPs, attributed to its capacity for loss function 

optimization through regularization and gradient enhancement 

techniques. This optimization facilitates enhanced class 
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discrimination and a consequent reduction in classification 

errors. While RF also demonstrates effectiveness, its 

performance is somewhat constrained by the inherent 

variability associated with aggregating a multitude of trees. 

SGDClassifier, despite its computational efficiency, is more 

susceptible to noisy data, which can culminate in a higher 

incidence of FPs due to its reliance on a stochastic 

optimization process, susceptible to data variability. 

 

6.3.1 Discussions 

In this study, the efficacy of anomaly-based NIDS has been 

evaluated with a focus on enhancing the detection of malicious 

activities within computer networks, predominantly pertaining 

to DDOS attacks. Emphasis has been placed on ensuring the 

accurate identification of real intrusions, the precise prediction 

of positive instances, the minimization of erroneous alerts for 

benign activities, and the expedited detection of intrusions by 

NIDS. 

Experiments were conducted across three distinct families 

of ML algorithms: XGBoost, RF, and SGD. BO was employed 

with the dual objectives of identifying the optimal 

hyperparameters for these algorithmic families to enhance 

NIDS effectiveness against DDOS attacks, and determining 

the most proficient model from the nine under consideration. 

Table 12 provides a comprehensive ranking of the models, 

arranged in ascending order based on performance metrics, 

ranging from the most to least proficient. 

The results elucidate that the optimized M8_XGB model, 

configured with the hyperparameters (max_depth=6; 

learning_rate=0.2; min_child_weight=5; gamma=0.2; 

reg_alpha=0; reg_lambda=0.1; n_estimators=80), 

demonstrated superior performance, nearing a value of 1 

across all classes. This model was observed to outperform its 

counterparts significantly. 

 

Table 12. Performance ranking of XGB, RF and SGD models with respect to evaluation metrics 

 
Metrics M1_SGD M2_SGD M3_SGD M4_RF M5_RF M6_RF M7_XGB M8_XGB M9_XGB 

Accuracy 7 8 9 3 4 5 2 1 6 

Balanced_accuracy 8 9 7 6 4 5 2 1 3 

MCC 7 8 9 3 4 5 2 1 6 

Macri_f1_score 8 9 7 3 5 6 2 1 4 

Precision, Recall, f1_score 

and PR_curve_AP 
7 8 9 3 5 6 2 1 4 

FPR 7 8 9 4 3 5 2 1 6 

Final ranking 7 8 9 3 4 6 2 1 5 

 

In terms of performance evaluation metrics, a hierarchy of 

model proficiency was established. The optimized XGBoost 

models, M8_XGB and M7_XGB, were identified as the front-

runners, followed closely by the optimized RF models M4_RF 

and M5_RF. Subsequent positions were occupied by the 

models employing default parameters: M9_XGB and M6_RF. 

The optimized models M1_SGD and M2_SGD were 

positioned next, with the M3_SGD model concluding the 

ranking. 

This evaluation has facilitated the verification of the 

superior performance of models utilizing hyperparameters 

derived from BO, in comparison to their default parameter 

counterparts, within their respective algorithmic families. 

In terms of the temporal efficiency of the intrusion detection 

processes (encompassing learning, validation, and testing 

phases), it has been observed that the SGD models boast the 

shortest execution times, with durations not exceeding 50 

seconds. Conversely, the RF models require substantially 

more time, with average execution times exceeding 40 minutes. 

Through the evaluative processes undertaken in this study, the 

SGDClassifier has emerged as the most rapid model, albeit 

with diminished efficacy in identifying the DDOS attack-

LOIC-UDP class in comparison to the XGBoost and RF 

models. XGBoost, on the other hand, has demonstrated 

exceptional performance across all categories. It is noteworthy 

that both XGBoost and RF achieve near-perfect performance 

across all classes, albeit at the expense of significantly 

extended execution times. A critical observation is that the 

performance advantage of XGBoost over RF is not as 

pronounced as the disparity in execution times between the 

SGDClassifier and the other two models. Consequently, a 

balanced decision between performance and execution time 

necessitates careful consideration, contingent upon the 

specific priorities of the application in question. Should 

optimum performance be of paramount importance, with 

execution time being a secondary consideration, XGBoost 

unequivocally stands out as the preferable choice. Conversely, 

if rapid response times are imperative, and a slight 

compromise in performance, particularly in detecting the 

DDOS attack-LOIC-UDP class, is acceptable, the 

SGDClassifier emerges as the optimal solution. In real-time 

scenarios where promptness is of the essence, the 

SGDClassifier provides an immediate and efficient response. 

Consequently, a hybrid strategic approach, meticulously 

balancing performance and response time, may be warranted, 

contingent upon the contextual requirements. In such a 

scenario, the SGDClassifier could serve as the preliminary line 

of defense, ensuring swift initial responses, followed by more 

comprehensive analyses conducted by slower models such as 

XGBoost or RF when time permits. 

In the context of this study, where precision in intrusion 

detection is prioritized without compromising on detection 

times, the XGBoost M8_XGB model stands out, delivering 

outstanding performance and maintaining a low FP rate. 

Moreover, with an execution time of 9 minutes, this model 

demonstrates efficiency, especially considering the substantial 

size (8,997,323 instances) and the imbalanced nature of the 

dataset. 

 

 

7. CONCLUSIONS 

 

In the presented research endeavor, the amalgamation of the 

XGBoost algorithm for the selection of pivotal features and 

BO for hyperparameter tuning has been employed, with the 

ultimate objective of augmenting the efficacy of ML 

classifiers such as XGBoost, RF, and SGD. The intention 

behind this hybrid approach is to instantiate an IDS that is both 

precise and expedient. 

The CSE-CICIDS2018 DDOS attacks dataset has been 
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utilized as the evaluation benchmark for these methodologies. 

The process of feature selection culminated in the 

identification of 20 salient features, while BO, guided by the 

"Roc_auc_score" and "Average_precision_score" objective 

functions, facilitated the determination of the most optimal 

hyperparameters for the algorithms in question, in accordance 

with these metrics. 

This study aimed to assess whether the aforementioned 

algorithms, when endowed with optimized hyperparameters, 

could surpass the performance benchmarks set by reference 

models, defined herein as models operating under the 

algorithms’ default hyperparameters. The evaluation metrics 

encompassed a comprehensive suite, including Accuracy, BA, 

MCC, macro_F1_score, Precision, Recall, F1-score, FPR, 

Precision-Recall Curve with AP Score, and the execution 

times of each model. The results unequivocally indicated that 

the optimized models outperformed the reference models 

across all algorithm types. Furthermore, the optimized 

XGBoost models consistently emerged as the top performers 

in the comparative analysis of all models. 

In terms of computational efficiency, the SGD algorithms 

were found to be the most rapid. The experimental findings 

underscored the benefits of employing a reduced feature 

vector, particularly in terms of diminished model complexity 

and enhanced accuracy and F1 score. Moreover, the 

application of BO was found to contribute substantially to 

performance enhancement. 

It is acknowledged that the scope of BO in this study was 

confined to two objective functions. Future research endeavors 

could potentially explore additional metrics to ascertain the 

optimal hyperparameter configuration for this specific dataset. 

Although evaluation metrics that accorded equal importance 

to all classes in the dataset were employed, the issue of class 

imbalance was not addressed. Future investigations could 

incorporate oversampling and downsampling techniques to 

mitigate class imbalance and assess the performance of the 

proposed approach on a balanced dataset. Oversampling, by 

increasing the prevalence of minority class examples, can 

enhance the model's ability to detect these instances, thereby 

reducing class bias and bolstering generalization. Conversely, 

undersampling, by diminishing the majority class size, can 

facilitate a more focused model approach to the minority class, 

thereby balancing precision and recall. 

Further research avenues could also explore additional 

feature selection methodologies and extend the range of 

algorithms under consideration to include a broader spectrum 

of machine and deep learning approaches. 
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