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The task of designing and training a 3D convolutional neural network (CNN) from scratch 

poses significant complexity, necessitating high levels of expertise to achieve a 

performance that rivals the state-of-the-art. To circumvent this, fine-tuning of neural 

networks has emerged as a formidable approach. This study focuses on the utilization of 

Video ResNet, a state-of-the-art architecture known for its proficiency in capturing 

spatiotemporal patterns from video data. A novel approach is proposed for the fine-tuning 

of the 3D CNN model (Video ResNet) that involves altering activation functions over 

epochs while maintaining the network weights and biases consistent. This dynamic 

approach was assessed under various hyperparameters, yielding encouraging results. 

Contrary to most studies that employ down-sampling of the temporal sequence to minimize 

memory requirements, this study introduces a sliding window-based approach to evade 

down-sampling and prevent potential information loss. The proposed methodology yielded 

an accuracy of 87.25% in the fight/non-fight classification on the RWF-2000 dataset, 

marginally surpassing the performance of the state-of-the-art model. The proposed method 

not only facilitates the development of a real-time video incident detection model but also 

addresses the issue of overfitting during training through the incorporation of adaptive 

dynamic activation functions. This study thus contributes to the ongoing advancements in 

the field of neural network fine-tuning and video data classification. 
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1. INTRODUCTION

Nowadays, the cost of CCTV video surveillance systems 

has been reduced significantly due to which it is frequently 

being deployed at many places like smart cities, hospitals, 

schools, restaurants, stadiums, shopping malls and theaters etc. 

The worldwide utilization of CCTV surveillance systems in 

public and private places has enabled researchers to analyze a 

huge volume of data to ensure automatic monitoring. In order 

to maintain a good and peaceful environment around the 

surveillance area, abnormal activities like fighting must be 

detected and reported in real time. Automatic detection of 

fights for rapid actions is very significant and can efficiently 

assist the concerned departments.  

3D convolutional neural networks (3D CNNs) [1] represent 

a type of neural network that conducts convolutions in three 

dimensions across the spatial and temporal dimensions of a 

video volume. This network architecture excels at discerning 

patterns within spatiotemporal data. Given that videos 

inherently encompass spatiotemporal characteristics, the 

application of 3D CNNs proves particularly apt for effectively 

capturing and analyzing such data. 

After Alexnet [2], deep neural network-based learning has 

provided a great motivation in the field of still-image 

understanding. With a regular advancement driven by 

profound design and innovations like spatial filters [3], multi-

scale convolutions [4], skip connections [5], residual learning 

[6], dropout layer [7] etc. has established the deep neural 

network-based image understanding. Fine tuning a 

benchmarked deep neural network architecture [8] has given a 

big boost to the field of computer vision and this technology 

is helping to solve many real-life problems like face 

recognition [9], MRI image classification [10], malign cell 

detection and segmentation [11, 12], object segmentation [11] 

etc. However, video understanding has not yet taken the 

Alexnet momentum. The reason is modeling of spatiotemporal 

data is a big challenge. While some deep neural networks like 

I3D [13] and Video ResNets [14] match the state-of-the-art 

results on action recognition datasets like UCF-101 [15], 

HMDB51 [15], Kinetics and Sports-1M [15]. 

The temporal sequence length of fight/non fight cannot be 

determined because of variability and non-deterministic nature 

of fight duration. In some cases, fights might happen slowly 

however in some cases it might be fast [16]. So, it is very 

important to examine various sequence lengths and find out 

the most appropriate sequence length for an action. In our 

experimental setup we have analyzed different sequence 

lengths. In this paper, we will fine tune the pretrained Video 

ResNet network by dynamically adapting the activation 

functions after some random epochs during the model fitting 
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for the automatic fight detection on recently published 

benchmark fight/non-fight dataset RWF-2000 [17] which is 

somehow different as compared to traditional model training 

in which activation function remains constant during whole 

training process, however we will fine tune the temporal 

sequence length of video frames and learning rate using 

traditional technique. The rest of the manuscript is organized 

as follows: 

Section 2 discusses the related works, highlighting the state-

of-the-art in the domain of violence detection. Section 3 

provides the background and the discussion about the various 

existing machine learning approaches. Section 4 provides the 

proposed approach and discusses the methodology and 

algorithm used. Section 5 discusses the result and provides the 

future scope. 
 

 

2. RELATED WORKS 

 

A number of open-sourced video dataset has been published 

for automatic fight/non-fight detection from video like hockey 

dataset, UCF-101 dataset [15] etc. But none of them have 

sufficient data for video analysis on fight/non-fight. Cheng et 

al. [17] has published RWF-2000 (RealWorldFight) that has 

1000 fight and 1000 non-fight video clips which are divided 

into two mutually exclusive train and validation sets to avoid 

data leakage. Ming Cheng et al. has also proposed a state-of-

the-art technique for automatic fight/non-fight detection. They 

have proposed a five-block model in which two blocks run 

independently to extract spatiotemporal features. In the first 

block, there are four 3D convolutional layers connected back-

to-back which take an RGB image as input. Second block is 

similar to the first block except it takes optical flow channels 

in place of the RGB image. In the third block, RGB 

spatiotemporal features are fused with optical flow features. 

The fourth block is a merging block, it merges outputs from 

the previous block and performs 3D convolution. The last 

block contains fully connected layers. The accuracy of this 

method is 87.25% on the validation dataset. Since the number 

of frames in 5 seconds clip with frames rate 30 is 5×30=150, 

Cheng et al. [17] have decided to down sample the frame 

length of 150 to avoid memory and computational overflow. 

The study [17] have skipped frames at regular intervals to 

down sample frame sequence of 150 to frame sequence of 64. 

Islam et al. [18] have proposed a two-stream neural network 

for automatic violence detection from video using separable 

convolutional neural network. They have proposed a separable 

convolutional LSTM layer which is a reconstruction of 

ConvLSTM, in this setting each gate of ConvLSTM is 

replaced by a depthwise separable convolutional layer. In the 

first stream, background suppressed frames are passed to the 

CNN layer and SepConvLSTM layer. In the second stream, 

frame differences are passed to the CNN layer followed by 

SepConvLSTM layer. These two streams are connected with 

a fusion block that performs the fusion operation on the two 

stream features. The CNN layer here is typically a pre-trained 

truncated MobileNet. In model training, Islam et al. [18] have 

suggested uniform sampling to reduce 150 frame sequence 

length to 32 frame sequence length. The sampling of higher 

temporal sequence to lower temporal sequence length helps in 

reducing hardware resource requirement for the training as 

well as inference. 

Ullah et al. [19] have proposed an AI assisted IoT based 

video surveillance system to detect violence for Industrial IoT. 

The study [19] focused on light weighted model so that the 

model can be deployed on edge devices. Ullah et al. have 

proposed object detection-based technique to identify the 

objects that can be used in violence they call them the 

suspicious objects and the model detects the human presence 

in the frame with suspicious objects. If humans and suspicious 

objects coincide in a frame then an alert is generated and sent 

to the corresponding alert sensor. The authors [19] have 

selected YoloV3 as the base model for object detection and a 

subset of ImageNet dataset is used to fine tune the YoloV3 

model on the subset dataset. This model didn’t consider the 

temporal sequence for activity detection. Since the list is too 

long, we are taking a quick walk through of some recent 

violence detection techniques. 

The authors [19] proposed an AI based violence detection 

system for the constrained IoT devices. They claimed to 

improve the accuracy by 3.9% as compared with the existing 

state-of-the-art detection methods. The authors [20] conducted 

a literature review of the existing violence detection methods. 

They primarily focused on the deep sequence learning 

approaches. The authors [18] proposed a two-stream deep 

learning architecture using “Separable Convolutional LSTM 

(SepConvLSTM)” and pre-trained MobileNet for taking 

background suppressed frames as inputs and processing them 

afterwards. The authors [21] proposed to improve the accuracy 

of the existing violence detection approaches by introducing a 

new feature called “Histogram of Optical flow Magnitude and 

Orientation (HOMO)”. The feature is used to calculate the 

optical flow between the frames. In the study [22], the authors 

proposed an approach for violence detection in a real-time 

scenario of a football stadium. They have used the BiLSTM 

mechanism for training the model and claimed to achieve an 

accuracy of 94.5% on hockey dataset. The authors [23] 

proposed a deep learning approach for detecting abnormal user 

behavior in the input video streams. They claim to achieve a 

detection accuracy of more than 95%. 

In almost all studies, authors have considered a complete 

video clip which is of duration 5 seconds as an input to the 

model. 

 

 

3. BACKGROUND 

 

This section provides a background of the approaches used 

in the proposed mechanism. We have used the RWF-2000 

dataset [17] of a large video database having 2000 video clips 

of 5-seconds each at 30 fps. This is a complete balanced 

dataset containing 1000 videos from fight class and 1000 video 

for non-fight class. Further, the videos are divided into two 

sets: the train set and validation set in the ratio of 80-20. 
 

3.1 Activation functions 
 

Activation functions can show complex connections that 

don't follow a straight line [24]. It can learn not only from 

tabular data, but also from data about images and speech [24]. 

For biases and weights in a deep neural network to work in a 

complex way, they need to have functions. With the activation 

function, back propagation is now possible because the 

mistake values from the gradients can be used to change the 

weights and biases. These functions are monotonic, which 

means that the model's error surface will always be convex. 

 

3.1.1 Rectified Linear Unit (ReLU) 

ReLU is an activation function introduced by He et al. [6], 

which has strong biological and mathematical underpinning. 
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From a biological perspective, ReLU's behavior is loosely 

inspired by the firing behavior of biological neurons. In real 

neurons, there exists a threshold below which the neuron 

remains inactive, and beyond which it becomes active and 

produces an output signal. ReLU mimics this concept by 

outputting zero for all negative inputs and the input value itself 

for all positive inputs. This "rectification" process, where 

negative values are set to zero, reflects the idea that neurons 

tend to be inactive until a certain level of excitation is reached. 

Figure 1 displays the plot of the Rectified Linear Unit (ReLU) 

function. 
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3.1.2 Leaky ReLU 

The Leaky ReLU Activation Function (LeakyReLU) is very 

similar to the ReLU Activation Function with one change. 

Instead of sending negative values to zero, a very small slope 

parameter is used which incorporates some information from 

negative values. This activation function was first introduced 

by Maas et al [25]. Figure 1 shows the graph for Leaky ReLU 

function. 

3.1.3 Exponential Linear Unit (ELU) 

An ELU activation layer performs the identity operation on 

positive inputs and an exponential nonlinearity on negative 

inputs. Figure 2 presents a graphical representation that 

elucidates the Exponential Linear Unit (ELU) function and its 

corresponding derivative. 
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Figure 1. Relu vs Leaky ReLU activation function [26] 

Figure 2. ELU vs CELU activation function [26] 

3.1.4 Continuously Differentiable Exponential Unit (CELU) 

When alpha is not 1, ELU is not differentiable for x=0. 

“CELU”, is simply the ELU where the activation for negative 

values has been modified to ensure that the derivative at x = 0 
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for all values of α is 1 [27]. Figure 2 presents a visual 

representation of the CELU function and its derivative, 

providing a graphical illustration of their characteristics. 
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3.2 BiLSTM 

Bidirectional Long Short-Term Memory (BiLSTM) is a 

type of recurrent neural network architecture that incorporates 

both forward and backward information flows to capture 

contextual dependencies in sequential data. BiLSTM networks 

are well-suited for tasks involving sequences, as they enable 

the model to consider both past and future information when 

making predictions. This bidirectional nature enhances the 

network's ability to understand the context and relationships 

within the input sequence, making it particularly effective for 

tasks like natural language processing, speech recognition, and 

time series analysis. Using Bidirectional Long Short-Term 

Memory (BiLSTM) networks for processing video data can be 

challenging due to the multi-dimensional nature of videos, 

leading to issues in reshaping data, high computational 

demands, difficulty in capturing long-range dependencies, 

limited temporal depth, and the complexity of relationships 

between visual content and temporal aspects. Specialized 

architectures like 3D CNNs, temporal convolutions, and 

hybrid models are often preferred for effective video data 

processing. 

3.3 2Plus1D ResNet (Video ResNet) 

2Plus1D ResNet [28] is a spatiotemporal 3D convolutional 

neural network that clearly separates a 3D convolution into a 

2D spatial convolution and a 1D temporal convolution that are 

done one after the other. Figure 3 provides a visual 

representation of the operation of a 2-plus-1-dimensional 

convolutional neural network (CNN). Here, the question is: 

what's the point of breaking things down? First, there are two 

major benefits: an extra nonlinear correction between these 

two operations, which essentially doubles the number of 

nonlinearities compared to a network using full 3D 

convolutions for the same number of parameters and lets the 

model learn more complex functions. The other possible 

benefit is that the decomposition makes it easier to optimize. 

In practice, this means that both the training loss and the 

validation loss are smaller. 

Figure 3. 2Plus1D convolution [29] 

3.4 Fine tuning neural network model 

Fine-tuning is an example of how transfer learning can be 

used. Fine-tuning is a process that takes a model that has 

already been trained for one task and changes it so that it can 

do a second task that is similar [8, 9]. In the process of fine 

tuning a previously trained model with accepted level of 

performance is taken and the one or more layers including 

classification layer is added. The weights and biases of 

previously trained models are copied to the new network. 

Figure 4 shows the transfer learning and fine-tuning process. 

Figure 4. Transfer learning and fine tuning a CNN 

classifier 

4. PROPOSED APPROACH

The core component of an artificial neural network is the 

neuron, which is represented by a summation function and a 

filter which is followed by a cutoff function commonly known 

as activation function. These neurons are arranged into layers 

through which the information flows, neurons in one layer are 

connected with neurons in another layer. The decision of firing 

a neuron is taken by the activation function associated with the 

neuron. And depending upon how we want to train the neural 

network model, these activation functions enable neural 

networks to learn complex decision boundaries. CNNs have 

had an undeniable effect on computer vision because they can 

learn high-capacity models from big, annotated training sets. 

One of the most interesting things about them is that they can 

move information from a big source dataset to a smaller target 

dataset. Most of the time, this is done by fine-tuning a fixed-

size network based on new goal data. Fine-tuning is a process 

that occurs after an initial round of training on a base dataset 

or a pre-trained model [8]. It involves adjusting the model's 

parameters to improve its performance on a new, related task 

or dataset. The goal is to leverage the knowledge gained from 

the base model and transfer it to the new task, thus saving time 

and resources compared to training a new model from scratch. 

Generally, during the fine tuning the architecture of the 

neural network remains constant during the entire training 

process. Only the weights and biases are updated during each 

epoch. The training process is being stopped when we find that 

there is no more improvement or chance of improvement in 

validation error or accuracy. In order to achieve further better 

performance of the model we require to vary different 

parameters like learning rate, optimizer and inclusion of more 

layers etc.  Till now, we have not found any well-known work 

in which the activation functions of the layers of the neural 

network have been changed dynamically during the model 

training in between epochs. 

As we know that activation functions have a great role in 

the training of the deep neural network. We have a number of 
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activation functions such as sigmoid, tanh, relu, leaky relu, elu, 

celu, relu6, linear, swish etc. These activation functions can be 

grouped into different categories based on their mathematical 

formulation as for example we can group relu, elu, celu, leaky 

relu and relu6 in one group because all of them have same 

curve for 𝑥 0 and minor change for x< 0. Due to the inherent 

similarity of these activation functions, the substitution of one 

for another during the runtime of model training will yield 

minimal alteration to neural network weights and biases. 

Although minor fluctuations may occur in these weights and 

biases, they can contribute to stabilizing the training process 

and mitigating overfitting tendencies. In this research, we 

meticulously investigate the impact of dynamically adjusting 

activation functions throughout the training epochs. 

Specifically, we conduct this analysis on a 3D CNN-driven 

neural network known as Video ResNet, utilizing the RWF-

2000 dataset for detecting instances of fight versus non-fight 

scenarios.Algorithm given below is the proposed approach. 

4.1 Algorithm 

a. Initialization

i. Load Dataset

ii. Load pre-trained model

iii. Initialize number of epochs and convergence criteria

iv. Select a set of hyper-parameters

v. Initialize number of epochs

vi. Select convergence criteria

b. Add classification head to the pre-trained model

c. Make a pool of activation functions

d. Locate activation layers in the pre-trained model

e. Training process

i. Prepare sliding window-based training data

ii. Select sequence length (4/8/12)

iii. For epoch 1 to N do

I. Do model training

II. After some epoch if validation loss increases change the

activation function 

iv. Stop if convergence criteria are satisfied

4.2 Experimental setup 

In this section, we are going to explain the experimental 

setup. 

4.2.1 Dataset 

We have used the RWF-2000 benchmark dataset. The 

details of the RWF-2000 dataset have been described in the 

related work section. 

4.2.2 Network architecture 

We have used a standard pre-trained 2Plus1D Video ResNet 

model from torchvision library and included a binary 

classification layer at the head of the pre-trained model. 

4.2.3 Activation functions 

We have used a pool of activation functions which have 

been assigned to the different activation layers dynamically 

and randomly during the training of the network. Following 

activation functions are used in this experimental setup. 

a.) ReLU,   

b.) Leaky ReLU, 

c.) CELU, and  

d.) ReLU6 

4.2.4 Hyper-parameters 

Temporal Sequence Lengths Activation Functions 

4, 6, 8, 10, 12 
ReLU, Leaky ReLU, ReLU6, 

CELU 

4.2.5 Details of infrastructure resources used 

i. CPU: Intel(R) Xeon(R) CPU @ 2.00GHz

ii. OS: Ubuntu 20.04.5 LTS

iii. RAM: 16 GB

iv. GPU: Tesla T4 16 GB

v. Python Version: 3.8.10

vi. Libraries: Pytorch, Scikit-learn, Numpy, Pandas,

vii. Cuda Version: V11.2.152, This resource is accessible

through the free tier of Google Colab, granting users the 

opportunity to utilize a GPU for their computations. 

5. RESULTS AND EVALUATION IMPACT ON FINE-

TUNING PROCESS

In this section, we are going to explain the experimental 

observation. Since, the generalization and performance of the 

model are evaluated on the validation dataset. Hence, we will 

give our primary attention towards validation error and 

accuracy. Table 1 presents the evolution of validation loss and 

accuracy over a transitional period across various sequence 

lengths. Table 2 displays the best achieved validation error and 

validation accuracy attained during the training process. Table 

3 showcases a performance comparison between the proposed 

method and the current state-of-the-art approach on validation 

data.

Table 1. Transition table showing validation loss and validation accuracy change during transition 

Sequence Length Activation Function Transition Validation Loss Transition Validation Accuracy Transition 

4 

CELU→Leaky Relu 0.773→0.475 71%→78.5% 

Leaky ReLU→Relu 0.78→0.601 79.25%→82% 

ReLU→Relu6 0.911→0.605 81%→84.5% 

8 

CELU→Leaky Relu 0.794→0.68 73%→79.25% 

Leaky ReLU→Relu 1.027→0.936 79.25%→82.5% 

ReLU→Relu6 0.931→0.627 80.25%→85.5% 

12 

CELU→Leaky Relu 0.726→0.612 78.25%→80.75% 

Leaky ReLU→Relu 0.843→0.497 81.25%→84.25% 

ReLU→Relu6 0.514→0.418 83.5%→85.5% 

1225



Table 2. Best validation error and validation accuracy achieved during training 

Sequence Length Activation Function Validation Loss Validation Accuracy 

4 

CELU 0.5476 76.75% 
Leaky ReLU 0.7093 81% 

ReLU 0.5552 84.25% 
Relu6 0.9475 82.25% 

8 

CELU 0.8745 80.25% 
Leaky ReLU 0.6522 83.75% 

ReLU 0.5044 85.5% 
Relu6 0.8255 84.75% 

12 

CELU 0.5258 82.5% 
Leaky ReLU 0.4873 85.5% 

ReLU 0.3945 87.75% 
Relu6 0.6235 86.25% 

Figure 5. For sequence length 4, decrease in validation loss during transition from one activation to another activation 

Figure 6. For sequence length 8, decrease in validation loss during transition from one activation to another activation 

Figure 7. For sequence length 12, decrease in validation loss during transition from one activation to another activation 
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Table 3. Performance comparison between state-of-the-art 

and proposed method on validation data 

Method Validation Accuracy 

State-of-the-art 87.25% 

Ours 87.75% 

When analyzing the experimental results, we have noticed 

following observations: 

i. Upon careful analysis of Figure 5, Figure 6, and Figure 7,

a notable observation emerges: there is a substantial rise in 

training loss when the activation function is altered between 

the two epochs, as opposed to maintaining a consistent 

activation function throughout. 

ii. Another interesting observation can be made from Figure

5, Figure 6, and Figure 7. When the activation function is 

changed to a similar alternative (with a slight mathematical 

variation, like moving from ReLU to Leaky ReLU) between 

two epochs, there is a significant decrease in the validation loss. 

This reduction is especially noticeable when the model 

training shows signs of overfitting. This finding suggests that 

instead of retraining an overfitted model from the beginning, a 

straightforward adjustment of the activation function and 

training for a few epochs can save time and effectively 

improve the model's regularization. 

iii. An interesting observation can be made from Figure 5,

Figure 6, and Figure 7. If the consecutive activation functions 

have a significantly different mathematical intuition, changing 

the activation function between epochs will lead to an increase 

in both training and validation error. 

iv. Temporal sequence length has a significant impact in the

performance of the Video Classification. More the sequence 

length the higher the accuracy and much higher the memory 

requirements. However, we have not experimented with long 

sequences (more than 12) due to memory constraint. 

v. Through a comprehensive examination of Table 4, it

becomes evident that the model consistently exhibits a 

harmonious and balanced performance across sequence 

lengths of 4, 8, and 12. This observation is reinforced by the 

consistent and equitable distribution of true positives, false 

positives, true negatives, and false negatives. 

vi. Furthermore, an observation derived from Table 4 is that

the performance of the model improves as the sequence length 

increases. 

Table 4. Confusion Matrix of the models with 4, 8 and 12 sequence length 

Sequence Length 

4 8 12 

Fight No Fight Fight No Fight Fight No Fight 

Fight 838 162 844 156 887 113 

No Fight 153 847 136 864 132 868 

6. CONCLUSIONS

We have proposed a very simple, effective, and clean 

method to fine-tune the 3d (2Plus1d) CNN-based video 

ResNet to solve spatiotemporal video classification problems. 

we demonstrated that our end-to-end model fine tuning 

approach makes transfer learning easier. the concept of 

replacing activation function dynamically during training 

epoch of neural network models can be used to regularize an 

overfitted model without retraining. in other words, the 

proposed technique can make a rotten model into a fresh 

model with a little bit of effort. the proposed method attempted 

to increase learning capability of a neural network model. we 

believe that our proposed method will open doors in video 

understanding. 

We can make a conclusion stating that training a Video 

ResNet model on the fight/non-fight dataset RWF-2000 

dataset is a promising approach for video classification tasks. 

The 3D CNN architecture factored into 2Plus1D architecture 

is a well-established deep learning neural network that has 

been shown to be effective in video or spatiotemporal 

classification tasks, and the fight/non-fight RWF-2000 dataset 

provides a challenging and diverse set of videos to validate the 

performance of the model. At last, the dynamic adaptation of 

the activation function improves the fine-tuning process. 
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