
Using Natural Language Processing for Programming Language Code Classification with

Multinomial Naive Bayes

Ayman Hussein Odeh1* , Munther Odeh2 , Hussein Odeh1 , Nada Odeh1

1 College of Engineering, Al Ain University, Al Ain 64141, United Arab Emirates
2 Department of Mathematics and Science, Oldenburg University, Oldenburg D-26111, Germany

Corresponding Author Email: ayman.odeh@aau.ac.ae

https://doi.org/10.18280/ria.370515 ABSTRACT

Received: 31 May 2023

Revised: 25 August 2023

Accepted: 1 September 2023

Available online: 31 October 2023

Classifying Programming Languages scripts is very important task for several reasons such

as: automated analysis, code maintenance, code search, quality assurance, and code

understanding; this process is similar to processing natural languages, especially high-level

languages like Python, Java, C#, C, C++, PHP, JavaScript, and others. Leveraging natural

language processing concepts, this research explores the application of the Multinomial

Naïve Bayes (MNB) algorithm to identify and classify programming languages used in

source code files. MNB is a relatively simple and fast algorithm for text classification. The

study utilizes a dataset comprising 12 programming languages and consists of 12,003

samples, totaling 396,090 lines of code. The MNB algorithm is trained on this diverse

dataset, and its performance in classifying programming language source code is evaluated.

The results of the study demonstrate an impressive accuracy rate of 95.09% in accurately

identifying and classifying programming languages. This high accuracy highlights the

effectiveness of the applied NLP techniques, specifically the MNB algorithm, in the

classification task. The findings of this research have significant implications for multi-

programming language editors such as Visual Studio Code and Notepad+ or any

programming editor. With the automatic recognition of programming languages enabled by

this approach, users can conveniently paste source code into these editors, and the system

will automatically identify and classify the programming language being used. This

functionality enhances the user experience and streamlines the coding process, particularly

in multi-language development environments.

Keywords:

artificial intelligent, classification, detection,

classification, machine learning,

programming language

1. INTRODUCTION

With the rapid expansion of software development, the

volume of programming language source code has increased

exponentially. Classifying PL from source is very important

task for several reasons such as: automated analysis, code

maintenance, code search, quality assurance, and code

understanding. Analyzing and understanding this vast

codebase is crucial for software engineers, researchers, and

stakeholders in the software industry. As a result, the

development of efficient and automated methods for

classifying source code has become a significant area of

interest. Traditional approaches to analyzing and classifying

programming language source code are based on each

language's reserved words and the grammatical patterns and

grammar of each language [1]. However, the appearance of

new programming paradigms and languages has posed

challenges to these rule-based methods [2, 3]. To overcome

these limitations, researchers have turned to natural language

processing (NLP) techniques [4], which offer a promising

alternative for programming language analysis.

The classification of programming language source code is

a challenging task that has garnered attention due to its

potential to enhance software development processes. While

existing approaches based on syntactic analysis have provided

some success, they often struggle to accurately classify code

written in domain-specific languages (DSL) [5] is a

specialized PL used for solving problems in a particular

domain or formal system designed to address a specific

problem domain, task, or application area, scripting languages,

or those that do not adhere strictly to traditional syntax rules

[3]. This limitation has motivated researchers to explore the

application of NLP techniques to source code classification.

And also, since PLs, particularly high-level languages, contain

English words and have well-defined structures; they can be

processed similarly to natural languages. This similarity in

structure and style motivated us to conduct this research and

explore the application of artificial intelligence techniques to

classify, detect, and identify texts written in programming

languages. However, there is still a need for comprehensive

studies that evaluate the effectiveness and performance of

NLP-based approaches, particularly when combined with

specific classification algorithms.

This research paper presents a novel approach to

programming language source code classification by applying

natural language processing techniques, specifically focusing

on the Multinomial Naive Bayes (MNB) algorithm [6]. Our

study aims to bridge the gap between NLP and programming

language analysis by treating source code as natural language

text and leveraging statistical algorithms to extract meaningful

features and patterns. By adapting the MNB algorithm to

source code classification, which is a simple and effective

supervised machine learning technique based on probabilistic

methods using Bayesian networks (BN) [7] (BN is a

Revue d'Intelligence Artificielle
Vol. 37, No. 5, October, 2023, pp. 1229-1236

Journal homepage: http://iieta.org/journals/ria

1229

https://orcid.org/0000-0002-3892-6488
https://orcid.org/0009-0006-4964-2495
https://orcid.org/0009-0002-2016-5067
https://orcid.org/0009-0005-8658-6472
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370515&domain=pdf

probabilistic graphical model that represents a set of random

variables and their probabilistic relationships using a directed

acyclic graph); we expect to improve the accuracy and

efficiency of the classification process. Although Naive Bayes

(NB) is known for its simplicity, it can still achieve high

prediction accuracy, even with relatively small datasets. The

NB algorithm comprises three types: Gaussian, Multinomial,

and Bernoulli. The choice of the NB classifier depends on the

distribution of input features and the nature of the problem

being addressed [8]. The Gaussian algorithm is suitable when

the input features follow a normal distribution [9].

This research paper makes two significant contributions.

Firstly, it provides a comprehensive analysis of current

programming language source code classification methods,

emphasizing their limitations and drawbacks. Secondly, it

introduces a novel methodology that integrates NLP

techniques with MNB algorithm to tackle the source code

classification problem. Our approach encompasses

customized preprocessing steps, feature extraction techniques,

and tailored implementation details of the MNB algorithm

specifically designed for programming language analysis.

This study aims to:

•Apply NLP techniques to process PL code, which is similar

to processing NL, to evaluate the performance of MNB

algorithm in accurately.

•Identifying and classifying PL based on diverse dataset, to

compare it with alternative approaches and demonstrate their

effectiveness and advantages.

•As a result of this research, automated code analysis can be

enhanced, software engineering tasks can be facilitated, and

the field can be advanced.

In summary, this research aims to leverage NLP techniques

and the MNB algorithm to improve programming language

source code classification. By addressing the limitations of

existing approaches, we strive to enhance the accuracy and

efficiency of automated code analysis, providing valuable

insights for software engineers and researchers in the field.

This paper is an extending for a paper "Using Multinomial

Naive Bayes Machine Learning Method to Classify, Detect,

and Recognize Programming Language Source Code" [10],

presented at the ACIT2022 Conference.

The paper is organized as follows: Section 2 illustrates the

related works for PL and NLP classification. Section 3

describes the proposed work in detail. Section 4 presents the

achieved results. Section 4 discusses the results of the

proposed work and compares them with existing state-of-the-

art methods. Section 6 presents the conclusion and provides

context for future work.

2. RELATED WORKS

The classification, detection, and recognition of

programming languages from source code are a highly

interesting research topic. For example, DeepSCC research

[11] uses Stack Overflow with 224,445 pairs of source code

samples (snippets) written in 15 programming languages; it

concludes to 87% of (Precision, Recall, and F1-score). The

research [12] achieved an accuracy of 93.48% using Bayesian

learning techniques to detect programming languages from a

dataset consisting of more than 20,000 source code files. In the

domain of design pattern recognition, another study [13]

utilized a convolutional neural network (CNN) to classify 90

programming languages with an accuracy of 90%. The CNN

model was trained on a dataset sourced published in GitHub

repositories., Nagy and Kovari [14] presented a framework to

validate and recognize design patterns in C# source code. They

evaluated their model using various class libraries.

Additionally, Van Dam and Zaytsev [15] employed NLP to

identify the programming language of source code from

GitHub, achieving a 97.5% accuracy for 19 programming

languages. Rahman et al. [16] proposed a source code

classification based on neural networks using long short-term

memory (LSTM), the results of this research shows that the

accuracy of classification is 94.8% based on training its model

using dataset with more than 2000 problems. The Guesslang

Algorithm [17] employed a deep learning model with neural

networks and linear classifiers to classify a vast number of

source code files from GitHub. It achieved a performance

accuracy of 93.45% when tested against 230,000 distinct

source code files. Several software tools were identified for

programming language classification. SourceClassifier [18]

utilized the Naive Bayes classifier to detect the programming

language of a given source code, while SyntaxHighlighter [19],

used in WordPress, leveraged predefined keywords for

language detection and syntax highlighting. Other research

explored alternative approaches. "Application of

computational intelligence for Source Code classification" [20]

employed Evolutionary Algorithms to generate classifiers

based on source code content, yielding improved accuracy and

flexibility. Kiyak et al. [21] combined text and image-based

comparisons to identify programming languages with high

accuracy (over 93.5%) across three datasets. For the Arabic

language, research [22] achieved a classification accuracy of

100% using a deep learning model based on multi-layer

perceptron neural networks. The concept of graph-based

representations for programming language source code was

introduced by Allamanis et al. [23], highlighting their ability

to capture structural and semantic information for

classification purposes. Another research [24] addressed the

challenges of working with noisy and incomplete data,

exploring machine learning and deep learning techniques for

program synthesis and classification. Furthermore,

Hellendoorn and Devanbu [25] investigated the effectiveness

of deep neural networks in modeling programming language

source code, comparing them with traditional machine

learning algorithms. Nye et al. [26] focused on learning

program sketches, using probabilistic models to infer missing

code sections and their relevance to source code classification.

By building upon existing approaches in programming

language source code classification, this research paper aims

to contribute to the field by applying NLP techniques,

specifically the Multinomial Naive Bayes (MNB) algorithm.

The effectiveness of various techniques, including deep

learning, NLP, and graph-based representations, has been

demonstrated in previous studies (as shown in Table 1). A

survey paper [27] provided an overview of machine learning

techniques, such as Naive Bayes, decision trees, and support

vector machines, applied to code classification tasks. These

studies collectively enhance our understanding of

programming language source code classification. The current

research paper seeks to further advance the field by utilizing

NLP techniques, particularly the MNB algorithm, to improve

the accuracy and efficiency of programming language source

code classification.

To address the research gaps and challenges in

programming language source code classification, this

proposed study focuses on utilizing NLP techniques,

1230

specifically the MNB Algorithm. By reviewing the literature

related to this research, we found several gaps, including:

Challenges in classifying programming languages and keeping

abreast of their developments; the need to improve the

accuracy of recognition and classification. And take into

account the variation in code quality. To avoid these gaps

MNB algorithm was used, which creates probability

distributions based on word (bigram) frequencies in the

training data (source code scripts). This enables the algorithm

to classify new source code data by calculating the probability

of belonging to each class. By applying this algorithm, a

diverse dataset consisting of source code files from 12

different programming languages, the research enhances the

classification of PL source code achieving an average

accuracy (95.09%). Furthermore, the proposed study allows

the algorithm to adapt to evolving programming languages by

retraining on relevant datasets. Its adaptability makes it useful

for software developers, as it can automatically classify source

code even for new programming languages.

Table 1. Summary of reviewed works

Reference Methodology Dataset Accuracy

[13] Convolutional Neural Network (CNN) Dataset from GitHub repositories 90%

[12] Bayesian Learning Techniques
More than 20,000 source code files from multiple GitHub

repositories
93.48%

[14]
Framework for PL Design Pattern

Recognition
C# source code with class libraries

great

accuracy

[15] Natural Language Processing (NLP) Source code from GitHub 97.5%

[16] long short-term memory (LSTM) Dataset with more than 2000 problems. 94.8%

[17] Guesslang Algorithm using neural networks
1,900,000 source code files from 170,000 public GitHub

projects
93.45%

[21]
Deep Learning Model comparing text and

image

Three datasets of source code for eight different

programming languages
>93.5%

[23] Graph-based Representations
Programming language source code

GitHub 29 2.9 million LOC
 85.5%

[24]
Machine Learning for noisy and incomplete

data
l100, 000 JavaScript code samples up to 77%

[25] Deep Neural Networks
Programming language source code:

14,317 projects consisting of 2230075 files
 94%

[26] Machine Learning for program sketches
Incomplete code snippets (program sketches)

8000 samples
 95.8%

[11] fine-tuned RoBERTa
Stack Overflow, with 224,445

pairs of code snippets
87%

3. METHOD

All high-level programming languages utilize a language

that closely resembles English, and occasionally, we can

encounter explicit usage of English words within these

languages. Consequently, we can consider all programming

languages as a unified form of English, although with different

structures and styles. The following is the algorithm for using

MNB Machine Learning Method to classify, detect, and

recognize programming language source code. The MNB

method is a relatively simple and fast algorithm for text

classification comparing to other NLP methods. It is a one of

the simplest classification techniques based on supervised

machine learning probabilistic method, but this simplicity

does not make it a pitiable choice, it capable to produce a very

high prediction accuracy even if there are not very large

dataset of samples.

The proposed method was implemented through the

following steps: Collect a dataset of source code files in

various programming languages. Preprocess the data by

extracting relevant features from the source code files, such as

syntax elements and statistical information. Split dataset into

two parts (training 90%, and testing part 10%), then train the

proposed model on the extracted victor of features. Evaluate

the performance of the model on the testing data by calculating

the accuracy, precision, recall, and F1 score. Use the trained

model to classify new, unseen source code files by extracting

features and predicting the programming language of the file.

The general structure of this model shown in in Figure 1, and

its components will be discussed.

Figure 1. The general structure of the proposed model

1231

3.1 Data collection

This module uses file samples written in 12 different PL.

The first step involved cleaning each sample by removing

unnecessary spaces and certain unwanted characters.

Subsequently, the cleaned source code files were combined

into a single array using a Python library known as "numpy,"

which is a highly significant multidimensional array object

[28]. Furthermore, the data corpus comprising all text files was

prepared, with the source of programming language text files

primarily obtained from GitHub, along with additional files

randomly collected from our own projects and those of

students. The dataset utilized to train and test the proposed

model was compiled from a collection of source code samples

written in 12 programming languages, including Java, C++,

C#, Python, HTML, React, XML, PHP, JavaScript, Perl, SQL,

and CSS. The main components of used data set are shown in

Table 2.

Table 2. Dataset components

Dataset Components Value

No Samples 12,003

LOC 396,090

No of PL 12

3.2 Pre-processing

In this step, we will create char bigrams [29] as a vector of

features for the proposed languages. Each language will be

represented using a token consisting of two letters, as

presented in Table 3. Two-letter character bigrams (also

known as 2-grams) play a significant role in NLP tasks due to

their ability to capture certain linguistic, typographical

patterns, morphological analysis, named entity recognition,

and contextual patterns.

Table 3. PL token

No PL Name Token

1 Java ja

2 Python py

3 C# cs

4 C++ cp

5 HTML ht

6 Php ph

7 JavaScript js

8 React re

9 XML xm

10 CSS ss

11 Perl pl

12 SQL sq

3.3 Feature vectors and category (label) input and required

output

The categorization of the script involves assigning a label

for each programming language (PL) using a token consisting

of two letters. This label will be used to represent the

programming language. Additionally, the bigram preparation

process will be carried out. Figure 2 provides an example

illustrating the conversion of Java source code to a bigram

representation through two steps. In preparation for creating

the Bigram chart, it is necessary to define various options for

the API used to generate the Bigram. These options include

the Bigram unit, which can be set as Words or Letters, as well

as options for sentence handling and other cleaning choices, as

illustrated in Table 4. Notably, stop words are not utilized in

this process. The proposed model employs bigrams through

the utilization of a Python library function called

"CountVectorizer." This function facilitates the conversion of

text, specifically source codes, into a matrix or array of token

counts, allowing for further analysis and processing.

In two steps, the sample from the first line in the mentioned

code example (Figure 2) will be processed to produce the

Bigram output. This process is illustrated in Table 5.

Table 4. Bigram options

Step
Bigram

Unit

Sentence

Option
Other Options

1 Word Corpus Mode Output in lower case,

remove space, ., ?, and () 2 Letters Corpus Mode

Figure 2. Java example with its bigram representation

Table 5. Step 2: Two char bigram

Original Text import java.util.Scanner;

Bigram (step 1) importjavautilscanner;

Bigram (step 2)
im, mp, po, or, rt, tj, ja, av, va, au, ut, ti, il, ls,

sc, ca, an, nn, ne, er, r;

The number of letters in the English language, which is used

for writing source code, amounts to 26. Additionally, there are

10 digits and 10 programming language symbols, such as (;,

#, :, _, and $). Therefore, the total number of characters

considered is 46. In this case, the maximum number of

character bigrams can be calculated as 46 multiplied by 46,

resulting in 2116. This representation or corpus can serve as a

general feature for all programming languages. Furthermore,

this model is not restricted by any limitations regarding the

number of words it can handle. It is capable of processing new

words, even if they have never been included in its training, as

long as they consist of the same character bigrams.

3.4 Model training and evaluation

In preparation for training this model, the software program

utilized the (sklearn) API, which was imported for that

purpose. To ensure a more consistent corpus and achieve a

good distribution of programming languages (PL), it is

advisable to employ an extensive dataset. The distribution of

PL in the prepared corpus is illustrated in Figure 3. The

training dataset was compiled from various projects

implemented in languages such as C++, C#, Java, JavaScript,

HTML, Python, PHP, React, Perl, CSS, XML, and SQL. It

consisted of 12,003 files, encompassing over 396,090 lines of

code (LOC). After converting these LOC to Bigram Char, the

dataset contained more than 7,838,301 two-character bigrams,

as depicted in Figure 4, and Table 6 display the detailed data

1232

used as 90% for training, and 10% for testing. Upon

completing the training process, the model will yield the

expected output, which can be assessed through different

forms of accuracy. Notably, an overall accuracy rate of

95.09% was achieved during training, demonstrating the

effectiveness of the model. Consequently, the model is now

prepared for testing and ready to be utilized.

Figure 3. Distribution PL LOC in used corpus

Figure 4. The char bigrams distribution

Table 6. Detailed dataset components

N PL LOC BD Samples

1 C# 35,685 729,520 1,081

2 C++ 35,865 733,159 1,087

3 Py 34,920 711,090 1,058

4 java 36,900 700,972 1,118

5 HTML 34,380 439,300 1,042

6 JavaScript 32,085 757,206 972

7 PHP 35,550 715,938 1,077

8 React 27,315 546,300 828

9 XML 28,035 569,111 850

10 CSS 32,625 662,288 989

11 Perl 26,280 533,484 796

12 SQL 36,450 739,935 1,105

Total 396,090 7,838,301 12,003

3.5 Testing

The testing process comprises several steps, including

reading unknown source code (tested PL Script), pre-

processing, extracting features, employing Machine Learning

(ML) based on MNB, obtaining the expected output, and

verifying the results. To evaluate the model's performance, a

set of new source codes that were not part of the training

dataset was used. Totally, 1458 source code file samples were

selected for testing the MNB model.

Figure 5. Percentage of correctly detected source codes in

different PL

Table 7. Test results

No PL Accuracy Detected Total Tested

1 CPP 95.1% 116 122

2 Csharp 96.0% 96 100

3 HTML 95.6% 172 180

4 Java 97.7% 260 266

5 JavaScript 95.1% 78 82

6 PHP 94.3% 66 70

7 Python 97.2% 210 216

8 React 92.3% 48 52

9 XML 94.9% 112 118

10 CSS 93.3% 84 90

11 Perl 93.5% 58 62

12 SQL 96.0% 96 100

Average Accuracy 95.09%
1396 1458

Total

These testing samples encompassed a range of 12

programming languages. The outcomes of detecting and

recognizing the programming languages are presented in

1233

Figure 5 and Table 7.

4. RESULTS

The data used to test the proposed model is consist of total

number of source code using 12 Programming Languages (PL)

is 1458 samples, the total number correctly detected is 1396

and the average accuracy is 95.09%, this result as test results,

classification report, and confusion matrix are shown in Tables

7-9 respectively. As a summary of the results of this study we

can conclude that the MNB algorithm was able to correctly

classify, detect, and recognize programming language source

code with an accuracy of 95.09%. It achieved high precision,

recall, and F1-score for all of the programming languages, and

it was able to correctly classify most of the programming

language source code. The only languages that it had some

difficulty with were React and Perl. This is likely because

these languages are not as common as the others; samples were

less than other languages, and due the JSX syntax used by

React, which combines JavaScript and HTML codes within

the same code sample leads to complication in tokenization

and vector extraction of code features for the used MNB

algorithm. Also, Perl known as highly flexible language, so the

code can be written in different ways, which leads to high

diversity of coding and make hard to detect by the MNB

algorithm.

Table 8. Classification report

PL Precision Recall F1-Score Support Total Tested

CPP 0.95 0.97 0.96 116 122

Csharp 0.96 0.95 0.96 96 100

HTML 0.96 0.96 0.95 172 180

Java 0.98 0.98 0.98 260 266

JavaScript 0.95 0.98 0.97 78 82

PHP 0.94 0.95 0.95 66 70

Python 0.97 0.96 0.98 210 216

React 0.92 0.93 0.93 48 52

XML 0.95 0.945 0.935 112 118

CSS 0.93 0.94 0.94 84 90

Perl 0.94 0.95 0.935 58 62

SQL 0.96 0.95 0.94 96 100

Accuracy 95.09% 95.54% 95.25% 1396

 Total 1458

Table 9. Confusion matrix

 CPP C# HTML Java JS PHP Python React XML CSS Perl SQL

CPP 113 0 0 0 0 0 0 0 0 0 0 3

C# 0 91 0 0 0 0 0 0 0 0 1 4

HTML 1 1 165 0 0 0 0 1 0 0 2 2

Java 0 0 0 255 0 0 0 0 0 0 0 5

JS 0 0 0 0 76 0 0 0 0 0 0 2

PHP 0 0 0 0 0 63 0 0 0 0 2 1

Python 0 0 0 0 1 0 202 0 0 0 0 7

React 0 0 1 0 0 0 0 44 0 1 1 1

XML 0 0 0 0 0 0 0 0 106 1 0 5

CSS 0 0 0 0 0 0 0 0 0 79 0 5

Perl 0 0 1 0 0 0 0 0 0 0 55 2

SQL 0 0 0 1 0 0 0 0 0 0 3 92

The MNB algorithm emerges as a compelling choice for

classifying, detecting, and recognizing programming language

source code, as indicated by the findings of this study. This

simple and efficient algorithm demonstrates its ability to attain

remarkable accuracy rates, even when confronted with limited

training data. Nonetheless, the study also uncovers instances

of misclassifications, primarily occurring between languages

exhibiting similar syntax or structures.

5. DISCUSSION

The proposed methodology, utilizing the MNB algorithm

and character bigrams, demonstrates its effectiveness in

classifying, detecting, and recognizing programming language

source code, as supported by the study's findings. With an

impressive overall accuracy rate of 95.09% during training,

the model proves its capability to accurately identify and

classify programming languages based on source code. This

achievement has significant implications for language

identification, code analysis, and a language-agnostic

approach in computer science and software engineering.

Notably, the strengths of the proposed methodology lie in its

high accuracy and the use of a diverse dataset encompassing

multiple programming languages. These strengths highlight

the effectiveness of the MNB algorithm and underscore the

relevance of character bigrams as valuable features for

language identification. However, the study acknowledges

specific limitations and suggests potential areas for

improvement. These limitations include a limited range of

considered languages, the challenge of handling new

languages and variants, reliance on character-level features

without capturing higher-level semantics, and the need for

additional evaluation metrics such as recall and F1 score.

In conclusion, the study presents a promising methodology

for programming language identification, but further research

1234

and enhancements are necessary to address the mentioned

limitations and improve the model's applicability in diverse

and evolving code environments. By demonstrating the

effectiveness of the MNB algorithm and character bigrams in

accurately classifying, detecting, and recognizing

programming languages, the study's results contribute to the

field of programming language source code classification. The

achieved overall accuracy rate of 95.09% during training

establishes the strength of the proposed methodology.

Comparison of this research with other research related to

the same topic showed its superiority. For example, research

[9] achieved an accuracy of 93.48% by using the Bayesian

learning algorithms and the GitHub dataset, while research [16]

reached an accuracy of 93.5% by applying deep learning on

three databases that are covering eight programming

languages. The results of this study, with an accuracy of

95.09%, demonstrate competitive performance and suggest

that the MNB algorithm is a good choice for PL source code

classification. Moreover, it acknowledges the limitations and

challenges found in existing literature, such as the difficulty of

classifying numerous programming languages, adapting to

evolving languages, and addressing variations in code quality.

These challenges emphasize the need for further research and

improvements in programming language source code

classification.

The achievement of this research in detecting and

classifying PL addresses some of the limitations and

challenges identified in existing literature. Also using the

MNB algorithm and character bigrams offers a simple and

effective approach to language identification, with practical

implications for various applications in computer science.

6. CONCLUSION

The aim of this research was to investigate the effectiveness

of MNB algorithm as important NLP techniques in

classification and detection programming language from

source code. It evaluated the performance of this algorithm in

accurately categorizing source code and examined the impact

of different feature selection methods on classification

accuracy. In this research, we followed a comprehensive

methodology involving data collection, pre-processing,

feature extraction, model training and evaluation, and testing.

During training, the MNB algorithm demonstrated an

impressive accuracy rate of 98% (for Java) and maintained an

average accuracy of 95.09% during the testing phase. It

exhibited the ability to correctly classify programming

language source code with high precision, recall, and F1-score

for most languages. However, it encountered challenges with

less common languages such as React and Perl. Nevertheless,

it is important to acknowledge the limitations of the study. The

findings may not be applicable to other programming

languages and datasets due to specific selections made. The

quality and size of the training dataset played a significant role

in influencing the performance of the MNB algorithm.

Additionally, the study solely focused on classification and did

not compare the MNB algorithm with other machine learning

or deep learning approaches. The effectiveness of NLP

techniques and the MNB algorithm relies on the quality and

consistency of the source code dataset, and the presence of

poorly structured or unstructured code may impact

classification accuracy. Furthermore, the study did not

consider the dynamic or runtime aspects of programming

languages. In summary, the study suggests that the MNB

algorithm shows promise for programming language source

code classification. However, further research and

consideration of the identified limitations are necessary to

validate its effectiveness across various programming

languages and datasets.

REFERENCES

[1] Phan, A.V., Chau, P.N., Le Nguyen, M., Bui, L.T. (2018).

Automatically classifying source code using tree-based

approaches. Data & Knowledge Engineering, 114: 12-25.

https://doi.org/10.1016/j.datak.2017.07.003

[2] Kahanwal, B. (2013). Abstraction level taxonomy of

programming language frameworks. International

Journal of Programming Languages and Applications,

3(4): 1-12. https://doi.org/10.5121/ijpla.2013.3401

[3] Hussain, Z., Nurminen, J.K., Mikkonen, T., Kowiel, M.

(2022). Combining rule-based system and machine

learning to classify semi-natural language data. In

Proceedings of SAI Intelligent Systems Conference,

Amsterdam, The Netherlands, pp. 424-441.

https://doi.org/10.1007/978-3-031-16072-1_32

[4] Treviso, M., Lee, J.U., Ji, T., et al. (2023). Efficient

methods for natural language processing: A survey.

Transactions of the Association for Computational

Linguistics, 11: 826-860.

https://doi.org/10.1162/tacl_a_00577

[5] Heering, J., Mernik, M. (2002). Domain-specific

languages for software engineering. In Proceedings of

the 35th Annual Hawaii International Conference on

System Sciences, Big Island, HI, USA, pp. 3649-3650.

https://doi.org/10.1109/HICSS.2002.994484

[6] Steele, B., Chandler, J., Reddy, S., Steele, B., Chandler,

J., Reddy, S. (2016). The multinomial naïve bayes

prediction function. Algorithms for Data Science, pp.

313-342. https://doi.org/10.1007/978-3-319-45797-0_10

[7] Sharmila, A., Geethanjali, P.J.I.A. (2016). DWT based

detection of epileptic seizure from EEG signals using

naive Bayes and k-NN classifiers. IEEE Access, 4: 7716-

7727. https://doi.org/10.1109/ACCESS.2016.2585661

[8] Shrivas, A.K., Dewangan, A.K., Ghosh, S. M. (2021).

Robust text classifier for classification of spam e-mail

documents with feature selection technique. Ingénierie

des Systèmes d'Information, 26(5): 437-444.

https://doi.org/10.18280/isi.260502

[9] Ontivero-Ortega, M., Lage-Castellanos, A., Valente, G.,

Goebel, R., Valdes-Sosa, M. (2017). Fast Gaussian Naïve

Bayes for searchlight classification analysis. Neuroimage,

163: 471-479.

https://doi.org/10.1016/j.neuroimage.2017.09.001

[10] Odeh, A.H., Odeh, M., Odeh, N. (2022). Using

multinomial naive bayes machine learning method to

classify, detect, and recognize programming language

source code. In 2022 International Arab Conference on

Information Technology (ACIT), Abu Dhabi, United

Arab Emirates, pp. 1-5.

https://doi.org/10.1109/ACIT57182.2022.9994117

[11] Yang, G., Zhou, Y., Yu, C., Chen, X. (2021). DeepSCC:

source code classification based on fine-tuned RoBERTa.

arXiv preprint arXiv:2110.00914.

https://doi.org/10.48550/arXiv.2110.00914

[12] Khasnabish, J.N., Sodhi, M., Deshmukh, J.,

1235

Srinivasaraghavan, G. (2014). Detecting programming

language from source code using Bayesian learning

techniques. In 10th International Conference, MLDM

2014, St. Petersburg, Russia, pp. 513-522.

https://doi.org/10.1007/978-3-319-08979-9_39

[13] Gilda, S. (2017, July). Source code classification using

neural networks. In 2017 14th International Joint

Conference on Computer Science and Software

Engineering (JCSSE), NakhonSiThammarat, Thailand,

pp. 1-6. https://doi.org/10.1109/JCSSE.2017.8025917

[14] Nagy, A., Kovari, B. (2015). Programming language

neutral design pattern detection. In 2015 16th IEEE

International Symposium on Computational Intelligence

and Informatics (CINTI), Budapest, Hungary, pp. 215-

219. https://doi.org/10.1109/CINTI.2015.7382925

[15] Van Dam, J.K., Zaytsev, V. (2016). Software language

identification with natural language classifiers. In 2016

IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER),

Osaka, Japan, pp. 624-628.

https://doi.org/10.1109/SANER.2016.92

[16] Rahman, M.M., Watanobe, Y., Nakamura, K. (2020).

Source code assessment and classification based on

estimated error probability using attentive LSTM

language model and its application in programming

education. Applied Sciences, 10(8): 2973.

https://doi.org/10.3390/app10082973

[17] Guesslang documentation.

https://guesslang.readthedocs.io/en/latest/contents.html#

deep-learning-model.

[18] Chrislo/Sourceclassifier: Use a Bayesian classifier to

determine source code language.

https://github.com/chrislo/sourceclassifier.

[19] “SyntaxHighlighter Evolved – WordPress plugin |

Wordpress.org.”

https://wordpress.org/plugins/syntaxhighlighter/.

[20] Alvares, M., Marwala, T., de Lima Neto, F.B. (2014).

Application of computational intelligence for source

code classification. In 2014 IEEE Congress on

Evolutionary Computation (CEC), Beijing, China, pp.

895-902. https://doi.org/10.1109/CEC.2014.6900300

[21] Kiyak, E.O., Cengiz, A.B., Birant, K.U., Birant, D.

(2020). Comparison of image-based and text-based

source code classification using deep learning. SN

Computer Science, 1(5): 266.

https://doi.org/10.1007/s42979-020-00281-1

[22] El Atillah, M., El Fazazy, K. (2020). Recognition of

intrusive alphabets to the Arabic language using a deep

morphological gradient. Revue d'Intelligence Artificielle,

34(3): 277-284. https://doi.org/10.18280/ria.340305

[23] Allamanis, M., Brockschmidt, M., Khademi, M. (2017).

Learning to represent programs with graphs. arXiv

preprint arXiv:1711.00740.

https://doi.org/10.48550/arXiv.1711.00740

[24] Raychev, V., Bielik, P., Vechev, M., Krause, A. (2016).

Learning programs from noisy data. ACM Sigplan

Notices, 51(1): 761-774.

https://doi.org/10.1145/2837614.2837671

[25] Hellendoorn, V.J., Devanbu, P. (2017). Are deep neural

networks the best choice for modeling source code? In

2017 11th Joint Meeting on Foundations of Software

Engineering, Paderborn, Germany, pp. 763-773.

https://doi.org/10.1145/3106237.3106290

[26] Nye, M., Hewitt, L., Tenenbaum, J., Solar-Lezama, A.

(2019). Learning to infer program sketches. PMLR, 97:

4861-4870.

[27] Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Vats,

I., Moazen, H., Sarro, F. (2021). A survey on machine

learning techniques for source code analysis. arXiv

preprint arXiv:2110.09610.

https://doi.org/10.48550/arXiv.2110.09610

[28] What is NumPy.

https://numpy.org/doc/stable/user/whatisnumpy.html.

[29] Johnson, D., Malhotra, V., Vamplew, P. (2006). More

effective web search using bigrams and trigrams.

Webology, 3(4): 34.

1236

