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Classifying Programming Languages scripts is very important task for several reasons such 

as: automated analysis, code maintenance, code search, quality assurance, and code 

understanding; this process is similar to processing natural languages, especially high-level 

languages like Python, Java, C#, C, C++, PHP, JavaScript, and others. Leveraging natural 

language processing concepts, this research explores the application of the Multinomial 

Naïve Bayes (MNB) algorithm to identify and classify programming languages used in 

source code files. MNB is a relatively simple and fast algorithm for text classification. The 

study utilizes a dataset comprising 12 programming languages and consists of 12,003 

samples, totaling 396,090 lines of code. The MNB algorithm is trained on this diverse 

dataset, and its performance in classifying programming language source code is evaluated. 

The results of the study demonstrate an impressive accuracy rate of 95.09% in accurately 

identifying and classifying programming languages. This high accuracy highlights the 

effectiveness of the applied NLP techniques, specifically the MNB algorithm, in the 

classification task. The findings of this research have significant implications for multi-

programming language editors such as Visual Studio Code and Notepad+ or any 

programming editor. With the automatic recognition of programming languages enabled by 

this approach, users can conveniently paste source code into these editors, and the system 

will automatically identify and classify the programming language being used. This 

functionality enhances the user experience and streamlines the coding process, particularly 

in multi-language development environments. 
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1. INTRODUCTION

With the rapid expansion of software development, the 

volume of programming language source code has increased 

exponentially. Classifying PL from source is very important 

task for several reasons such as: automated analysis, code 

maintenance, code search, quality assurance, and code 

understanding. Analyzing and understanding this vast 

codebase is crucial for software engineers, researchers, and 

stakeholders in the software industry. As a result, the 

development of efficient and automated methods for 

classifying source code has become a significant area of 

interest. Traditional approaches to analyzing and classifying 

programming language source code are based on each 

language's reserved words and the grammatical patterns and 

grammar of each language [1]. However, the appearance of 

new programming paradigms and languages has posed 

challenges to these rule-based methods [2, 3]. To overcome 

these limitations, researchers have turned to natural language 

processing (NLP) techniques [4], which offer a promising 

alternative for programming language analysis. 

The classification of programming language source code is 

a challenging task that has garnered attention due to its 

potential to enhance software development processes. While 

existing approaches based on syntactic analysis have provided 

some success, they often struggle to accurately classify code 

written in domain-specific languages (DSL) [5] is a 

specialized PL used for solving problems in a particular 

domain or formal system designed to address a specific 

problem domain, task, or application area, scripting languages, 

or those that do not adhere strictly to traditional syntax rules 

[3]. This limitation has motivated researchers to explore the 

application of NLP techniques to source code classification. 

And also, since PLs, particularly high-level languages, contain 

English words and have well-defined structures; they can be 

processed similarly to natural languages. This similarity in 

structure and style motivated us to conduct this research and 

explore the application of artificial intelligence techniques to 

classify, detect, and identify texts written in programming 

languages. However, there is still a need for comprehensive 

studies that evaluate the effectiveness and performance of 

NLP-based approaches, particularly when combined with 

specific classification algorithms. 

This research paper presents a novel approach to 

programming language source code classification by applying 

natural language processing techniques, specifically focusing 

on the Multinomial Naive Bayes (MNB) algorithm [6]. Our 

study aims to bridge the gap between NLP and programming 

language analysis by treating source code as natural language 

text and leveraging statistical algorithms to extract meaningful 

features and patterns. By adapting the MNB algorithm to 

source code classification, which is a simple and effective 

supervised machine learning technique based on probabilistic 

methods using Bayesian networks (BN) [7] (BN is a 
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probabilistic graphical model that represents a set of random 

variables and their probabilistic relationships using a directed 

acyclic graph); we expect to improve the accuracy and 

efficiency of the classification process. Although Naive Bayes 

(NB) is known for its simplicity, it can still achieve high 

prediction accuracy, even with relatively small datasets. The 

NB algorithm comprises three types: Gaussian, Multinomial, 

and Bernoulli. The choice of the NB classifier depends on the 

distribution of input features and the nature of the problem 

being addressed [8]. The Gaussian algorithm is suitable when 

the input features follow a normal distribution [9]. 

This research paper makes two significant contributions. 

Firstly, it provides a comprehensive analysis of current 

programming language source code classification methods, 

emphasizing their limitations and drawbacks. Secondly, it 

introduces a novel methodology that integrates NLP 

techniques with MNB algorithm to tackle the source code 

classification problem. Our approach encompasses 

customized preprocessing steps, feature extraction techniques, 

and tailored implementation details of the MNB algorithm 

specifically designed for programming language analysis. 

This study aims to: 

•Apply NLP techniques to process PL code, which is similar 

to processing NL, to evaluate the performance of MNB 

algorithm in accurately. 

•Identifying and classifying PL based on diverse dataset, to 

compare it with alternative approaches and demonstrate their 

effectiveness and advantages.  

•As a result of this research, automated code analysis can be 

enhanced, software engineering tasks can be facilitated, and 

the field can be advanced.  

In summary, this research aims to leverage NLP techniques 

and the MNB algorithm to improve programming language 

source code classification. By addressing the limitations of 

existing approaches, we strive to enhance the accuracy and 

efficiency of automated code analysis, providing valuable 

insights for software engineers and researchers in the field. 

This paper is an extending for a paper "Using Multinomial 

Naive Bayes Machine Learning Method to Classify, Detect, 

and Recognize Programming Language Source Code" [10], 

presented at the ACIT2022 Conference.  

The paper is organized as follows: Section 2 illustrates the 

related works for PL and NLP classification. Section 3 

describes the proposed work in detail. Section 4 presents the 

achieved results. Section 4 discusses the results of the 

proposed work and compares them with existing state-of-the-

art methods. Section 6 presents the conclusion and provides 

context for future work. 

 

 

2. RELATED WORKS 

 

The classification, detection, and recognition of 

programming languages from source code are a highly 

interesting research topic. For example, DeepSCC research 

[11] uses Stack Overflow with 224,445 pairs of source code 

samples (snippets) written in 15 programming languages; it 

concludes to 87% of (Precision, Recall, and F1-score). The 

research [12] achieved an accuracy of 93.48% using Bayesian 

learning techniques to detect programming languages from a 

dataset consisting of more than 20,000 source code files. In the 

domain of design pattern recognition, another study [13] 

utilized a convolutional neural network (CNN) to classify 90 

programming languages with an accuracy of 90%. The CNN 

model was trained on a dataset sourced published in GitHub 

repositories., Nagy and Kovari [14] presented a framework to 

validate and recognize design patterns in C# source code. They 

evaluated their model using various class libraries. 

Additionally, Van Dam and Zaytsev [15] employed NLP to 

identify the programming language of source code from 

GitHub, achieving a 97.5% accuracy for 19 programming 

languages. Rahman et al. [16] proposed a source code 

classification based on neural networks using long short-term 

memory (LSTM), the results of this research shows that the 

accuracy of classification is 94.8% based on training its model 

using dataset with more than 2000 problems. The Guesslang 

Algorithm [17] employed a deep learning model with neural 

networks and linear classifiers to classify a vast number of 

source code files from GitHub. It achieved a performance 

accuracy of 93.45% when tested against 230,000 distinct 

source code files. Several software tools were identified for 

programming language classification. SourceClassifier [18] 

utilized the Naive Bayes classifier to detect the programming 

language of a given source code, while SyntaxHighlighter [19], 

used in WordPress, leveraged predefined keywords for 

language detection and syntax highlighting. Other research 

explored alternative approaches. "Application of 

computational intelligence for Source Code classification" [20] 

employed Evolutionary Algorithms to generate classifiers 

based on source code content, yielding improved accuracy and 

flexibility. Kiyak et al. [21] combined text and image-based 

comparisons to identify programming languages with high 

accuracy (over 93.5%) across three datasets. For the Arabic 

language, research [22] achieved a classification accuracy of 

100% using a deep learning model based on multi-layer 

perceptron neural networks. The concept of graph-based 

representations for programming language source code was 

introduced by Allamanis et al. [23], highlighting their ability 

to capture structural and semantic information for 

classification purposes. Another research [24] addressed the 

challenges of working with noisy and incomplete data, 

exploring machine learning and deep learning techniques for 

program synthesis and classification. Furthermore, 

Hellendoorn and Devanbu [25] investigated the effectiveness 

of deep neural networks in modeling programming language 

source code, comparing them with traditional machine 

learning algorithms. Nye et al. [26] focused on learning 

program sketches, using probabilistic models to infer missing 

code sections and their relevance to source code classification.  

By building upon existing approaches in programming 

language source code classification, this research paper aims 

to contribute to the field by applying NLP techniques, 

specifically the Multinomial Naive Bayes (MNB) algorithm. 

The effectiveness of various techniques, including deep 

learning, NLP, and graph-based representations, has been 

demonstrated in previous studies (as shown in Table 1). A 

survey paper [27] provided an overview of machine learning 

techniques, such as Naive Bayes, decision trees, and support 

vector machines, applied to code classification tasks. These 

studies collectively enhance our understanding of 

programming language source code classification. The current 

research paper seeks to further advance the field by utilizing 

NLP techniques, particularly the MNB algorithm, to improve 

the accuracy and efficiency of programming language source 

code classification. 

To address the research gaps and challenges in 

programming language source code classification, this 

proposed study focuses on utilizing NLP techniques, 
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specifically the MNB Algorithm. By reviewing the literature 

related to this research, we found several gaps, including: 

Challenges in classifying programming languages and keeping 

abreast of their developments; the need to improve the 

accuracy of recognition and classification. And take into 

account the variation in code quality. To avoid these gaps 

MNB algorithm was used, which creates probability 

distributions based on word (bigram) frequencies in the 

training data (source code scripts). This enables the algorithm 

to classify new source code data by calculating the probability 

of belonging to each class. By applying this algorithm, a 

diverse dataset consisting of source code files from 12 

different programming languages, the research enhances the 

classification of PL source code achieving an average 

accuracy (95.09%). Furthermore, the proposed study allows 

the algorithm to adapt to evolving programming languages by 

retraining on relevant datasets. Its adaptability makes it useful 

for software developers, as it can automatically classify source 

code even for new programming languages. 

Table 1. Summary of reviewed works 

Reference Methodology Dataset Accuracy 

[13] Convolutional Neural Network (CNN) Dataset from GitHub repositories 90% 

[12] Bayesian Learning Techniques 
More than 20,000 source code files from multiple GitHub 

repositories 
93.48% 

[14] 
Framework for PL Design Pattern 

Recognition 
C# source code with class libraries 

great 

accuracy 

[15] Natural Language Processing (NLP) Source code from GitHub 97.5% 

[16] long short-term memory (LSTM) Dataset with more than 2000 problems. 94.8% 

[17] Guesslang Algorithm using neural networks
1,900,000 source code files from 170,000 public GitHub 

projects 
93.45% 

[21] 
Deep Learning Model comparing text and

image 

Three datasets of source code for eight different 

programming languages 
>93.5%

[23] Graph-based Representations 
Programming language source code 

GitHub 29 2.9 million LOC 
 85.5% 

[24] 
Machine Learning for noisy and incomplete 

data 
l100, 000 JavaScript code samples up to 77% 

[25] Deep Neural Networks 
Programming language source code: 

14,317 projects consisting of 2230075 files 
 94% 

[26] Machine Learning for program sketches
Incomplete code snippets (program sketches) 

8000 samples 
 95.8% 

[11] fine-tuned RoBERTa 
Stack Overflow, with 224,445 

pairs of code snippets 
87% 

3. METHOD

All high-level programming languages utilize a language 

that closely resembles English, and occasionally, we can 

encounter explicit usage of English words within these 

languages. Consequently, we can consider all programming 

languages as a unified form of English, although with different 

structures and styles. The following is the algorithm for using 

MNB Machine Learning Method to classify, detect, and 

recognize programming language source code. The MNB 

method is a relatively simple and fast algorithm for text 

classification comparing to other NLP methods. It is a one of 

the simplest classification techniques based on supervised 

machine learning probabilistic method, but this simplicity 

does not make it a pitiable choice, it capable to produce a very 

high prediction accuracy even if there are not very large 

dataset of samples.  

The proposed method was implemented through the 

following steps: Collect a dataset of source code files in 

various programming languages. Preprocess the data by 

extracting relevant features from the source code files, such as 

syntax elements and statistical information. Split dataset into 

two parts (training 90%, and testing part 10%), then train the 

proposed model on the extracted victor of features. Evaluate 

the performance of the model on the testing data by calculating 

the accuracy, precision, recall, and F1 score. Use the trained 

model to classify new, unseen source code files by extracting 

features and predicting the programming language of the file. 

The general structure of this model shown in in Figure 1, and 

its components will be discussed.  

Figure 1. The general structure of the proposed model 
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3.1 Data collection 

 

This module uses file samples written in 12 different PL. 

The first step involved cleaning each sample by removing 

unnecessary spaces and certain unwanted characters. 

Subsequently, the cleaned source code files were combined 

into a single array using a Python library known as "numpy," 

which is a highly significant multidimensional array object 

[28]. Furthermore, the data corpus comprising all text files was 

prepared, with the source of programming language text files 

primarily obtained from GitHub, along with additional files 

randomly collected from our own projects and those of 

students. The dataset utilized to train and test the proposed 

model was compiled from a collection of source code samples 

written in 12 programming languages, including Java, C++, 

C#, Python, HTML, React, XML, PHP, JavaScript, Perl, SQL, 

and CSS. The main components of used data set are shown in 

Table 2. 

 

Table 2. Dataset components 

 
Dataset Components Value 

No Samples 12,003 

LOC 396,090 

No of PL 12 

 

3.2 Pre-processing 

 

In this step, we will create char bigrams [29] as a vector of 

features for the proposed languages. Each language will be 

represented using a token consisting of two letters, as 

presented in Table 3. Two-letter character bigrams (also 

known as 2-grams) play a significant role in NLP tasks due to 

their ability to capture certain linguistic, typographical 

patterns, morphological analysis, named entity recognition, 

and contextual patterns. 
 

Table 3. PL token 
 

No PL Name Token 

1 Java ja 

2 Python py 

3 C# cs 

4 C++ cp 

5 HTML ht 

6 Php ph 

7 JavaScript js 

8 React re 

9 XML xm 

10 CSS ss 

11 Perl pl 

12 SQL sq 

 

3.3 Feature vectors and category (label) input and required 

output 

 

The categorization of the script involves assigning a label 

for each programming language (PL) using a token consisting 

of two letters. This label will be used to represent the 

programming language. Additionally, the bigram preparation 

process will be carried out. Figure 2 provides an example 

illustrating the conversion of Java source code to a bigram 

representation through two steps. In preparation for creating 

the Bigram chart, it is necessary to define various options for 

the API used to generate the Bigram. These options include 

the Bigram unit, which can be set as Words or Letters, as well 

as options for sentence handling and other cleaning choices, as 

illustrated in Table 4. Notably, stop words are not utilized in 

this process. The proposed model employs bigrams through 

the utilization of a Python library function called 

"CountVectorizer." This function facilitates the conversion of 

text, specifically source codes, into a matrix or array of token 

counts, allowing for further analysis and processing. 

In two steps, the sample from the first line in the mentioned 

code example (Figure 2) will be processed to produce the 

Bigram output. This process is illustrated in Table 5. 

 

Table 4. Bigram options 

 

Step 
Bigram 

Unit 

Sentence 

Option 
Other Options 

1 Word Corpus Mode Output in lower case, 

remove space, ., ?, and () 2 Letters Corpus Mode 

 

 
 

Figure 2. Java example with its bigram representation 

 

Table 5. Step 2: Two char bigram 

 
Original Text import java.util.Scanner; 

Bigram (step 1) importjavautilscanner; 

Bigram (step 2) 
im, mp, po, or, rt, tj, ja, av, va, au, ut, ti, il, ls, 

sc, ca, an, nn, ne, er, r; 

 

The number of letters in the English language, which is used 

for writing source code, amounts to 26. Additionally, there are 

10 digits and 10 programming language symbols, such as (;, 

#, :, _, and $). Therefore, the total number of characters 

considered is 46. In this case, the maximum number of 

character bigrams can be calculated as 46 multiplied by 46, 

resulting in 2116. This representation or corpus can serve as a 

general feature for all programming languages. Furthermore, 

this model is not restricted by any limitations regarding the 

number of words it can handle. It is capable of processing new 

words, even if they have never been included in its training, as 

long as they consist of the same character bigrams. 

 

3.4 Model training and evaluation 

 

In preparation for training this model, the software program 

utilized the (sklearn) API, which was imported for that 

purpose. To ensure a more consistent corpus and achieve a 

good distribution of programming languages (PL), it is 

advisable to employ an extensive dataset. The distribution of 

PL in the prepared corpus is illustrated in Figure 3. The 

training dataset was compiled from various projects 

implemented in languages such as C++, C#, Java, JavaScript, 

HTML, Python, PHP, React, Perl, CSS, XML, and SQL. It 

consisted of 12,003 files, encompassing over 396,090 lines of 

code (LOC). After converting these LOC to Bigram Char, the 

dataset contained more than 7,838,301 two-character bigrams, 

as depicted in Figure 4, and Table 6 display the detailed data 
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used as 90% for training, and 10% for testing. Upon 

completing the training process, the model will yield the 

expected output, which can be assessed through different 

forms of accuracy. Notably, an overall accuracy rate of 

95.09% was achieved during training, demonstrating the 

effectiveness of the model. Consequently, the model is now 

prepared for testing and ready to be utilized.  

 

 
 

Figure 3. Distribution PL LOC in used corpus 

 

 
 

Figure 4. The char bigrams distribution 

 

Table 6. Detailed dataset components 

 
N PL LOC BD Samples 

1 C# 35,685 729,520 1,081 

2 C++ 35,865 733,159 1,087 

3 Py 34,920 711,090 1,058 

4 java 36,900 700,972 1,118 

5 HTML 34,380 439,300 1,042 

6 JavaScript 32,085 757,206 972 

7 PHP 35,550 715,938 1,077 

8 React 27,315 546,300 828 

9 XML 28,035 569,111 850 

10 CSS 32,625 662,288 989 

11 Perl 26,280 533,484 796 

12 SQL 36,450 739,935 1,105 

Total 396,090 7,838,301 12,003 

 

3.5 Testing 

 

The testing process comprises several steps, including 

reading unknown source code (tested PL Script), pre-

processing, extracting features, employing Machine Learning 

(ML) based on MNB, obtaining the expected output, and 

verifying the results. To evaluate the model's performance, a 

set of new source codes that were not part of the training 

dataset was used. Totally, 1458 source code file samples were 

selected for testing the MNB model.  

 

 
 

Figure 5. Percentage of correctly detected source codes in 

different PL 

 

Table 7. Test results 

 
No PL Accuracy Detected Total Tested 

1 CPP 95.1% 116 122 

2 Csharp 96.0% 96 100 

3 HTML 95.6% 172 180 

4 Java 97.7% 260 266 

5 JavaScript 95.1% 78 82 

6 PHP 94.3% 66 70 

7 Python 97.2% 210 216 

8 React 92.3% 48 52 

9 XML 94.9% 112 118 

10 CSS 93.3% 84 90 

11 Perl 93.5% 58 62 

12 SQL 96.0% 96 100 

Average Accuracy 95.09% 
1396 1458 

Total 

 

These testing samples encompassed a range of 12 

programming languages. The outcomes of detecting and 

recognizing the programming languages are presented in 
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Figure 5 and Table 7. 
 

 

4. RESULTS  

 

The data used to test the proposed model is consist of total 

number of source code using 12 Programming Languages (PL) 

is 1458 samples, the total number correctly detected is 1396 

and the average accuracy is 95.09%, this result as test results, 

classification report, and confusion matrix are shown in Tables 

7-9 respectively. As a summary of the results of this study we 

can conclude that the MNB algorithm was able to correctly 

classify, detect, and recognize programming language source 

code with an accuracy of 95.09%. It achieved high precision, 

recall, and F1-score for all of the programming languages, and 

it was able to correctly classify most of the programming 

language source code. The only languages that it had some 

difficulty with were React and Perl. This is likely because 

these languages are not as common as the others; samples were 

less than other languages, and due the JSX syntax used by 

React, which combines JavaScript and HTML codes within 

the same code sample leads to complication in tokenization 

and vector extraction of code features for the used MNB 

algorithm. Also, Perl known as highly flexible language, so the 

code can be written in different ways, which leads to high 

diversity of coding and make hard to detect by the MNB 

algorithm.  

 

Table 8. Classification report 

 
PL Precision Recall F1-Score Support Total Tested 

CPP 0.95 0.97 0.96 116 122 

Csharp 0.96 0.95 0.96 96 100 

HTML 0.96 0.96 0.95 172 180 

Java 0.98 0.98 0.98 260 266 

JavaScript 0.95 0.98 0.97 78 82 

PHP 0.94 0.95 0.95 66 70 

Python 0.97 0.96 0.98 210 216 

React 0.92 0.93 0.93 48 52 

XML 0.95 0.945 0.935 112 118 

CSS 0.93 0.94 0.94 84 90 

Perl 0.94 0.95 0.935 58 62 

SQL 0.96 0.95 0.94 96 100 

Accuracy 95.09% 95.54% 95.25% 1396  

   Total  1458 

 

Table 9. Confusion matrix 

 
 CPP C# HTML Java JS PHP Python React XML CSS Perl SQL 

CPP 113 0 0 0 0 0 0 0 0 0 0 3 

C# 0 91 0 0 0 0 0 0 0 0 1 4 

HTML 1 1 165 0 0 0 0 1 0 0 2 2 

Java 0 0 0 255 0 0 0 0 0 0 0 5 

JS 0 0 0 0 76 0 0 0 0 0 0 2 

PHP 0 0 0 0 0 63 0 0 0 0 2 1 

Python 0 0 0 0 1 0 202 0 0 0 0 7 

React 0 0 1 0 0 0 0 44 0 1 1 1 

XML 0 0 0 0 0 0 0 0 106 1 0 5 

CSS 0 0 0 0 0 0 0 0 0 79 0 5 

Perl 0 0 1 0 0 0 0 0 0 0 55 2 

SQL 0 0 0 1 0 0 0 0 0 0 3 92 

 

The MNB algorithm emerges as a compelling choice for 

classifying, detecting, and recognizing programming language 

source code, as indicated by the findings of this study. This 

simple and efficient algorithm demonstrates its ability to attain 

remarkable accuracy rates, even when confronted with limited 

training data. Nonetheless, the study also uncovers instances 

of misclassifications, primarily occurring between languages 

exhibiting similar syntax or structures. 

 

 

5. DISCUSSION  

 

The proposed methodology, utilizing the MNB algorithm 

and character bigrams, demonstrates its effectiveness in 

classifying, detecting, and recognizing programming language 

source code, as supported by the study's findings. With an 

impressive overall accuracy rate of 95.09% during training, 

the model proves its capability to accurately identify and 

classify programming languages based on source code. This 

achievement has significant implications for language 

identification, code analysis, and a language-agnostic 

approach in computer science and software engineering. 

Notably, the strengths of the proposed methodology lie in its 

high accuracy and the use of a diverse dataset encompassing 

multiple programming languages. These strengths highlight 

the effectiveness of the MNB algorithm and underscore the 

relevance of character bigrams as valuable features for 

language identification. However, the study acknowledges 

specific limitations and suggests potential areas for 

improvement. These limitations include a limited range of 

considered languages, the challenge of handling new 

languages and variants, reliance on character-level features 

without capturing higher-level semantics, and the need for 

additional evaluation metrics such as recall and F1 score. 

In conclusion, the study presents a promising methodology 

for programming language identification, but further research 
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and enhancements are necessary to address the mentioned 

limitations and improve the model's applicability in diverse 

and evolving code environments. By demonstrating the 

effectiveness of the MNB algorithm and character bigrams in 

accurately classifying, detecting, and recognizing 

programming languages, the study's results contribute to the 

field of programming language source code classification. The 

achieved overall accuracy rate of 95.09% during training 

establishes the strength of the proposed methodology. 

Comparison of this research with other research related to 

the same topic showed its superiority. For example, research 

[9] achieved an accuracy of 93.48% by using the Bayesian 

learning algorithms and the GitHub dataset, while research [16] 

reached an accuracy of 93.5% by applying deep learning on 

three databases that are covering eight programming 

languages. The results of this study, with an accuracy of 

95.09%, demonstrate competitive performance and suggest 

that the MNB algorithm is a good choice for PL source code 

classification. Moreover, it acknowledges the limitations and 

challenges found in existing literature, such as the difficulty of 

classifying numerous programming languages, adapting to 

evolving languages, and addressing variations in code quality. 

These challenges emphasize the need for further research and 

improvements in programming language source code 

classification. 

The achievement of this research in detecting and 

classifying PL addresses some of the limitations and 

challenges identified in existing literature. Also using the 

MNB algorithm and character bigrams offers a simple and 

effective approach to language identification, with practical 

implications for various applications in computer science. 

 

 

6. CONCLUSION 

 

The aim of this research was to investigate the effectiveness 

of MNB algorithm as important NLP techniques in 

classification and detection programming language from 

source code. It evaluated the performance of this algorithm in 

accurately categorizing source code and examined the impact 

of different feature selection methods on classification 

accuracy. In this research, we followed a comprehensive 

methodology involving data collection, pre-processing, 

feature extraction, model training and evaluation, and testing. 

During training, the MNB algorithm demonstrated an 

impressive accuracy rate of 98% (for Java) and maintained an 

average accuracy of 95.09% during the testing phase. It 

exhibited the ability to correctly classify programming 

language source code with high precision, recall, and F1-score 

for most languages. However, it encountered challenges with 

less common languages such as React and Perl. Nevertheless, 

it is important to acknowledge the limitations of the study. The 

findings may not be applicable to other programming 

languages and datasets due to specific selections made. The 

quality and size of the training dataset played a significant role 

in influencing the performance of the MNB algorithm. 

Additionally, the study solely focused on classification and did 

not compare the MNB algorithm with other machine learning 

or deep learning approaches. The effectiveness of NLP 

techniques and the MNB algorithm relies on the quality and 

consistency of the source code dataset, and the presence of 

poorly structured or unstructured code may impact 

classification accuracy. Furthermore, the study did not 

consider the dynamic or runtime aspects of programming 

languages. In summary, the study suggests that the MNB 

algorithm shows promise for programming language source 

code classification. However, further research and 

consideration of the identified limitations are necessary to 

validate its effectiveness across various programming 

languages and datasets. 
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