
FPGA Implementation of Circular Pseudo-Random Sequence Generator

Wael A. H. Hadi1 , Amjad Ali Jassem2 , Atheer A. Sabri1 , Riyam S. Ali1*

1 Department of Communication Engineering, University of Technology-Iraq, Baghdad 10066, Iraq
2 Ministry of Industry and Minerals, Baghdad 10069, Iraq

Corresponding Author Email: Riyam.S.Ali@uotechnology.edu.iq

https://doi.org/10.18280/jesa.560509 ABSTRACT

Received: 23 August 2023

Revised: 16 October 2023

Accepted: 22 October 2023

Available online: 31 October 2023

This paper introduces a novel pseudo-random sequence generator, applicable across all

uses of pseudo noise (PN)-sequence. The proposed generator, coined as the circular

pseudo-random signal generator, embodies a unique fusion of graphical representation and

mathematical modeling. The cornerstone of this method is its capability to offer variable

configurations in pseudo-random sequence generation, enabling the adaptive operation of

the pseudo-random sequence between the transmitter and the receiver. Uniquely, the

circular pseudo-random Sequence Generator can generate pseudo-random sequences of

varying lengths, with practical implementation feasible through multiple methodologies,

including microcontrollers or field-programmable gate array (FPGA) technology.

Consequently, the paper endeavors to elucidate the mathematical model of generation,

supplemented with illustrative examples, and demonstrate the real-world implementation

using FPGA technology. With broad applicability, this sequence generator is well-suited

to all applications requiring such a generator, notably in security applications and pilot

generations.

Keywords:

adaptive, random sequence, circular, FPGA,

linear feedback shift register (LFSR)

1. INTRODUCTION

The circular sequence generator was introduced to provide

a dynamic random sequence generator. What is meant by

dynamic? Let's Consider two communication points: one

represents the transmitter, and the second is the receiver side.

Consider there is a need for changing the sequence as a

security application. But the hardware of the equipment is

fixed indeed. What can we do in such a situation? The circular

sequence generator gives a software solution by changing only

the generation key. This key is shared between the transmitter

and receiver or between one and multiple receivers. The

hardware is designed according to the circles representing the

generator's structure. These circles can give multiple different

PN sequences according to the KEY. This scenario gives a

solution for changing the PN sequence. This paper introduces

the concept of the generation and the KEY. The designer can

construct multiple circles with multiple levels and KEY as

accepted between the transmitter and the receiver. Random

sequence frames are frequently employed in numerous

applications, including security software and modern

communication networks. Thus, random sequence generation

fields subsequently attracted many researchers for many years.

Such research seeks to develop random sequence generation.

For example, one of the most commonly used methods for

generating a pseudo-random sequence is a linear feedback

shift register (LFSR). To generate the random series, a group

of shift registers connected in serial is used [1]. This low-

complexity approach (LFSR) is implemented with

straightforward shift registers or by employing FPGA

technology. To be used in applications related to security,

random number generation (RNG) is introduced [2]. For data

ciphering in cryptography, there is an absolute requirement for

a random sequence with a respectable unpredictability

probability.

There, the function of mathematics in creating random

sequences becomes apparent. Many researchers organize

competitions to create a sequence with the highest probability

of randomness [2]. Using a Gaussian random number

generator (GRNG) technique, for instance, to generate a

random number series and analyze how those numbers behave

in the vicinity of the Gaussian probability density function

(GPDF) [3]. Additionally, pseudo-random sequence

generations find their way into database applications; it

introduces a generation algorithm with SQL 2000 database

application [4]. Furthermore, accumulator recursions with

time variation produce the random sequence.

Given that it employs a small amount of hardware, this

method is characterized by a lower level of complexity [5]. In

communication applications, the generation of random

sequences is widely employed. Audio can produce sequences

with an acceptable probability of randomization [6]. Quadratic

irrationals are also used in pseudo-random number generation

to create a generator that must be incorporated into encryption

[6]. Due to their versatility in hardware configuration and

speed, the FPGA architecture is used to construct the random

sequence generator [7]. In modern cipher systems like the

rabbit cipher, the random sequence serves the security

application efficiently [8]. Computer-generated pseudo-

random sequences may have problems with good randomized

start points, while the remaining random sequence has

deterministic or parodic characteristics.

Unlike conventional random number generators, quantum

number generation has been established to produce random

numbers [9]. The chaotic subject combined with random

number generators. The chaotic system is also used to generate

Journal Européen des Systèmes Automatisés
Vol. 56, No. 5, October, 2023, pp. 787-792

Journal homepage: http://iieta.org/journals/jesa

787

https://orcid.org/0000-0003-3149-5926
https://orcid.org/0009-0008-7391-8572
https://orcid.org/0000-0003-4380-0131
https://orcid.org/0000-0003-2685-519X
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.560509&domain=pdf

the random number sequence used with security applications

[10]. New fundamentals and design concepts for a pseudo-

random number generator (PRNG) are also made possible by

the expansion of chaotic neural network structures [11];

however, specific possible information security issues are

raising concerns [12]. To enhance its statistical features, a

random generator based on the logistic map is utilized, and its

chaotic parameter is dynamically changed; 510 lookup tables

(LUTs) and 120 registers were used to implement the system

in a Virtex 7 FPGA [13, 14]. This research paper uses a

random pattern as the adaptive sequence between the sender

and the recipient in a communication system.

2. MATHEMATICAL MODEL OF CIRCULAR

PSEUDO-RANDOM SEQUENCE GENERATOR

The significant points covered within the circular pseudo-

random sequence generator are designed as follows:

(1) The mathematical model of the proposed method is

designed to be practically implemented.

(2) The mathematical model allows for modifying the

generated sequence according to an understanding between the

transmitter and the receiver. As a result, it offers an adaptive

process and generates a unique pseudo-random sequence for

every modification of the mathematical model component.

(3) The Circular pseudo sequence generator also provides

some variables in terms of the length based on the presetting

mathematical model parameter.

Illustrate the mathematical model of the circular random

sequence generator. The Circular generator should be

considered a circle called level, and the level circle is the big

circle shown in green color. This level circle includes several

circles within its circumference, small circles called sub-

circles shown in black color; each sub-circle is divided into

multiple parts called sectors. Each sector represents a specific

digit. Thus, the key could be in the form as long as it is

included as a mathematical representation of this circle, as it is

shown in Eq. (1):

Key={ci, n, R, D} (1)

where, ci is the number of sub-circles, the key can include

more than a single sub-circle. The number of sectors for the

circumference sub-circle is n, R is the number of rotations, and

D is the direction of rotation if we consider the following:

Each rotation gives a random set of binary sequences equal

to:

Set length/rotation=no. of sub circles (c)×no. of

layers (L)
(2)

where, L is the number of layers. If each sub-circle gives a

single bit at each rotation, the maximum number of rotations

permitted is equal to the number of sectors of sub-circles, as

shown in Figure 1:

Rmax maximum rotations=n (3)

Maximum frame length=Rmax×n×L (4)

To discuss the circular operation, let's consider the

following illustrative examples:

Example 1: Consider the Key={ci, ni, Ri, D}={4, 3, 2, 0},

first circle at location 0, with sectors: S1={1, 0, 1}, S2={1, 1,

0}, S3={1, 0, 0} and S4={0, 0, 1}, as shown in Figure 2 and

Figure 3. Read the sequence from the inner axis starting from

the first axis on the right.

The first sequence generated F1={1, 1, 1, 0}.

The second sequence generated F2={1, 0, 0, 1}.

For two rotations: Pseudo random sequence={F1, F2}.

Pseudorandom sequence={1, 1, 1, 0, 1, 0, 0, 1}.

Figure 1. Circular pseudo-random sequence generator

graphical representation. Three layers, 12 sub-circles with

three sectors

Figure 2. Key={4, 3, 2} at first rotation R=1 clockwise

Figure 3. Key={4, 3, 2} at second rotation R=2 clockwise

Example 2: Consider the key={ci, ni, Ri, D}={3, 4, 2, 0},

find generated frame and Rmax, with following sectors: N1={1,

0, 0, 1}, N2={1, 1, 0, 1} and N3={0, 1, 1, 0}, as shown in

Figures 4, 5, 6 and 7 respectively.

F1={1, 1, 0}, F2={1, 1, 0}.

Frames={F1, F2}={1, 1, 0, 1, 1, 0}.

788

Rmax=4, there are four rotations to complete all pseudo-

random frames.

Maximum frame length=Rmax×ci=4×3=12.

Fmax={F1, F2, F3, F4}={1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1}.

Figure 4. Key={3, 4, 2, 0} at first rotation R=1 clockwise,

F1={1, 1, 0}

Figure 5. Key={3, 4, 2, 0} at second rotation R=2 clockwise,

F2={1, 1, 0}

Figure 6. Key={3, 4, 2, 0} at Third rotation R=3 clockwise,

F3={0, 0, 1}

Figure 7. Key={3, 4, 2, 0} at fourth rotation R=4 clockwise,

F4={0, 1, 1}

Example 3: For multiple layer Circular random sequence

generator, consider the general form: K={ci, ni, Ri, Di}, where

the last Di represents rotation direction, 1 for clockwise and 0

represents Anti-clockwise, K1={4, 4, 2, 0} and K2={4, 4, 2, 1}.

K1 sectors: Anti-clockwise

N1={1,0,1,0}, N2 ={1,1,0,0}, N3={0,0,1,0}, N4={0,1,1,1}.

K2 sectors: Clockwise

N1={1,1,1,1}, N2={1,0,0,0}, N3={0,1,1,0}, N4={1,0,0,1}.

The graphical representation for the Circular sequence

generator will be as shown in Figure 8:

Figure 8. K1={4, 4, 2, 0}, K2={4, 4, 2, 1}

Denote the frame as F(Ri, L), where F represents the frame per

Ri, the rotation, and L is the level.

F(1, 1) ={1, 1, 0, 0} First rotation from level L=1, Clockwise.

F(1, 2)={1, 0, 0, 1} First rotation from level L=2, Anti-

clockwise.

F(2, 1)={0, 1, 0, 1} Second rotation from level L=1,

Clockwise.

F(2, 2)={1, 0, 1, 1} Second rotation from level L=2, Anti-

clockwise.

Resulted frame F={F(1, 1), F(1, 2), F(2, 1), F(2, 2)},

F={1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1}.

If we consider Rmax=n=4,

The max frame length=Rmax. c1+Rmax. c2.

Then, for multiple layers L:

Max. frame length= ∑ 𝐑max . 𝐜i
𝐿
𝑖=1 , and frame

length=∑ 𝐑. 𝐜i
𝐿
𝑖=1 , where Rmax here related to the number of

sectors/layer.

For example, 3:

n(1, 1)=4, n(1,2)=4 then Rmax = 4.

Frame length=4×c1+4×c2= 4×4+4×4=16+16=32.

But with consider K1=clockwise, K2=anti-clockwise.

F(1,1)=1,1,0,0

F(2,1)=0,1,0,1

F(3,1)=1,0,1,1

F(4,1)=0,0,0,1

F(1,2)=1,0,0,1

F(2,2)=1,0,1,1

F(3,2)=1,0,1,0

F(4,2)=1,1,0,1

Frame=F(1,1), F(1,2), F(2,1), F(2,2), F(3,1), F(3,2), F(4,1), F(4,2).

Frame=F(1,L=1), F(1,L=2), …, F(Rmax, Li).

Anti-clockwise

Clockwise

789

3. CIRCULAR PSEUDO-RANDOM SEQUENCE

GENERATOR SIMULATION

Simulation of the mathematical model of the circular

pseudo-random sequence generator performed in MATLAB.

The complete code describing the mathematical model and

sequence generation was successfully implemented. The

following MATLAB code exhibits a run and test for the first

example. The MATLAB m file script is as follows:

Call the function:

K1=[4, 4, 2, 0] % set the key parameter

Rolling_Key_EX1(K1) % calls the function in the

command window function Rolling_Key_EX1(K1) % name

of the function.

Frame=[];

% define the sub-circle parameters randomly generated

s1=randi([0,1],1,K1(2));

s2=randi([0,1],1,K1(2));

s3=randi([0,1],1,K1(2));

s4=randi([0,1],1,K1(2));

key=zeros(K1(1)*K1(2)); N=K1(1)*K1(3);

if (K1(4)==0)% check the rolling direction

coun=1;

for i=1:K1(1):N

% calculate the Frame digital bits from sub-circles

Frame(i)=s1(coun); Frame(i+1)=s2(coun);

Frame(i+2)=s3(coun); Frame(i+3)=s4(coun);

coun=coun+1;

end

Resulted_Frame_Anti_Clockwise = Frame

else

coun = K1(2);

for i=1:K1(1):N

% calculate the Frame digital bits from sub-circles

Frame(i)=s1(coun); Frame(i+1)=s2(coun);

Frame(i+2)=s3(coun); Frame(i+3)=s4(coun);

coun=coun-1;

end

Resulted_Frame_Clockwise = Frame

end

The simulation results show the pseudo-random sequence

generated as described in Example 1.

4. CIRCULAR PSEUDO-RANDOM SEQUENCE

GENERATOR FPGA IMPLEMENTATION

The main point of the Circular sequence generator is that it

is designed to be practically implemented. The generator is

described mathematically by a very straightforward

mathematical model, which reflects the steps taken to generate

the sequence. The transmitter and reception sides could rapidly

agree on the same mathematical model characteristics to

produce an identical pseudo-random sequence. The

microcontroller is used to implement a circular pseudo-

random sequence generator. However, it is limited by the

clock speed of the microcontroller itself. An Arduino DUE

microcontroller with 84 MHz can provide exemplary

performance in implementation. However, FPGA enables the

Circular generator to be implemented with high operational

speed; the circular PN sequence generator is implemented

using Alter Cyclone IV EP4CE6E22C8N. Its hardware

resources are very acceptable to perform, with considerable

low cost. The circular PN sequence generator can be

implemented with less than Cyclone IV FPGA. And the

throughput and randomness quality of FPGAs are extremely

high [15]. PRNGs are deterministic mechanisms that generate

a more extended random-like sequence from a short input

sequence [16].

The mathematical model can deal with binary data. The

most widely used linear function is mode two addition, also

known as XOR, which is used to manipulate the input data at

the transmitter side [17]. Then, the receiver side should use the

same random sequence to restore the original data.
Because producing random numbers takes up a sizable

portion of the processing time for applications requiring large

volumes of random numbers, it is hoped that a hardware

implementation of the random number generator will improve

generation performance for simulation software. For the

development of random number generators, FPGAs provide

various advantages in speed, energy, power, and scalability

[18]. See Figure 9:

Figure 9. Circular pseudo-random sequence generator usage

The FPGA netlist view implementation is shown in Figure

10. The work uses Altera Quartus Prime software. The

application considers Circular generation with a random

sequence of length equal to 12 bits.

Reconfigurable hardware systems include FPGA chips.

They enable rapid prototyping or quickly comparing many

hardware options and choosing the best [19].

When using high-quality random numbers, they denote

those bit sequences produced unpredictably. Higher quality (or

security level) is associated with greater unpredictability [20].

According to Shannon's postulate for theoretically

unbreakable encryption, a pseudo-random bit sequence (PRBS)

frequently serves as a "one-time padding" key sequence in

reality and should have high statistical qualities, a complicated

structure, and simplicity in execution [21]. The FPGA

simulation waveform test is shown in Figure 11.

In Figure 11. Show the usage of a circular PN sequence

generator as a scrambler. It is simple: generate the circular PN

sequence and then XOR the input message with the circular

PN sequence. To produce the scrambled data or coded data. At

the receiver, side the reciprocal operation by re-XOR the

coded data with the right circular PN sequence generator to

restore and gain the original data, in Figure 10. The "msg"

stands for input data message, "Enc-msg" stands for encoded

data message, the output of XOR between the input data and

circular PN sequence this in transmitter side. "Dec-msg" is the

decoded message after XOR between the circular PN sequence

and the received Encoded message. Sure, the Decode message

will be the same as the input data message. The data

representation in the waveform in Hexadecimal is more

accessible to follow than binary mod.

790

Figure 10. Circular PN sequence generator FPGA

implementation netlist view

Figure 11. Waveform/Timing diagram test showing encoded

and decoded message

5. CONCLUSIONS

The current research paper presents a proposed pseudo-

random sequence generator, introduces its mathematical

model, and discusses its operation in illustrative examples.

With its straightforward mathematical approach, this circular

pseudo-random sequence generator may produce various

lengths of random sequences, depending on the key.

Additionally, it can offer adaptive operation when both

sending and receiving agree. Furthermore, an FPGA

implementation via Altera FPGA is discussed in this work. So,

this random sequence generator is applicable. More

importantly, the paper discusses two levels key in Example 3,

but the structure may have several levels and a varied number

of sectors, directions, and rotations. The construction decided

by the designer and the validity of the application is considered.

In addition, it takes the desired design's complexity into

account. Finally, yet notably, this circular generator could be

employed in security-related uses, particularly with systems

that do not require sophisticated design and have the

appropriate level of security.

REFERENCES

[1] Alfke, P. (1996). Efficient shift registers, LFSR counters,

and long pseudo-random sequence generators. Xilinx,

XAPP 052: 1-6.

[2] Jun, B., Kocher, P. (1999). The Intel random number

generator. Cryptography Research Inc. White Paper, 27:

1-8.

[3] Thomas, D.B., Luk, W., Leong, P.H., Villasenor, J.D.

(2007). Gaussian random number generators. ACM

Computing Surveys (CSUR), 39(4): 11-es.

https://doi.org/10.1145/1287620.1287622

[4] Liu, Z., Huang, M., Zhu, S. (2009). The design and

implementation of a pseudo random number generation

algorithm. In 2009 International Conference on

Computational Intelligence and Natural Computing,

Wuhan, China, pp. 126-129.

https://doi.org/10.1109/CINC.2009.242

[5] Gonzalez-Diaz, V.R., Pareschi, F., Setti, G., Maloberti,

F. (2011). A pseudorandom number generator based on

time-variant recursion of accumulators. IEEE

Transactions on Circuits and Systems II: Express Briefs,

58(9): 580-584.

https://doi.org/10.1109/TCSII.2011.2161165

[6] Chen, I.T., Tsai, J.M., Tzeng, J. (2011). Audio random

number generator and its application. In 2011

International Conference on Machine Learning and

Cybernetics, Guilin, China, pp. 1678-1683.

https://doi.org/10.1109/ICMLC.2011.6017002

[7] Milinkovic, L., Malešević, B. (2012). Pseudo-random

number generator analysis based on the set of quadratic

irrationals. In 2012 20th Telecommunications Forum

(TELFOR), pp. 536-539.

https://doi.org/10.1109/TELFOR.2012.6419266

[8] Yadav, A. (2013). Design and analysis of digital true

random number generator. MS.c. Thesis. Department of

Electrical and Computer Engineering, Virginia

Commonwealth University, Richmond, Virginia, USA.

[9] Kashmar, A., Ismail, E. (2015). Pseudorandom number

generator using Rabbit cipher. Applied Mathematical

Sciences, 9(88): 4399-4412.

https://doi.org/10.12988/ams.2015.5143

[10] Luo, Y., Chang, K.T. (2016). Quantum random number

generator vs. random number generator. 2016

International Conference on Communications, Bucharest,

791

Romania, pp. 423-426.

https://doi.org/10.1109/ICComm.2016.7528306

[11] Ergün, S. (2017). Algebraic break of a chaos-based

random number generator. In 2017 11th International

Conference on Signal Processing and Communication

Systems (ICSPCS), Surfers Paradise, Australia, pp. 1-4.

https://doi.org/10.1109/ICSPCS.2017.8270496

[12] Yu, F., Zhang, Z., Shen, H., Huang, Y., Cai, S., Jin, J.,

Du, S. (2021). Design and FPGA implementation of a

pseudo-random number generator based on a hopfield

neural network under electromagnetic radiation.

Frontiers in Physics, 9: 690651.

https://doi.org/10.3389/fphy.2021.690651

[13] Pallavi, Y., Leeladhar, K.K., Sainath, T.M. (2020).

Implementation of chaos-based bitwise dynamical

pseudo-random number generator based on FPGA

technology. Journal of Interdisciplinary Cycle Research,

XII(VI): 1059-1065.

[14] Garcia-Bosque, M., Pérez-Resa, A., Sánchez-Azqueta,

C., Aldea, C., Celma, S. (2018). Chaos-based bitwise

dynamical pseudorandom number generator on FPGA.

IEEE Transactions on Instrumentation and Measurement,

68(1): 291-293.

https://doi.org/10.1109/TIM.2018.2877859

[15] Tan, H., Chen, X., Chen, Y., He, B., Wong, W.F. (2021).

ThundeRiNG: Generating multiple independent random

number sequences on FPGAs. In Proceedings of the

ACM International Conference on Supercomputing,

Virtual Event, USA, pp. 115-126.

https://doi.org/10.1145/3447818.3461664

[16] Yang, B. (2018). True random number generators for

FPGAs. Ph.D. dissertation. Department of Electrical

Engineering, Gent University, Belgium.

[17] Mahmood, B.S., Fakhrulddin Ismael, S. (2014).

Architectural design of random number generators and

their hardware implementations. Al-Rafidain

Engineering Journal (AREJ), 22(2): 50-59.

https://doi.org/10.33899/rengj.2014.87322

[18] Lee, J., Peterson, G.D., Harrison, R.J., Hinde, R.J. (2010).

Implementation of hardware-accelerated scalable

parallel random number generators. VLSI Design, 2010:

1-11. https://doi.org/10.1155/2010/930821

[19] Bakiri, M., Guyeux, C., Couchot, J.F., Oudjida, A.K.

(2018). Survey on hardware implementation of random

number generators on FPGA: Theory and experimental

analyses. Computer Science Review, 27: 135-153.

https://doi.org/10.1016/j.cosrev.2018.01.002

[20] Crocetti, L., Di Matteo, S., Nannipieri, P., Fanucci, L.,

Saponara, S. (2022). Design and test of an integrated

random number generator with all-digital entropy source.

Entropy, 24(2): 139. https://doi.org/10.3390/e24020139

[21] Mao, Y., Cao, L., Liu, W. (2006). Design and FPGA

implementation of a pseudo-random bit sequence

generator using spatiotemporal chaos. In 2006

International Conference on Communications, Circuits

and Systems, Guilin, China, pp. 2114-2118.

https://doi.org/10.1109/ICCCAS.2006.284916

792

