
Build a Lightweight Dataset and Concept Drift Detection Method for Evolving Time Series

Data Streams

Nitin B. Ghatage* , Pramod D. Patil

Computer Engineering, Dr. D Y Patil Institute of Technology, Pimpri, Pune 411018, India

Corresponding Author Email: nitinbaghatage@gmail.com

https://doi.org/10.18280/ria.370523 ABSTRACT

Received: 2 August 2023

Revised: 2 October 2023

Accepted: 9 October 2023

Available online: 31 October 2023

Time series forecasting, a potent tool for predicting real-world entities such as financial

markets and weather patterns, often grapples with the issue of concept drift, characterized

by changes in the behaviour of the time series over time. This study aims to develop a

lightweight time series model, efficient in training time, to match the data stream's arrival

rate. Furthermore, a method to detect the presence of concept drift in the data stream,

regardless of the time point, is discussed. Presented herein is a benchmark dataset, publicly

accessible and specifically designed to simulate changing time series scenarios across

diverse industries including Energy, Air Quality, and Pollution. This dataset amalgamates

synthetic and actual time series along with ground truth concept drift locations, facilitating

a comprehensive evaluation of concept drift detection techniques. A novel, lightweight

concept drift detection method, which integrates supervised methodologies with statistical

metrics to surmount the resource constraints often encountered in streaming data scenarios,

is proposed. This method minimizes computational overhead while ensuring reliable drift

detection in response to shifting data distributions. Experimental results indicate that the

proposed approach surpasses prior methods in computational performance whilst

accurately identifying idea drifts in evolving time series data streams. The study contributes

a valuable dataset and a lightweight feature selection method, advancing the knowledge in

the field of concept drift detection within the context of time series data streams. These

advancements provide an efficient technique for tracking changing data patterns across

various application domains, thus offering significant implications for future research.

Keywords:

timeseries, lightweight, recurrent neural

networks, concept drift

1. INTRODUCTION

Time series is a sequence of data measured with a constant

frequency. Forecasting of time series is a very important task

in today's world with several applications starting from

financial markets to weather prediction etc. Univariate time

series is a time series having information about only one real

world entity, however often we see any real world entity is

dependent on multiple other features, which leads us to

multivariate time series Multivariate time series forecasting

can be challenging due to high volume of the data. However,

one of the major issues with time series forecasting is the

possible presence of concept drift Concept drift is the change

in the data pattern in such a way that a model trained on old

data cannot produce good prediction anymore. Thus, it's

necessary to tackle these issues while building a time series

prediction model. Online models are suitable to handle huge

stream of data as they do not require to store all the past data.

Recurrent neural network based models are popular for time

series forecasting as they can capture complex pattern in the

data. It has been proven over several review studies like [1]

that deep learning based RNN moels tend to perform better

than conventional models for forecasting problems. Although

Several RNN based models [2-4] and LSTM-CNN hybrid

models [5] have been developed for multivariate time series

forecasting addressing issues but there are few such models

that can handle both concept drift and well as high volume of

data in efficient manner. Distributed machine learning

techniques [6] are also used for time series forecasting but they

have high hardware requirements. Predictive tool like MARS

(Multivariate Adaptive Regression Splines) have been used for

forecasting problems such as transportation energy demand [7]

but their application is limited. In this document we discuss

about feature selection as a way to effectively reduce the

computation cost of the model and make it lightweight in

nature and we also provide a way to detect and adapt to

possible concept drift in the data stream for an online RNN

model using a sliding window approach.

To increase the reliability and accuracy of predictions,

combine several lightweight models. To capitalise on the

advantages of many models, strategies such as model stacking,

bagging, or boosting might be used. Time Series

Decomposition use techniques like Seasonal Decomposition

of Time Series (STL) or Empirical Mode Decomposition

(EMD) to break down time series data into its individual

components, such as trend, seasonality, and residuals. This

division can make modelling simpler and predicting more

precise.

Use specialised feature selection techniques, such as

Recursive Feature Elimination (RFE), L1 Regularisation

(Lasso), or Mutual Information-based feature selection, to

determine which characteristics are the most instructive and

pertinent for prediction.

Use specialised stream mining techniques to handle

changing data streams effectively, such as Hoeffding Trees,

VFDT (Very Fast Decision Tree), or SAMOA (Scalable

Revue d'Intelligence Artificielle
Vol. 37, No. 5, October, 2023, pp. 1301-1310

Journal homepage: http://iieta.org/journals/ria

1301

https://orcid.org/0009-0003-9792-9616
https://orcid.org/0000-0002-4073-1428
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370523&domain=pdf

Advanced Massive Online Analysis).

Include change detection techniques like CUSUM

(Cumulative Sum) or Page-Hinkley to identify concept drifts

and activate model adaptation when significant alterations in

the distribution of the data take place.

To divide the computational load and enable effective real-

time processing of time series data streams, use parallel

processing frameworks like Apache Flink or Apache Kafka

Streams.

Reduce the dimensionality and memory needs of time series

data while maintaining its key properties by using data

quantization and compression techniques.

Hyper parameter Tuning, to improve performance while

preserving efficiency, fine-tune the hyper parameters of

lightweight models using methods such as Bayesian

optimisation, grid search, or random search.

Online Anomaly Detection: Time series forecasting and

online anomaly detection algorithms can be combined to

quickly spot outliers or strange trends, which is essential for

many applications including fraud detection and fault

monitoring.

Making predictions about future data points based on prior

time-ordered data is an important component of data analysis

and predictive modelling. This method is used in a variety of

fields, including finance, economics, climate research, retail,

healthcare, and others. Time series data is useful for

identifying trends and patterns as well as for making decisions

because it is comprised of observations that are collected or

recorded over time. Key Challenges in Time Series is given as:

• Data Quality: Measurement mistakes, missing values,

outliers, and poor data quality can all have a detrimental effect

on forecasting accuracy. In order to address these difficulties,

data pre-treatment and purification are crucial tasks.

• Overfitting: When a model is overly complicated and

attempts to match the underlying patterns of the data, it instead

tries to fit the data noise. It's crucial to strike a balance between

model complexity and overfitting.

• Concept Drift: Concept drift occurs when data

patterns in emerging systems alter over time. It is a huge task

to adjust to these changes and update predicting models

accordingly.

• Scalability: Effective techniques and processing

resources are needed to handle large-scale time series data

streams in real-time or near-real-time applications.

Motivation:

A simple model for time series forecasting in changing data

streams is inspired by a number of real-world issues and new

trends.

Many contemporary applications, including financial

market research, industrial equipment monitoring, and energy

consumption forecasting, need for real-time or almost real-

time forecasts using streaming time series data. Lightweight

models are appropriate for many applications because they can

make predictions more quickly. There could not be enough

processing power or memory in situations with limited

resources, such as edge computing devices or IoT sensors. A

lightweight model is necessary for the effective use of the

available resources. Low latency is essential in some

applications. For rapid decision-making in applications like

autonomous vehicles and predictive maintenance, a

lightweight model can lower prediction latency.

Energy-efficient models can increase battery life and lower

energy consumption in battery-operated or energy-sensitive

devices like smartphones and Internet of Things sensors. In

changing time series data streams, lightweight models are

frequently more nimble and capable of idea drift adaptation.

They effectively adapt to shifting patterns, lowering the danger

of model obsolescence. In many fields where real-time or

resource-constrained forecasting is advantageous, such as

healthcare, finance, environmental monitoring, and others,

lightweight models can find use.

The motivation for a lightweight model for time series

forecasting in evolving data streams is driven by the need for

efficient, scalable, and adaptable solutions that can meet the

demands of modern data-intensive applications while

operating within resource constraints. These models aim to

strike a balance between prediction accuracy and

computational efficiency, making them highly relevant in the

evolving landscape of data analytics.

The rest of the paper is organised as follows, first we give

theoretical explanation on the lightweight feature selection

technique used, followed by explaining how our concept drift

detection approach works. Then we provide the real world

datasets used and their descriptions followed by results and

analysis of the results collected on those datasets. Finally, we

briefly summarize the effectiveness of our proposed model

and how it can be further improved in the future.

2. LIGHTWEIGHT METHOD

A lightweight model takes less time to run compared to

other traditional models. Making a model lightweight in

beneficial while dealing with data streams since the amount of

data is potentially massive and it becomes very expensive to

store the whole data in data storage. In literature there are some

techniques that can make a model lightweight in nature.

Building a model on a representative sample of data rather

than entire data can be done, however it's not very intuitive for

time series data since the order of the data points is important

in that case and so sampling data points randomly from the

data will break the order of the data points that. Feature

selection is suggested in the study [2] as another way where

we only consider the important features from a dataset and

discard the rest of the features while building the model. This

way the processing time of the model can be improved. There

are many feature selection methodologies in machine learning

for example, random forest based, IG (Information Gain)

value based as shown to be applied with ANN [8] etc.

Segmentation [9] of total data into multiple segments and then

building one model or an ensemble is another approach that

can be used for faster training of the model. Also, Stratification

[10] of the time series into several smaller homogeneous time

series can be used as suggested to reduce gradient estimation

time for model training.

For our model we used Random Forest based feature

selection technique to make the model lightweight as shown

in Figure 1.

Figure 1. Light weight model architecture

1302

Random Forest based Feature selection: As shown in

Figure 2, Random Forest is a tree based ensemble learning

algorithm. In ensemble learning the prediction is the average

of all the prediction from all the individual models.

Figure 2. Random forest algorithm structure

Lightweight Feature selection Algorithm:

Let:

D be the dataset.
F be the set of features.
T be the number of decision trees in the forest.
GI(X) be the Gini Importance of feature 'X'.
For each decision tree t in the forest:

Randomly select a subset of data samples D_t from D.

Randomly select a subset of features F_t from F.

Build a decision tree using D_t and F_t.
Calculate the Gini Importance for feature 'X' in a tree t:

GI(X)_t =∑[reduction in Gini impurity caused by feature 'X'

at each node in tree t]

Calculate the Gini Importance for feature 'X'

GI(X)=(1/T) * ∑[GI(X)_t for each tree t]

A random forest regressor is used for regression tasks. The

random forest algorithm can be used to compute feature

importance.

·Random Forest contains several decision trees, each built

from randomly selected instances from the data and also

randomly selected subset of features.

·Each tree contains several nodes where the data is split

into two categories based on the feature values.

·Each of the category contains observations that are more

similar among themselves and different from the ones in

another category.

·The importance of the features is decided based on how

impactful it is while splitting the data. For regression it is

based on reduction of impurity or variance in each category.

·The impurity or variance reduction from each feature

while splitting based on it can be averaged across trees to

determine the final importance of the variable.

·By default, it selects the features with higher feature

importance than the average feature importance across all the

features.

The impurity is computed using Mean Squared Error (MSE),

MSE is computed as follows:

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝜇)2

𝑛

𝑖=1
 (1)

where, yi is the value of target, N denotes the number of

instances and µ denotes the mean value of the target over all

the instances.

This variance reduction is computed over all the nodes of

the trees that are part of the Random Forest. The importance

of the nodes is computed as follows:

𝐼𝑚𝑝𝑗=𝑊𝑗𝐶𝑗−𝑊𝑙𝑗𝐶𝑙𝑗−𝑊𝑟𝑗𝐶𝑟𝑗

where, Impj stands for importance of node j. Wj denotes the

weighted number of samples that belongs to node j, Cj denotes

the impurity at node j. lj and rj subscripts stand for left and

right child after the split at node j respectively.

The importance of each feature is then calculated as follows:

𝐹𝐼𝑖 =
∑ 𝐼𝑚𝑝𝑗𝑗:𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖

∑ 𝐼𝑚𝑝𝑘𝑘∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠

 (2)

where, El stands for feature importance of ith feature and Imp,

denotes the importance of node j. The feature importance is

normalized in the range of 0 to 1 by dividing the feature

importance values by the sum of all feature’s importance.

Norm 𝐹𝐼𝑖 =
𝐹𝐼𝑖

∑ 𝐹𝐼𝑗𝑗∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

 (3)

The final feature importance computed over the entire

random forest is the mean of feature importance over all the

trees in the forest:

𝑅𝐹_𝐹𝐼𝑖 =
∑ 𝑁𝑜𝑟𝑚𝐹𝐼𝑗𝑗∈𝑎𝑙𝑙 𝑡𝑟𝑒𝑒𝑠

𝑇
 (4)

where, RF FI is the feature importance of ith feature for the

entire random forest, NormEl is the normalized feature

importance at the ith tree and T denotes the total count of

decision trees in the forest. Table 1 shows number of features

selected using Random Forest for Engery, Air Quality and Air

Pollution dataset.

Table 1. Summary of random forest based feature selection

algorithm lightweight model

Dataset
No of

Feature

No of

Record

No of Feature Selected

using Random Forest

Energy 29 19735 13

Air

quality
15 9358 3

Air

Pollution
9 43801 8

3. DETECTION OF CONCEPT DRIFT

Concept drift is known as the change in the relationship

between the target variable and independent variables in the

data. It can severely affect a model performance. It is true that

there exist forecasting methods that do not perform explicit

drift detection, for example one of such method simulates drift

by adding noise [11] into the training data to make it more

responsive to actual concept drift. Some methods do

continuous adaption [12] without explicit detection of drift.

However; there are limitations to such methods, adapting to

changing conditions in time series data without effective drift

1303

detection can lead to inaccurate predictions and suboptimal

model performance. Hence its necessary to detect concept drift

accurately while dealing with streaming data. The paper [13]

discusses existing concept drift detection approaches in the

literature. Some of the existing methods to detect concept drift

includes sliding window techniques like OASW [14], ADWIN

[15]. In OASW they measure the performance of the model

over a recent sliding window of size t (that holds t data points)

and compare it with previous model performance over the data

points in the sliding window at t time in the past. If the

difference is more than a threshold, concept drift is detected.

In ADWIN two window is used, one fixed window holds past

data and another sliding window holds recent data. The model

performance is measure over both the windows and the

difference are checked against a threshold. If threshold is

crossed concept drift is detected. ADWIN is utilized in many

forecasting methods such as load forecasting using deep

learning with smart meter [16] data. Adaptive SVR [17] also

follows the same principle of error threshold-based triggering

of adaption. Many conventional idea drift detection techniques,

such as statistical or window-based tests, call for the

processing and storage of sizable historical data windows. In

situations where resources are scarce or when dealing with

enormous data streams, this substantial computing overhead

becomes prohibitive. Some techniques may not work well in

situations where different types of notion drift coexist, such as

those involving slow or abrupt drift. High-velocity, high-

volume data streams are difficult to handle with traditional

batch learning techniques. The requirement to retrain models

on a regular basis might cause delays and ineffective responses

to idea drift. Some other techniques to handle concept drift

include matching new data with old, segmented data [9] and

continuous adaptation [12] without explicit detection of drift.

Figure 3. Concept drift detection method

As shown in Figure 3, Our Model detects concept drift by

monitoring the model performance over a window time frame.

The size of the time frame window is fixed say w, so the

model’s performance metric (accuracy for classification,

RMSE or MAE or MAPE for regression) is tracked over the

last w predictions. A threshold Th is defined beforehand which

indicates the critical values for the performance metric used.

The value Th is chosen based on the performance of the model

on the training data itself, it this way we can use one sliding

window only compared to other methods with relative

comparison of performance across two windows. When the

average of the performance metric over the last w prediction

across Th, we say that the underlying concept of the data has

changed significantly and the model can no longer proves

satisfactory predictions thus Concept Drift has occurred.

So, assuming using RMSE as the error metric the concept

drift detection algorithm is as follows:

Concept Drift Detection (ground_truth, pred, W, Th):

Ground_truth: actual target values

Pred: model predicted values

W: Latest data window of size w

Th: Error threshold based on Training RMSE

START

Current_error: RMSE over the latest window W,

√
1

𝑤
∑ (𝑃𝑟𝑒𝑑𝑖 − 𝑔𝑟𝑜𝑢𝑛𝑑_𝑡𝑟𝑢𝑡ℎ𝑖)

2𝑊
𝑖=1

If (Current_error > Th);

Concept drift detected;

Else:

 Get next prediction;

 Get next ground_truth;

 Update window W;

 Call Concept Drift Detection function again;

END

The proposed lightweight concept drift detection method

for evolving time series data streams' time and space

complexity may be analysed as follows:

Time Complexity:

·Measures of statistical significance: The computation of

statistical measures, such as density estimates or distance

metrics, is often linear in the number of data points and the

number of features, resulting in a time complexity of O(N *

M), where M is the number of features.

· Adaptation and Detection: In most circumstances,

concept drift adaptation and detection are carried out

progressively as new data come in, resulting in a temporal

complexity of O(1) per data point.

Space Complexity:

· Statistical Measures: The memory required to store

intermediate outcomes, such as distance matrices or density

estimations, is often the cause of a statistical measure's spatial

complexity. In terms of the quantity of features and data points,

it is often linear, or O(N*M).

·Model Parameters: The memory needed to store any

model parameters that the method utilises (such as those for

statistical tests) is included in the space complexity.

4. DATASET DESCRIPTION

We used three real world time series datasets that are

publicly available at the UCI Machine Learning repository and

Kaggle.

4.1 Appliances energy prediction

Table 2. Energy data description

Dataset No of Feature No of Record

Energy Dataset 29 19735

Appliances energy prediction dataset has data for 4.5

months with 10 minutes frequency. It has 19735 data points

1304

and 29 features in it. The details of the features and a sample

of data is given as shown in Table 2.

Sample data (Appliances energy prediction):

4.2 Air quality prediction

Air quality dataset has 9358 instances and 15 features. Data

spans for one year starting March 2004 and ending in Feb 2005

as shown in Table 3. The missing values in the dataset are

indicated with -200 value.

Table 3. Air quality data description

Dataset No of Feature No of Record

Air quality Dataset 15 9358

Sample data (Air quality data description):

4.3 Air pollution prediction

The air pollution data has 43801 instances and 9 features as

shown in Table 4. It has 5 years of data collected at an hourly

basis at the US embassy in Beijing, China.

Table 4. Pollution data description

Dataset No of Feature No of Record

Air Pollution 9 43801

Sample data (Air pollution prediction):

5. RESULTS AND ANALYSIS

In order to analysis our proposed model and showcase its

results we used the three real world datasets selected ie,

Energy, Air quality and Pollution. The result section is

structured as follows, first we provide the model specifications

such as hyper-parameters for each dataset along with the pre-

processing done. Next to showcase the Lightweight Nature of

our proposed model we analyse the memory consumption and

time consumption of our model with feature selection and

without feature selection. Next, we compare the RMSE of

predictions on test data for our model both with and without

feature selection. After that we analyse our concept drift

detection method and show case the outcomes on both the

datasets.

Table 5. Result of random forest based feature selection

Dataset

Name

Total Number of Features

(Excluding Date and Time)

Number of Features

Selected
Selected Features

Energy 28 13
‘Appliances’, ‘lights’, ‘RH_1’, ‘RH_2’, ‘T3’, ‘RH_3’, ‘RH_5’,

‘RH_6’, ‘RH_7’, ‘T8’, ‘RH_8’, ‘Press_mm_hg’, ‘RH_out’

Air quality 13 3 ‘CO’, ‘PT08.S2’, ‘NOX’

Pollution 8 5 ‘Pollution’, ‘Dew’, ‘Temp’, ‘Press’, ‘Wind_spd’

5.1 Pre-processing and feature selection of data

At the starting step of we set the date and time as index for

visualization purpose. Since Air Quality dataset has some

missing values, we imputed the missing values using the

previous valid data value. In case of Pollution data, we used

Label Encoding to transform categorical feature to numerical

feature.

We applied the Random Forest based Feature Selection

algorithm to both the datasets to select only the important

features and the selection were as shown in Table 5.

Based on the selected features we performed outlier

detection using Z score value, Z score denotes the distribution

of each individual data points with respect to the mean of the

population in terms of standard deviation. For example a Z

score of 2 denotes that the selected data point for selected

feature lies within 2 standard deviations from the mean of the

population of that feature. We used Z score to filter out data

points with extreme outliers. |Z score| greater than 3 means

those data points are likely to be outliers and greater than 4 is

definitely outliers. We exclude all the data points that contains

outliers for any feature except target feature from the dataset

before proceeding with model building.

We applied the selected features on our RNN model and

computed the RMSE (Root Mean Squared Error) and

compared it with a recent work named AIS-RNN [2] model.

date
Appli

ances
lights T1 RH_1 T2 RH_2 T3 RH_3 T4 RH_4 T5 RH_5 T6 RH_6 T7 RH_7 T8 RH_8 T9 RH_9 T_out

Press_

mm_hg
RH_out

Winds

peed

Visibili

ty

Tdew

point
rv1 rv2

1/11/2016 17:00 60 30 19.89 47.60 19.20 44.79 19.79 44.73 19.00 45.57 17.17 55.20 7.03 84.26 17.20 41.63 18.20 48.90 17.03 45.53 6.60 733.50 92.00 7.00 63.00 5.30 13.28 13.28

1/11/2016 17:10 60 30 19.89 46.69 19.20 44.72 19.79 44.79 19.00 45.99 17.17 55.20 6.83 84.06 17.20 41.56 18.20 48.86 17.07 45.56 6.48 733.60 92.00 6.67 59.17 5.20 18.61 18.61

1/11/2016 17:20 50 30 19.89 46.30 19.20 44.63 19.79 44.93 18.93 45.89 17.17 55.09 6.56 83.16 17.20 41.43 18.20 48.73 17.00 45.50 6.37 733.70 92.00 6.33 55.33 5.10 28.64 28.64

1/11/2016 17:30 50 40 19.89 46.07 19.20 44.59 19.79 45.00 18.89 45.72 17.17 55.09 6.43 83.42 17.13 41.29 18.10 48.59 17.00 45.40 6.25 733.80 92.00 6.00 51.50 5.00 45.41 45.41

1/11/2016 17:40 60 40 19.89 46.33 19.20 44.53 19.79 45.00 18.89 45.53 17.20 55.09 6.37 84.89 17.20 41.23 18.10 48.59 17.00 45.40 6.13 733.90 92.00 5.67 47.67 4.90 10.08 10.08

1/11/2016 17:50 50 40 19.89 46.03 19.20 44.50 19.79 44.93 18.89 45.73 17.13 55.03 6.30 85.77 17.13 41.26 18.10 48.59 17.00 45.29 6.02 734.00 92.00 5.33 43.83 4.80 44.92 44.92

1/11/2016 18:00 60 50 19.89 45.77 19.20 44.50 19.79 44.90 18.89 45.79 17.10 54.97 6.26 86.09 17.13 41.20 18.10 48.59 17.00 45.29 5.90 734.10 92.00 5.00 40.00 4.70 47.23 47.23

1/11/2016 18:10 60 50 19.86 45.56 19.20 44.50 19.73 44.90 18.89 45.86 17.10 54.90 6.19 86.42 17.10 41.20 18.10 48.59 17.00 45.29 5.92 734.17 91.83 5.17 40.00 4.68 33.04 33.04

1/11/2016 18:20 60 40 19.79 45.60 19.20 44.43 19.73 44.79 18.89 45.79 17.17 55.00 6.12 87.23 17.17 41.40 18.10 48.59 17.00 45.29 5.93 734.23 91.67 5.33 40.00 4.67 31.46 31.46

1/11/2016 18:30 70 40 19.86 46.09 19.23 44.40 19.79 44.86 18.89 46.10 17.10 55.00 6.19 87.63 17.20 41.50 18.10 48.59 17.00 45.29 5.95 734.30 91.50 5.50 40.00 4.65 3.09 3.09

1/11/2016 18:40 230 70 19.93 45.86 19.36 44.40 19.79 44.90 18.89 46.43 17.10 55.00 6.19 87.87 17.25 42.72 18.10 48.59 17.00 45.29 5.97 734.37 91.33 5.67 40.00 4.63 10.30 10.30

1/11/2016 18:50 580 60 20.07 46.40 19.43 44.40 19.79 44.83 19.00 46.43 17.10 55.00 6.12 87.99 17.53 44.26 18.07 48.63 16.89 45.29 5.98 734.43 91.17 5.83 40.00 4.62 8.83 8.83

1/11/2016 19:00 430 50 20.13 48.00 19.57 44.40 19.89 44.90 19.00 46.36 17.10 55.09 6.12 88.59 17.82 45.49 18.07 48.56 16.96 45.29 6.00 734.50 91.00 6.00 40.00 4.60 34.35 34.35

1/11/2016 19:10 250 40 20.26 52.73 19.73 45.10 19.89 45.49 19.00 47.22 17.10 55.16 6.07 88.22 17.96 46.16 18.03 48.67 16.89 45.33 6.00 734.62 90.50 6.00 40.00 4.52 19.21 19.21

1/11/2016 19:20 100 10 20.43 55.89 19.86 45.83 20.03 47.53 19.00 48.70 17.10 55.50 5.90 88.16 17.96 45.53 18.10 49.19 16.89 45.35 6.00 734.73 90.00 6.00 40.00 4.43 38.49 38.49

1/11/2016 19:30 100 10 20.57 53.89 20.03 46.76 20.10 48.47 19.00 48.49 17.15 56.04 5.80 88.37 17.89 44.93 18.15 49.20 16.89 45.33 6.00 734.85 89.50 6.00 40.00 4.35 24.88 24.88

1/11/2016 19:40 90 10 20.73 52.66 20.17 47.22 20.20 48.53 18.93 48.16 17.17 56.49 5.73 88.16 17.76 44.27 18.23 49.63 16.89 45.29 6.00 734.97 89.00 6.00 40.00 4.27 35.88 35.88

1/11/2016 19:50 70 30 20.86 53.66 20.20 47.06 20.20 48.45 18.89 47.96 17.20 56.93 5.53 87.30 17.70 43.73 18.36 50.03 16.89 45.29 6.00 735.08 88.50 6.00 40.00 4.18 49.60 49.60

1/11/2016 20:00 80 30 20.89 51.19 20.20 46.33 20.20 48.19 18.96 48.63 17.20 57.06 5.33 86.76 17.67 43.16 18.53 50.20 16.89 45.20 6.00 735.20 88.00 6.00 40.00 4.10 19.00 19.00

1/11/2016 20:10 140 40 20.89 49.80 20.20 46.03 20.17 47.63 19.03 49.50 17.59 70.73 5.33 87.46 17.60 42.69 18.67 50.26 16.89 45.20 6.00 735.23 87.83 6.00 40.00 4.07 38.87 38.87

1305

5.2 Train-test split

For Energy and Air Quality datasets we used 80% of the

data for initial training, 10% of that 80% were used as a

validation set while training. Rest 20% of the data were used

as a test set in a streaming manner feeding one point at a time

to the trained model. For Pollution data our main objective is

to show how the model detects and adapts to different concept

drifts hence we used 30% of the data as training set (10% of

that used as validation set), and 70% of the data as test set.

Since our problem is regression one, we use RMSE (Root

Mean Square Error) as an error metric and measure the final

RMSE on the test set.

5.3 Model specifications

The RNN model used for all the datasets have 2 hidden

layers and each layer had 12 units. The lag parameter was

chosen to be 12. The optimizer was Adam with learning rate

of 0.001 for the training. We used sigmoid activation for

hidden layers and linear activation for output layer of the

network. The batch size was taken as 1500 and we ran the

model for 5000 epochs. We also used L1 regularization in the

hidden layer of the value 0.0001. The hyper-parameters were

chosen using HyperOpt Bayesian hyper-parameter tuning

using a range of values for those hyper-parameters.

5.4 Memory and time consumption analysis

A lightweight model takes less memory and less time to

process the data compared to the conventional model. To

validate the effectiveness of our model being lightweight we

measured both the memory consumed and time consumed

while training by the data with and without feature selection.

To check scalability, we artificially generated a large version

of the Energy and Air Quality datasets with 120000 instances

each to measure the memory and time consumption as well.

All the experiments were conducted on a machine with 11th

Gen Intel® core ™ i5-processor with clock speed 2.60GHz,

16GB of RAM and 4 Core(s), The results are as shown in

Table 6 and Table 7:

Table 6. Memory consumption by the datasets without feature selection and with feature selection

Dataset Name
Dataset Size Before Feature Selection

(MB)

Dataset Size after Feature Selection

(MB)

Percentage of Reduction in

Size

Energy 4.4 2.1 52.27%

Air Quality 1 0.29 71.39%

Energy Generated 26.6 12.8 51.88%

Air Quality

Generated
12.8 3.7 71.09%

Pollution 3 2 33.33%

Table 7. Time consumption for training by the datasets without feature selection and with feature selection

Dataset Name Time without Feature Selection Time with Feature Selection Percentage Reduction of time

Energy 10 min 7 sec 9 min 19 sec 7.91%

Air quality 4 min 53 sec 4 min 30 sec 7.84%

Energy Generated 1 hour 10 min 51 min 41 sec 26.20%

Air Quality Generated 52 min 25 sec 41 min 40 sec 20.51%

Pollution 18 min 15 sec 16 min 41 sec 8.58%

Figure 4. Memory consumption in MB without feature

selection and with feature selection

From the results as shown in Figure 4, we see that by using

Random Forest based feature selection we can reduce the

memory consumption by about 52% for Energy data, 71% for

Air Quality data and 33.33% for Pollution data. This can save

a lot of storage when the data size grows as large volume is a

well-known characteristic of real world time series data. The

Time consumption to train the RNN model is also seen to be

reducing since the model needs to process a smaller number of

features. Comparing the reduction of time consumption

between the original data and the larger generated version of

the data, we observe that the reduction of time scales well as

the data size grows, hence while its only about 8% reduction

for original data size, the reduction is significantly more about

26% for Energy and 20% for Air Quality generated data. So,

we can conclude that as the data size grows even more the

reduction of time consumed will be more significant as shown

in Figure 5.

Figure 5. Time consumption in sec without feature selection

and with feature selection

4.4
1 3

26.6

12.8

2.1 0.29 2

12.8

3.7

0

10

20

30

Energy Air Quality Pollution Energy

Generated

Air Quality

Generated

MEMORY CONSUMPTION BY DATASET IN

MB

Without Feature Selection With Feature Selection

607 293
1095

4200

3145

559 270
1001

3101
2500

0

2000

4000

6000

Energy Air Quality Pollution Energy

Generated

Air Quality

Generated

TIME CONSUMPTION BY DATASET IN SECONDS

Without Feature Selection With Feature Selection

1306

5.5 Model performance with and without feature selection

analysis

We measured the performance of the RNN model using

same set of hyper-parameters for the 3 datasets on their test

sets once with full feature and once with only selected features

from the Random Forest based feature selection procedure.

The results are as shown in Table 8:

Table 8. Model performance on test datasets without feature

selection and with feature selection

Dataset

Name

RMSE without

Feature Selection

RMSE with Feature

Selection

Energy 61.34 58.74

Air quality 0.604 0.606

Pollution 28.15 27.79

As we see for Energy and Pollution data the performance is

better when we used feature selection using Random Forest to

select only the important feature. Whereas for Air Quality

dataset the performance is almost same in both the cases.

Hence, we see that by using Random Forest based feature

selection procedure we are not only saving memory and time

consumption by the model training but the model performance

itself is also improving or remaining similar to what it was

while using all the features.

6. CONCEPT DRIFT DETECTION ANALYSIS

Our model detects any possible drift in the data stream by

comparing the model performance over a recent window of

data against a threshold. The threshold is set using the model

performance on the training set itself. For all the datasets the

performance metric used is Root Mean Squared Error (RMSE).

The training RMSE as measured with the specified model

specifications are as shown in Table 9:

Table 9. Training RMSE on the datasets

Dataset Name Training RMSE

Energy 68.03

Air quality 0.615

Pollution 29.29

One important note is that RMSE depends on the dataset

and the range of target feature hence, RMSE can take any

value and does not have any specific range. We set the

performance threshold as 120% of training RMSE for further

experimentations. Hence the performance threshold for the

experiments are as shown in Table 10:

Table 10. Performance threshold for the datasets

Dataset Name Performance Threshold

Energy 81.636

Air quality 0.738

Pollution 35.148

Thereafter since the datasets itself does not have any

concept drift behaviour we inject artificial concept drift into

the datasets to examine if the drift gets detected by our model.

The error window size was chosen as shown in Table 11:

Table 11. Error window size for the datasets

Dataset Name Error Window Size

Energy 144

Air quality 144

Pollution 288

Figure 6. Test data for energy dataset with added concept

drift

We injected drift by adding a shift to the target feature in

Energy and Air Quality dataset as shown in Figure 6 and

Figure 7. The amount of shift was chosen to be two times the

mean value of the feature and the shift was added from 200

data point onwards in the test set.

Figure 7. Test data for air quality dataset with added concept

drift

Then we applied our model on these data and detected

concept drift using our method without retraining the model,

the results are as follows:

The RMSE is measured on the error-window. As shown in

Figure 8 the Red line denotes the error threshold set. The

Model detects concept drift whenever the RMSE crosses the

red line hence the green blobs denote the instance when our

model detects concept drift.

Whenever the RMSE of model prediction is crossing the

threshold, our method is detecting the concept drift as can be

seen from the method, note that we set a minimum gap

between two concept drift detection to avoid continuous drift

alert. The gap was set as the same as error window size. Also,

since RMSE is measured on the error window, the graph of

error shown in Figure 9 starts when the model has predicted at

least the same number of instances as the error window size.

The details of the test datasets and concept drift deleted

instances are as shown in Table 12:

1307

Figure 8. The RMSE of predictions made by the model on test data for energy dataset

Figure 9. RMSE curve and concept drift detection on test data for air quality dataset

Table 12. Concept drift detection instances

Dataset # of Instances in Test Data Instances where Concept Drift Detected

Energy 3895 [820, 1106,1839, 1984, 2310, 2989, 3134, 3701, 3846]

Air quality 1832 [375, 520, 665, 837, 982, 1127, 1272, 1417, 1562, 1707]

Hence, we see that since drift is present in the data, our

method successfully detects drift on a regular basis as without

retraining the model is not adapting to the concept drift.

For the other data set Pollution, we applied all 4 kinds of

drift ie. Sudden, Gradual, Recurring, and Incremental and

tested our model performance against it.

For the other data set Pollution as shown in Figure 10 before

drift inclusion, we applied all 4 kinds of drift i.e., Sudden,

Gradual, Recurring, and Incremental and tested our model

performance against it.

Figure 10. Pollution test set before drift inclusion

We added sudden drift followed by gradual drift and

recurring the previous drift and finally incremental drift in the

test data as shown in Figure 11.

The RMSE is measured on the error-window. The red line

denotes the error threshold set. The Model detects concept

drift whenever the RMSE crosses the red line or RMSE is

higher than the red line after the minimum gap between two

drift detection, hence the green blobs denote the instances

when our model detects concept drift.

Figure 11. Pollution test set after applying all 4 kinds of

drifts as indicated

We applied our model to detect concept drift while

predicting on this modified test data but without any retraining,

the concept drift detection result is as shown in the Figure 12

graph.

We can see that whenever a concept drift is faced in the test

data the model prediction RMSE shoots higher than the

threshold and remains high thus triggering the concept drift

detection successfully.

Need of Injecting Artificial Drift:

· Model Validation: Using artificial drift, you may

examine how well your models and algorithms respond to

shifting data patterns. You can check to see if your model

quickly, accurately, and without raising too many false alarms

identifies drift.

·Scenario exploration: You might not always have access

to historical data with identified drift points in real-world

applications. You can explore numerous scenarios and

evaluate how your systems manage different types of drift,

such as slow or rapid shifts, by injecting false drift.

1308

Figure 12. The figure denotes the RMSE of predictions made

by the Model on the concept drift injected test data for

Pollution dataset

Methodology for Injecting Artificial Drift:

Step 1: Target Features: Identify the features in your dataset

that the artificial drift will have an impact on. It's crucial to

pick qualities that are pertinent to the issue you're researching.

Step 2: Selecting Drift Types: Choose the forms of idea

drift you want to model, such as progressive drift (data that

changes gradually) or abrupt drift (data that changes suddenly

and noticeably).

Step 3: Timing Window: Specify the times or intervals

during which the artificial drift will take place. Indicate the

beginning, duration, and end dates of the drift.

Step 4: Create Drifted Data: Alter the target features within

the designated time frames in accordance with the selected

drift type.

Step 5: Mix with Real Data: To produce a more realistic

dataset, if at all possible, mix the artificially drifted data with

real data. This integration makes sure that the simulated drift

matches the distribution of the actual data.

Step 6: Run tests: Utilize the dataset that has artificial drift

injected into it to run tests and assess how well your idea drift

detection approaches work. Calculate the false positive and

detection accuracy and time-to-detect rates.

Step 7: Fine Tune: The concept drift detection methods or

models should be fine-tuned based on the findings of your

studies to increase their effectiveness in spotting false drift.

7. CONCLUSIONS AND FUTURE WORK

In this paper we discussed about a lightweight RNN based

model with concept drift detection using a sliding window.

Since our model with RF based feature selection uses only

important features, its lightweight compared to other models

in the literature using full set of features. Detecting concept

drift helps the model to adapt to it and maintain the model

performance over the time. It is highly important to keep the

model performance above expected level. We further showed

our concept drift detection method on three real world time

series datasets, and from results it is clear that our method

successfully detects concept drift in the data stream Hence the

proposed model is suitable to apply for evolving real world

time series data streams. This approach improves real-time

concept drift detection, enabling more effective pollution

mitigation strategies and optimized energy use, ultimately

promoting cleaner environments and sustainable energy

practices. It is the proposed method for selecting relevant

features in the air quality, pollution, and energy sectors.

Key Achievements of the Lightweight Model:

·Efficient resource consumption, making it suited for real-

time or resource-constrained applications.

·Adaptability to evolving data patterns, decreasing false

alarms and delays in idea drift detection.

· Scalability for managing large-scale time series data

streams.

·Robust performance in numerous application domains,

including air quality, pollution, and the energy sector.

The limitation of Lightweight Model:

·Potential conflicts between forecast accuracy and model

simplicity.

·The need of choosing clustering and statistical methods

carefully to ensure efficacy.

·Sensitivity to starting parameters that might need to be

adjusted for best results.

·Compared to more complicated models, limited capacity

to capture complex, non-linear relationships in data.

In future work, the lightweight method can be improved

further by combining other techniques with dynamic feature

section method to reduce time and memory complexity along

with feature selection. In concept drift detection part, the

detection can be improved to separate sudden noise from

actual concept drift more efficiently and furthermore the mode

can be made aware of the type of concept drift when drift is

detected by the proposed method which may improve the

performance further.

REFERENCES

[1] Paramasivan, S.K. (2021). Deep learning based recurrent

neural networks to enhance the performance of wind

energy forecasting: A review. Revue d’Intelligence

Artificielle, 35(1): 1-10.

https://doi.org/10.18280/ria.350101

[2] Munkhdalai, L., Munkhdalai, T., Park, K.H.,

Amarbayasgalan, T., Batbaatar, E., Park, H.W., Ryu,

K.H. (2019). An end-to-end adaptive input selection with

dynamic weights for forecasting multivariate time series.

IEEE Access, 7: 99099-99114.

https://doi.org/10.1109/ACCESS.2019.2930069

[3] Choi, J.Y., Lee, B. (2018). Combining LSTM network

ensemble via adaptive weighting for improved time

series forecasting. Mathematical Problems in

Engineering, 2018: 2470171.

https://doi.org/10.1155/2018/2470171

[4] Du, Y., Wang, J., Feng, W., Pan, S., Qin, T., Xu, R.,

Wang, C. (2021). Adarnn: Adaptive learning and

forecasting of time series. In Proceedings of the 30th

ACM International Conference on Information &

Knowledge Management, pp. 402-411.

https://doi.org/10.1145/3459637.3482315

[5] Xie, H., Zhang, L., Lim, C.P. (2020). Evolving CNN-

LSTM models for time series prediction using enhanced

grey wolf optimizer. IEEE Access, 8: 161519-161541.

https://doi.org/10.1109/ACCESS.2020.3021527

[6] Mohapatra, U.M., Majhi, B., Satapathy, S.C. (2019).

Financial time series prediction using distributed

machine learning techniques. Neural Computing and

Applications, 31: 3369-3384.

https://doi.org/10.1007/s00521-017-3283-2

[7] Sahraei, M.A., Duman, H., Codur, M.Y., Eyduran, E.

(2021) Prediction of transportation energy demand:

Multivariate adaptive regression splines. Energy, 224:

120090.

1309

[8] Riyaz, L., Butt, M.A., Zaman, M. (2022). A novel

ensemble deep learning model for coronary heart disease

prediction. Revue d’Intelligence Artificielle, 36(6): 825-

832. https://doi.org/10.18280/ria.360602

[9] Song, Y., Lu, J., Liu, A., Lu, H., Zhang, G. (2021). A

segment-based drift adaptation method for data streams.

IEEE Transactions on Neural Networks and Learning

Systems, 33(9): 4876-4889.

https://doi.org/10.1109/TNNLS.2021.3062062

[10] Lu, Y., Park, Y., Chen, L., Wang, Y., De Sa, C., Foster,

D. (2021). Variance reduced training with stratified

sampling for forecasting models. In International

Conference on Machine Learning, pp. 7145-7155.

[11] Fields, T., Hsieh, G., Chenou, J. (2019). Mitigating drift

in time series data with noise augmentation. 2019

International Conference on Computational Science and

Computational Intelligence (CSCI), Vegas, NV, USA,

pp. 227-230.

https://doi.org/10.1109/CSCI49370.2019.00046

[12] Read, J. (2018). Concept-drifting data streams are time

series; the case for continuous adaptation. arXiv preprint

arXiv:1810.02266. https://arxiv.org/abs/1810.02266

[13] Khamassi, I., Sayed-Mouchaweh, M., Hammami, M.,

Ghédira, K. (2018). Discussion and review on evolving

data streams and concept drift adapting. Evolving

Systems, 9: 1-23. https://doi.org/10.1007/s12530-016-

9168-2

[14] Yang, L., Shami, A. (2021). A lightweight concept drift

detection and adaptation framework for IoT data streams.

IEEE Internet of Things Magazine, 4(2): 96-101.

https://doi.org/10.1109/IOTM.0001.2100012

[15] Montiel, J., Mitchell, R., Frank, E., Pfahringer, B.,

Abdessalem, T., Bifet, A. (2020). Adaptive xgboost for

evolving data streams. In 2020 International Joint

Conference on Neural Networks (IJCNN), pp. 1-8.

https://doi.org/10.1109/IJCNN48605.2020.9207555

[16] Fekri, M.N., Patel. H., Grolinger, K., Sharma, V. (2021).

Deep learning for load forecasting with smart meter data:

Online adaptive recurrent neural network. Applied

Energy. 28: 116177.

https://doi.org/10.1016/j.apenergy.2020.116177

[17] Guo, Y., Han, S., Shen, C., Li, Y., Yin, X., Bai, Y. (2018)

An adaptive svr for high-frequency stock price

forecasting. IEEE Access, 6: 11397- 11404.

https://doi.org/10.1109/ACCESS.2018.2806180

1310

