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Time series forecasting, a potent tool for predicting real-world entities such as financial 

markets and weather patterns, often grapples with the issue of concept drift, characterized 

by changes in the behaviour of the time series over time. This study aims to develop a 

lightweight time series model, efficient in training time, to match the data stream's arrival 

rate. Furthermore, a method to detect the presence of concept drift in the data stream, 

regardless of the time point, is discussed. Presented herein is a benchmark dataset, publicly 

accessible and specifically designed to simulate changing time series scenarios across 

diverse industries including Energy, Air Quality, and Pollution. This dataset amalgamates 

synthetic and actual time series along with ground truth concept drift locations, facilitating 

a comprehensive evaluation of concept drift detection techniques. A novel, lightweight 

concept drift detection method, which integrates supervised methodologies with statistical 

metrics to surmount the resource constraints often encountered in streaming data scenarios, 

is proposed. This method minimizes computational overhead while ensuring reliable drift 

detection in response to shifting data distributions. Experimental results indicate that the 

proposed approach surpasses prior methods in computational performance whilst 

accurately identifying idea drifts in evolving time series data streams. The study contributes 

a valuable dataset and a lightweight feature selection method, advancing the knowledge in 

the field of concept drift detection within the context of time series data streams. These 

advancements provide an efficient technique for tracking changing data patterns across 

various application domains, thus offering significant implications for future research. 
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1. INTRODUCTION

Time series is a sequence of data measured with a constant 

frequency. Forecasting of time series is a very important task 

in today's world with several applications starting from 

financial markets to weather prediction etc. Univariate time 

series is a time series having information about only one real 

world entity, however often we see any real world entity is 

dependent on multiple other features, which leads us to 

multivariate time series Multivariate time series forecasting 

can be challenging due to high volume of the data. However, 

one of the major issues with time series forecasting is the 

possible presence of concept drift Concept drift is the change 

in the data pattern in such a way that a model trained on old 

data cannot produce good prediction anymore. Thus, it's 

necessary to tackle these issues while building a time series 

prediction model. Online models are suitable to handle huge 

stream of data as they do not require to store all the past data. 

Recurrent neural network based models are popular for time 

series forecasting as they can capture complex pattern in the 

data. It has been proven over several review studies like [1] 

that deep learning based RNN moels tend to perform better 

than conventional models for forecasting problems. Although 

Several RNN based models [2-4] and LSTM-CNN hybrid 

models [5] have been developed for multivariate time series 

forecasting addressing issues but there are few such models 

that can handle both concept drift and well as high volume of 

data in efficient manner. Distributed machine learning 

techniques [6] are also used for time series forecasting but they 

have high hardware requirements. Predictive tool like MARS 

(Multivariate Adaptive Regression Splines) have been used for 

forecasting problems such as transportation energy demand [7] 

but their application is limited. In this document we discuss 

about feature selection as a way to effectively reduce the 

computation cost of the model and make it lightweight in 

nature and we also provide a way to detect and adapt to 

possible concept drift in the data stream for an online RNN 

model using a sliding window approach. 

To increase the reliability and accuracy of predictions, 

combine several lightweight models. To capitalise on the 

advantages of many models, strategies such as model stacking, 

bagging, or boosting might be used. Time Series 

Decomposition use techniques like Seasonal Decomposition 

of Time Series (STL) or Empirical Mode Decomposition 

(EMD) to break down time series data into its individual 

components, such as trend, seasonality, and residuals. This 

division can make modelling simpler and predicting more 

precise. 

Use specialised feature selection techniques, such as 

Recursive Feature Elimination (RFE), L1 Regularisation 

(Lasso), or Mutual Information-based feature selection, to 

determine which characteristics are the most instructive and 

pertinent for prediction. 

Use specialised stream mining techniques to handle 

changing data streams effectively, such as Hoeffding Trees, 

VFDT (Very Fast Decision Tree), or SAMOA (Scalable 
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Advanced Massive Online Analysis). 

Include change detection techniques like CUSUM 

(Cumulative Sum) or Page-Hinkley to identify concept drifts 

and activate model adaptation when significant alterations in 

the distribution of the data take place. 

To divide the computational load and enable effective real-

time processing of time series data streams, use parallel 

processing frameworks like Apache Flink or Apache Kafka 

Streams. 

Reduce the dimensionality and memory needs of time series 

data while maintaining its key properties by using data 

quantization and compression techniques. 

Hyper parameter Tuning, to improve performance while 

preserving efficiency, fine-tune the hyper parameters of 

lightweight models using methods such as Bayesian 

optimisation, grid search, or random search. 

Online Anomaly Detection: Time series forecasting and 

online anomaly detection algorithms can be combined to 

quickly spot outliers or strange trends, which is essential for 

many applications including fraud detection and fault 

monitoring. 

Making predictions about future data points based on prior 

time-ordered data is an important component of data analysis 

and predictive modelling. This method is used in a variety of 

fields, including finance, economics, climate research, retail, 

healthcare, and others. Time series data is useful for 

identifying trends and patterns as well as for making decisions 

because it is comprised of observations that are collected or 

recorded over time. Key Challenges in Time Series is given as:  

• Data Quality: Measurement mistakes, missing values, 

outliers, and poor data quality can all have a detrimental effect 

on forecasting accuracy. In order to address these difficulties, 

data pre-treatment and purification are crucial tasks. 

• Overfitting: When a model is overly complicated and 

attempts to match the underlying patterns of the data, it instead 

tries to fit the data noise. It's crucial to strike a balance between 

model complexity and overfitting. 

• Concept Drift: Concept drift occurs when data 

patterns in emerging systems alter over time. It is a huge task 

to adjust to these changes and update predicting models 

accordingly. 

• Scalability: Effective techniques and processing 

resources are needed to handle large-scale time series data 

streams in real-time or near-real-time applications. 

Motivation: 

A simple model for time series forecasting in changing data 

streams is inspired by a number of real-world issues and new 

trends. 

Many contemporary applications, including financial 

market research, industrial equipment monitoring, and energy 

consumption forecasting, need for real-time or almost real-

time forecasts using streaming time series data. Lightweight 

models are appropriate for many applications because they can 

make predictions more quickly. There could not be enough 

processing power or memory in situations with limited 

resources, such as edge computing devices or IoT sensors. A 

lightweight model is necessary for the effective use of the 

available resources. Low latency is essential in some 

applications. For rapid decision-making in applications like 

autonomous vehicles and predictive maintenance, a 

lightweight model can lower prediction latency. 

Energy-efficient models can increase battery life and lower 

energy consumption in battery-operated or energy-sensitive 

devices like smartphones and Internet of Things sensors. In 

changing time series data streams, lightweight models are 

frequently more nimble and capable of idea drift adaptation. 

They effectively adapt to shifting patterns, lowering the danger 

of model obsolescence. In many fields where real-time or 

resource-constrained forecasting is advantageous, such as 

healthcare, finance, environmental monitoring, and others, 

lightweight models can find use. 

The motivation for a lightweight model for time series 

forecasting in evolving data streams is driven by the need for 

efficient, scalable, and adaptable solutions that can meet the 

demands of modern data-intensive applications while 

operating within resource constraints. These models aim to 

strike a balance between prediction accuracy and 

computational efficiency, making them highly relevant in the 

evolving landscape of data analytics. 

The rest of the paper is organised as follows, first we give 

theoretical explanation on the lightweight feature selection 

technique used, followed by explaining how our concept drift 

detection approach works. Then we provide the real world 

datasets used and their descriptions followed by results and 

analysis of the results collected on those datasets. Finally, we 

briefly summarize the effectiveness of our proposed model 

and how it can be further improved in the future. 

 

 

2. LIGHTWEIGHT METHOD 

 

A lightweight model takes less time to run compared to 

other traditional models. Making a model lightweight in 

beneficial while dealing with data streams since the amount of 

data is potentially massive and it becomes very expensive to 

store the whole data in data storage. In literature there are some 

techniques that can make a model lightweight in nature. 

Building a model on a representative sample of data rather 

than entire data can be done, however it's not very intuitive for 

time series data since the order of the data points is important 

in that case and so sampling data points randomly from the 

data will break the order of the data points that. Feature 

selection is suggested in the study [2] as another way where 

we only consider the important features from a dataset and 

discard the rest of the features while building the model. This 

way the processing time of the model can be improved. There 

are many feature selection methodologies in machine learning 

for example, random forest based, IG (Information Gain) 

value based as shown to be applied with ANN [8] etc. 

Segmentation [9] of total data into multiple segments and then 

building one model or an ensemble is another approach that 

can be used for faster training of the model. Also, Stratification 

[10] of the time series into several smaller homogeneous time 

series can be used as suggested to reduce gradient estimation 

time for model training. 

For our model we used Random Forest based feature 

selection technique to make the model lightweight as shown 

in Figure 1. 

 

 
 

Figure 1. Light weight model architecture 
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Random Forest based Feature selection: As shown in 

Figure 2, Random Forest is a tree based ensemble learning 

algorithm. In ensemble learning the prediction is the average 

of all the prediction from all the individual models. 

 

 
 

Figure 2. Random forest algorithm structure 

 

Lightweight Feature selection Algorithm: 

Let: 

D be the dataset. 
F be the set of features. 
T be the number of decision trees in the forest. 
GI(X) be the Gini Importance of feature 'X'. 
For each decision tree t in the forest: 

Randomly select a subset of data samples D_t from D. 

Randomly select a subset of features F_t from F. 

Build a decision tree using D_t and F_t. 
Calculate the Gini Importance for feature 'X' in a tree t: 

GI(X)_t =∑[reduction in Gini impurity caused by feature 'X' 

at each node in tree t] 

Calculate the Gini Importance for feature 'X' 

GI(X)=(1/T) * ∑[GI(X)_t for each tree t] 

A random forest regressor is used for regression tasks. The 

random forest algorithm can be used to compute feature 

importance. 

·Random Forest contains several decision trees, each built 

from randomly selected instances from the data and also 

randomly selected subset of features. 

·Each tree contains several nodes where the data is split 

into two categories based on the feature values. 

·Each of the category contains observations that are more 

similar among themselves and different from the ones in 

another category. 

·The importance of the features is decided based on how 

impactful it is while splitting the data. For regression it is 

based on reduction of impurity or variance in each category. 

·The impurity or variance reduction from each feature 

while splitting based on it can be averaged across trees to 

determine the final importance of the variable. 

·By default, it selects the features with higher feature 

importance than the average feature importance across all the 

features. 

The impurity is computed using Mean Squared Error (MSE), 

MSE is computed as follows: 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝜇)2

𝑛

𝑖=1
 (1) 

 

where, yi is the value of target, N denotes the number of 

instances and µ denotes the mean value of the target over all 

the instances. 

This variance reduction is computed over all the nodes of 

the trees that are part of the Random Forest. The importance 

of the nodes is computed as follows: 

 

𝐼𝑚𝑝𝑗=𝑊𝑗𝐶𝑗−𝑊𝑙𝑗𝐶𝑙𝑗−𝑊𝑟𝑗𝐶𝑟𝑗
 

 

where, Impj stands for importance of node j. Wj denotes the 

weighted number of samples that belongs to node j, Cj denotes 

the impurity at node j. lj and rj subscripts stand for left and 

right child after the split at node j respectively. 

The importance of each feature is then calculated as follows: 

 

𝐹𝐼𝑖 =
∑ 𝐼𝑚𝑝𝑗𝑗:𝑛𝑜𝑑𝑒 𝑗 𝑠𝑝𝑙𝑖𝑡𝑠 𝑜𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖

∑ 𝐼𝑚𝑝𝑘𝑘∈𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠

 (2) 

 

where, El stands for feature importance of ith feature and Imp, 

denotes the importance of node j. The feature importance is 

normalized in the range of 0 to 1 by dividing the feature 

importance values by the sum of all feature’s importance. 

 

Norm 𝐹𝐼𝑖 =
𝐹𝐼𝑖

∑ 𝐹𝐼𝑗𝑗∈𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

 (3) 

 

The final feature importance computed over the entire 

random forest is the mean of feature importance over all the 

trees in the forest: 

 

𝑅𝐹_𝐹𝐼𝑖 =
∑ 𝑁𝑜𝑟𝑚𝐹𝐼𝑗𝑗∈𝑎𝑙𝑙 𝑡𝑟𝑒𝑒𝑠

𝑇
 (4) 

 

where, RF FI is the feature importance of ith feature for the 

entire random forest, NormEl is the normalized feature 

importance at the ith tree and T denotes the total count of 

decision trees in the forest. Table 1 shows number of features 

selected using Random Forest for Engery, Air Quality and Air 

Pollution dataset. 

 

Table 1. Summary of random forest based feature selection 

algorithm lightweight model 

 

Dataset 
No of 

Feature 

No of 

Record 

No of Feature Selected 

using Random Forest 

Energy 29 19735 13 

Air 

quality 
15 9358 3 

Air 

Pollution 
9 43801 8 

 

 

3. DETECTION OF CONCEPT DRIFT 

 

Concept drift is known as the change in the relationship 

between the target variable and independent variables in the 

data. It can severely affect a model performance. It is true that 

there exist forecasting methods that do not perform explicit 

drift detection, for example one of such method simulates drift 

by adding noise [11] into the training data to make it more 

responsive to actual concept drift. Some methods do 

continuous adaption [12] without explicit detection of drift. 

However; there are limitations to such methods, adapting to 

changing conditions in time series data without effective drift 
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detection can lead to inaccurate predictions and suboptimal 

model performance. Hence its necessary to detect concept drift 

accurately while dealing with streaming data. The paper [13] 

discusses existing concept drift detection approaches in the 

literature. Some of the existing methods to detect concept drift 

includes sliding window techniques like OASW [14], ADWIN 

[15]. In OASW they measure the performance of the model 

over a recent sliding window of size t (that holds t data points) 

and compare it with previous model performance over the data 

points in the sliding window at t time in the past. If the 

difference is more than a threshold, concept drift is detected. 

In ADWIN two window is used, one fixed window holds past 

data and another sliding window holds recent data. The model 

performance is measure over both the windows and the 

difference are checked against a threshold. If threshold is 

crossed concept drift is detected. ADWIN is utilized in many 

forecasting methods such as load forecasting using deep 

learning with smart meter [16] data. Adaptive SVR [17] also 

follows the same principle of error threshold-based triggering 

of adaption. Many conventional idea drift detection techniques, 

such as statistical or window-based tests, call for the 

processing and storage of sizable historical data windows. In 

situations where resources are scarce or when dealing with 

enormous data streams, this substantial computing overhead 

becomes prohibitive. Some techniques may not work well in 

situations where different types of notion drift coexist, such as 

those involving slow or abrupt drift. High-velocity, high-

volume data streams are difficult to handle with traditional 

batch learning techniques. The requirement to retrain models 

on a regular basis might cause delays and ineffective responses 

to idea drift. Some other techniques to handle concept drift 

include matching new data with old, segmented data [9] and 

continuous adaptation [12] without explicit detection of drift. 

 

 
 

Figure 3. Concept drift detection method 

 

As shown in Figure 3, Our Model detects concept drift by 

monitoring the model performance over a window time frame. 

The size of the time frame window is fixed say w, so the 

model’s performance metric (accuracy for classification, 

RMSE or MAE or MAPE for regression) is tracked over the 

last w predictions. A threshold Th is defined beforehand which 

indicates the critical values for the performance metric used. 

The value Th is chosen based on the performance of the model 

on the training data itself, it this way we can use one sliding 

window only compared to other methods with relative 

comparison of performance across two windows. When the 

average of the performance metric over the last w prediction 

across Th, we say that the underlying concept of the data has 

changed significantly and the model can no longer proves 

satisfactory predictions thus Concept Drift has occurred. 

So, assuming using RMSE as the error metric the concept 

drift detection algorithm is as follows: 

 

Concept Drift Detection (ground_truth, pred, W, Th): 

 

Ground_truth: actual target values 

Pred: model predicted values 

W: Latest data window of size w 

Th: Error threshold based on Training RMSE 

--------------------------------------------------------- 

START 

Current_error: RMSE over the latest window W, 

√
1

𝑤
∑ (𝑃𝑟𝑒𝑑𝑖 −  𝑔𝑟𝑜𝑢𝑛𝑑_𝑡𝑟𝑢𝑡ℎ𝑖)

2𝑊
𝑖=1  

If (Current_error > Th); 

 

Concept drift detected; 

Else: 

   Get next prediction; 

   Get next ground_truth; 

   Update window W; 

   Call Concept Drift Detection function again; 

END 

 

The proposed lightweight concept drift detection method 

for evolving time series data streams' time and space 

complexity may be analysed as follows: 

Time Complexity: 

·Measures of statistical significance: The computation of 

statistical measures, such as density estimates or distance 

metrics, is often linear in the number of data points and the 

number of features, resulting in a time complexity of O(N * 

M), where M is the number of features. 

· Adaptation and Detection: In most circumstances, 

concept drift adaptation and detection are carried out 

progressively as new data come in, resulting in a temporal 

complexity of O(1) per data point. 

Space Complexity: 

· Statistical Measures: The memory required to store 

intermediate outcomes, such as distance matrices or density 

estimations, is often the cause of a statistical measure's spatial 

complexity. In terms of the quantity of features and data points, 

it is often linear, or O(N*M). 

·Model Parameters: The memory needed to store any 

model parameters that the method utilises (such as those for 

statistical tests) is included in the space complexity. 

 

 

4. DATASET DESCRIPTION 

 

We used three real world time series datasets that are 

publicly available at the UCI Machine Learning repository and 

Kaggle. 

 

4.1 Appliances energy prediction 

 

Table 2. Energy data description 

 
Dataset No of Feature No of Record 

Energy Dataset 29 19735 

 

Appliances energy prediction dataset has data for 4.5 

months with 10 minutes frequency. It has 19735 data points 
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and 29 features in it. The details of the features and a sample 

of data is given as shown in Table 2. 

 

Sample data (Appliances energy prediction): 

 

 
 

4.2 Air quality prediction 

 

Air quality dataset has 9358 instances and 15 features. Data 

spans for one year starting March 2004 and ending in Feb 2005 

as shown in Table 3. The missing values in the dataset are 

indicated with -200 value. 

 

Table 3. Air quality data description 

 
Dataset No of Feature No of Record 

Air quality Dataset 15 9358 

 

Sample data (Air quality data description): 

 

 
 

4.3 Air pollution prediction 

 

The air pollution data has 43801 instances and 9 features as 

shown in Table 4. It has 5 years of data collected at an hourly 

basis at the US embassy in Beijing, China. 

 

Table 4. Pollution data description 

 
Dataset No of Feature No of Record 

Air Pollution 9 43801 

 

Sample data (Air pollution prediction): 

 

 
 

 

5. RESULTS AND ANALYSIS 

 

In order to analysis our proposed model and showcase its 

results we used the three real world datasets selected ie, 

Energy, Air quality and Pollution. The result section is 

structured as follows, first we provide the model specifications 

such as hyper-parameters for each dataset along with the pre-

processing done. Next to showcase the Lightweight Nature of 

our proposed model we analyse the memory consumption and 

time consumption of our model with feature selection and 

without feature selection. Next, we compare the RMSE of 

predictions on test data for our model both with and without 

feature selection. After that we analyse our concept drift 

detection method and show case the outcomes on both the 

datasets. 

 

Table 5. Result of random forest based feature selection 

 
Dataset 

Name 

Total Number of Features 

(Excluding Date and Time) 

Number of Features 

Selected 
Selected Features 

Energy 28 13 
‘Appliances’, ‘lights’, ‘RH_1’, ‘RH_2’, ‘T3’, ‘RH_3’, ‘RH_5’, 

‘RH_6’, ‘RH_7’, ‘T8’, ‘RH_8’, ‘Press_mm_hg’, ‘RH_out’ 

Air quality 13 3 ‘CO’, ‘PT08.S2’, ‘NOX’ 

Pollution 8 5 ‘Pollution’, ‘Dew’, ‘Temp’, ‘Press’, ‘Wind_spd’ 

5.1 Pre-processing and feature selection of data 

 

At the starting step of we set the date and time as index for 

visualization purpose. Since Air Quality dataset has some 

missing values, we imputed the missing values using the 

previous valid data value. In case of Pollution data, we used 

Label Encoding to transform categorical feature to numerical 

feature. 

We applied the Random Forest based Feature Selection 

algorithm to both the datasets to select only the important 

features and the selection were as shown in Table 5. 

Based on the selected features we performed outlier 

detection using Z score value, Z score denotes the distribution 

of each individual data points with respect to the mean of the 

population in terms of standard deviation. For example a Z 

score of 2 denotes that the selected data point for selected 

feature lies within 2 standard deviations from the mean of the 

population of that feature. We used Z score to filter out data 

points with extreme outliers. |Z score| greater than 3 means 

those data points are likely to be outliers and greater than 4 is 

definitely outliers. We exclude all the data points that contains 

outliers for any feature except target feature from the dataset 

before proceeding with model building. 

We applied the selected features on our RNN model and 

computed the RMSE (Root Mean Squared Error) and 

compared it with a recent work named AIS-RNN [2] model.

  

date
Appli

ances
lights T1 RH_1 T2 RH_2 T3 RH_3 T4 RH_4 T5 RH_5 T6 RH_6 T7 RH_7 T8 RH_8 T9 RH_9 T_out

Press_

mm_hg
RH_out

Winds

peed

Visibili

ty

Tdew

point
rv1 rv2

1/11/2016 17:00 60 30 19.89 47.60 19.20 44.79 19.79 44.73 19.00 45.57 17.17 55.20 7.03 84.26 17.20 41.63 18.20 48.90 17.03 45.53 6.60 733.50 92.00 7.00 63.00 5.30 13.28 13.28

1/11/2016 17:10 60 30 19.89 46.69 19.20 44.72 19.79 44.79 19.00 45.99 17.17 55.20 6.83 84.06 17.20 41.56 18.20 48.86 17.07 45.56 6.48 733.60 92.00 6.67 59.17 5.20 18.61 18.61

1/11/2016 17:20 50 30 19.89 46.30 19.20 44.63 19.79 44.93 18.93 45.89 17.17 55.09 6.56 83.16 17.20 41.43 18.20 48.73 17.00 45.50 6.37 733.70 92.00 6.33 55.33 5.10 28.64 28.64

1/11/2016 17:30 50 40 19.89 46.07 19.20 44.59 19.79 45.00 18.89 45.72 17.17 55.09 6.43 83.42 17.13 41.29 18.10 48.59 17.00 45.40 6.25 733.80 92.00 6.00 51.50 5.00 45.41 45.41

1/11/2016 17:40 60 40 19.89 46.33 19.20 44.53 19.79 45.00 18.89 45.53 17.20 55.09 6.37 84.89 17.20 41.23 18.10 48.59 17.00 45.40 6.13 733.90 92.00 5.67 47.67 4.90 10.08 10.08

1/11/2016 17:50 50 40 19.89 46.03 19.20 44.50 19.79 44.93 18.89 45.73 17.13 55.03 6.30 85.77 17.13 41.26 18.10 48.59 17.00 45.29 6.02 734.00 92.00 5.33 43.83 4.80 44.92 44.92

1/11/2016 18:00 60 50 19.89 45.77 19.20 44.50 19.79 44.90 18.89 45.79 17.10 54.97 6.26 86.09 17.13 41.20 18.10 48.59 17.00 45.29 5.90 734.10 92.00 5.00 40.00 4.70 47.23 47.23

1/11/2016 18:10 60 50 19.86 45.56 19.20 44.50 19.73 44.90 18.89 45.86 17.10 54.90 6.19 86.42 17.10 41.20 18.10 48.59 17.00 45.29 5.92 734.17 91.83 5.17 40.00 4.68 33.04 33.04

1/11/2016 18:20 60 40 19.79 45.60 19.20 44.43 19.73 44.79 18.89 45.79 17.17 55.00 6.12 87.23 17.17 41.40 18.10 48.59 17.00 45.29 5.93 734.23 91.67 5.33 40.00 4.67 31.46 31.46

1/11/2016 18:30 70 40 19.86 46.09 19.23 44.40 19.79 44.86 18.89 46.10 17.10 55.00 6.19 87.63 17.20 41.50 18.10 48.59 17.00 45.29 5.95 734.30 91.50 5.50 40.00 4.65 3.09 3.09

1/11/2016 18:40 230 70 19.93 45.86 19.36 44.40 19.79 44.90 18.89 46.43 17.10 55.00 6.19 87.87 17.25 42.72 18.10 48.59 17.00 45.29 5.97 734.37 91.33 5.67 40.00 4.63 10.30 10.30

1/11/2016 18:50 580 60 20.07 46.40 19.43 44.40 19.79 44.83 19.00 46.43 17.10 55.00 6.12 87.99 17.53 44.26 18.07 48.63 16.89 45.29 5.98 734.43 91.17 5.83 40.00 4.62 8.83 8.83

1/11/2016 19:00 430 50 20.13 48.00 19.57 44.40 19.89 44.90 19.00 46.36 17.10 55.09 6.12 88.59 17.82 45.49 18.07 48.56 16.96 45.29 6.00 734.50 91.00 6.00 40.00 4.60 34.35 34.35

1/11/2016 19:10 250 40 20.26 52.73 19.73 45.10 19.89 45.49 19.00 47.22 17.10 55.16 6.07 88.22 17.96 46.16 18.03 48.67 16.89 45.33 6.00 734.62 90.50 6.00 40.00 4.52 19.21 19.21

1/11/2016 19:20 100 10 20.43 55.89 19.86 45.83 20.03 47.53 19.00 48.70 17.10 55.50 5.90 88.16 17.96 45.53 18.10 49.19 16.89 45.35 6.00 734.73 90.00 6.00 40.00 4.43 38.49 38.49

1/11/2016 19:30 100 10 20.57 53.89 20.03 46.76 20.10 48.47 19.00 48.49 17.15 56.04 5.80 88.37 17.89 44.93 18.15 49.20 16.89 45.33 6.00 734.85 89.50 6.00 40.00 4.35 24.88 24.88

1/11/2016 19:40 90 10 20.73 52.66 20.17 47.22 20.20 48.53 18.93 48.16 17.17 56.49 5.73 88.16 17.76 44.27 18.23 49.63 16.89 45.29 6.00 734.97 89.00 6.00 40.00 4.27 35.88 35.88

1/11/2016 19:50 70 30 20.86 53.66 20.20 47.06 20.20 48.45 18.89 47.96 17.20 56.93 5.53 87.30 17.70 43.73 18.36 50.03 16.89 45.29 6.00 735.08 88.50 6.00 40.00 4.18 49.60 49.60

1/11/2016 20:00 80 30 20.89 51.19 20.20 46.33 20.20 48.19 18.96 48.63 17.20 57.06 5.33 86.76 17.67 43.16 18.53 50.20 16.89 45.20 6.00 735.20 88.00 6.00 40.00 4.10 19.00 19.00

1/11/2016 20:10 140 40 20.89 49.80 20.20 46.03 20.17 47.63 19.03 49.50 17.59 70.73 5.33 87.46 17.60 42.69 18.67 50.26 16.89 45.20 6.00 735.23 87.83 6.00 40.00 4.07 38.87 38.87
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5.2 Train-test split 

 

For Energy and Air Quality datasets we used 80% of the 

data for initial training, 10% of that 80% were used as a 

validation set while training. Rest 20% of the data were used 

as a test set in a streaming manner feeding one point at a time 

to the trained model. For Pollution data our main objective is 

to show how the model detects and adapts to different concept 

drifts hence we used 30% of the data as training set (10% of 

that used as validation set), and 70% of the data as test set. 

Since our problem is regression one, we use RMSE (Root 

Mean Square Error) as an error metric and measure the final 

RMSE on the test set. 

 

5.3 Model specifications 

 

The RNN model used for all the datasets have 2 hidden 

layers and each layer had 12 units. The lag parameter was 

chosen to be 12. The optimizer was Adam with learning rate 

of 0.001 for the training. We used sigmoid activation for 

hidden layers and linear activation for output layer of the 

network. The batch size was taken as 1500 and we ran the 

model for 5000 epochs. We also used L1 regularization in the 

hidden layer of the value 0.0001. The hyper-parameters were 

chosen using HyperOpt Bayesian hyper-parameter tuning 

using a range of values for those hyper-parameters. 

 

5.4 Memory and time consumption analysis 

 

A lightweight model takes less memory and less time to 

process the data compared to the conventional model. To 

validate the effectiveness of our model being lightweight we 

measured both the memory consumed and time consumed 

while training by the data with and without feature selection. 

To check scalability, we artificially generated a large version 

of the Energy and Air Quality datasets with 120000 instances 

each to measure the memory and time consumption as well. 

All the experiments were conducted on a machine with 11th 

Gen Intel® core ™ i5-processor with clock speed 2.60GHz, 

16GB of RAM and 4 Core(s), The results are as shown in 

Table 6 and Table 7:

 

Table 6. Memory consumption by the datasets without feature selection and with feature selection 
 

Dataset Name 
Dataset Size Before Feature Selection 

(MB) 

Dataset Size after Feature Selection 

(MB) 

Percentage of Reduction in 

Size 

Energy 4.4 2.1 52.27% 

Air Quality 1 0.29 71.39% 

Energy Generated 26.6 12.8 51.88% 

Air Quality 

Generated 
12.8 3.7 71.09% 

Pollution 3 2 33.33% 
 

Table 7. Time consumption for training by the datasets without feature selection and with feature selection 
 

Dataset Name Time without Feature Selection Time with Feature Selection Percentage Reduction of time 

Energy 10 min 7 sec 9 min 19 sec 7.91% 

Air quality 4 min 53 sec 4 min 30 sec 7.84% 

Energy Generated 1 hour 10 min 51 min 41 sec 26.20% 

Air Quality Generated 52 min 25 sec 41 min 40 sec 20.51% 

Pollution 18 min 15 sec 16 min 41 sec 8.58% 
 

 
 

Figure 4. Memory consumption in MB without feature 

selection and with feature selection 

 

From the results as shown in Figure 4, we see that by using 

Random Forest based feature selection we can reduce the 

memory consumption by about 52% for Energy data, 71% for 

Air Quality data and 33.33% for Pollution data. This can save 

a lot of storage when the data size grows as large volume is a 

well-known characteristic of real world time series data. The 

Time consumption to train the RNN model is also seen to be 

reducing since the model needs to process a smaller number of 

features. Comparing the reduction of time consumption 

between the original data and the larger generated version of 

the data, we observe that the reduction of time scales well as 

the data size grows, hence while its only about 8% reduction 

for original data size, the reduction is significantly more about 

26% for Energy and 20% for Air Quality generated data. So, 

we can conclude that as the data size grows even more the 

reduction of time consumed will be more significant as shown 

in Figure 5. 
 

 
 

Figure 5. Time consumption in sec without feature selection 

and with feature selection 

4.4
1 3

26.6

12.8

2.1 0.29 2

12.8

3.7

0

10

20

30

Energy Air Quality Pollution Energy

Generated

Air Quality

Generated

MEMORY CONSUMPTION BY DATASET IN 

MB

Without Feature Selection  With Feature Selection

607 293
1095

4200

3145

559 270
1001

3101
2500

0

2000

4000

6000

Energy Air Quality Pollution Energy

Generated

Air Quality

Generated

TIME CONSUMPTION BY DATASET IN SECONDS

Without Feature Selection  With Feature Selection

1306



 

5.5 Model performance with and without feature selection 

analysis 

 
We measured the performance of the RNN model using 

same set of hyper-parameters for the 3 datasets on their test 

sets once with full feature and once with only selected features 

from the Random Forest based feature selection procedure. 

The results are as shown in Table 8: 

 
Table 8. Model performance on test datasets without feature 

selection and with feature selection 

 
Dataset 

Name 

RMSE without 

Feature Selection 

RMSE with Feature 

Selection 

Energy 61.34 58.74 

Air quality 0.604 0.606 

Pollution 28.15 27.79 

 

As we see for Energy and Pollution data the performance is 

better when we used feature selection using Random Forest to 

select only the important feature. Whereas for Air Quality 

dataset the performance is almost same in both the cases. 

Hence, we see that by using Random Forest based feature 

selection procedure we are not only saving memory and time 

consumption by the model training but the model performance 

itself is also improving or remaining similar to what it was 

while using all the features. 

 

 
6. CONCEPT DRIFT DETECTION ANALYSIS 

 

Our model detects any possible drift in the data stream by 

comparing the model performance over a recent window of 

data against a threshold. The threshold is set using the model 

performance on the training set itself. For all the datasets the 

performance metric used is Root Mean Squared Error (RMSE). 

The training RMSE as measured with the specified model 

specifications are as shown in Table 9: 

 
Table 9. Training RMSE on the datasets 

 
Dataset Name Training RMSE 

Energy 68.03 

Air quality 0.615 

Pollution 29.29 

 
One important note is that RMSE depends on the dataset 

and the range of target feature hence, RMSE can take any 

value and does not have any specific range. We set the 

performance threshold as 120% of training RMSE for further 

experimentations. Hence the performance threshold for the 

experiments are as shown in Table 10: 

 
Table 10. Performance threshold for the datasets 

 
Dataset Name Performance Threshold 

Energy 81.636 

Air quality 0.738 

Pollution 35.148 

 

Thereafter since the datasets itself does not have any 

concept drift behaviour we inject artificial concept drift into 

the datasets to examine if the drift gets detected by our model. 

The error window size was chosen as shown in Table 11: 

 

Table 11. Error window size for the datasets 

 
Dataset Name Error Window Size 

Energy 144 

Air quality 144 

Pollution 288 

 

 
 

Figure 6. Test data for energy dataset with added concept 

drift 

 

We injected drift by adding a shift to the target feature in 

Energy and Air Quality dataset as shown in Figure 6 and 

Figure 7. The amount of shift was chosen to be two times the 

mean value of the feature and the shift was added from 200 

data point onwards in the test set. 

 

 
 

Figure 7. Test data for air quality dataset with added concept 

drift 

 

Then we applied our model on these data and detected 

concept drift using our method without retraining the model, 

the results are as follows: 

The RMSE is measured on the error-window. As shown in 

Figure 8 the Red line denotes the error threshold set. The 

Model detects concept drift whenever the RMSE crosses the 

red line hence the green blobs denote the instance when our 

model detects concept drift. 

Whenever the RMSE of model prediction is crossing the 

threshold, our method is detecting the concept drift as can be 

seen from the method, note that we set a minimum gap 

between two concept drift detection to avoid continuous drift 

alert. The gap was set as the same as error window size. Also, 

since RMSE is measured on the error window, the graph of 

error shown in Figure 9 starts when the model has predicted at 

least the same number of instances as the error window size. 

The details of the test datasets and concept drift deleted 

instances are as shown in Table 12: 
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Figure 8. The RMSE of predictions made by the model on test data for energy dataset 

 

 
 

Figure 9. RMSE curve and concept drift detection on test data for air quality dataset 

 

Table 12. Concept drift detection instances 

 
Dataset # of Instances in Test Data Instances where Concept Drift Detected 

Energy 3895 [820, 1106,1839, 1984, 2310, 2989, 3134, 3701, 3846] 

Air quality 1832 [375, 520, 665, 837, 982, 1127, 1272, 1417, 1562, 1707] 

Hence, we see that since drift is present in the data, our 

method successfully detects drift on a regular basis as without 

retraining the model is not adapting to the concept drift. 

For the other data set Pollution, we applied all 4 kinds of 

drift ie. Sudden, Gradual, Recurring, and Incremental and 

tested our model performance against it. 

For the other data set Pollution as shown in Figure 10 before 

drift inclusion, we applied all 4 kinds of drift i.e., Sudden, 

Gradual, Recurring, and Incremental and tested our model 

performance against it. 

 

 
 

Figure 10. Pollution test set before drift inclusion 

 
We added sudden drift followed by gradual drift and 

recurring the previous drift and finally incremental drift in the 

test data as shown in Figure 11. 

The RMSE is measured on the error-window. The red line 

denotes the error threshold set. The Model detects concept 

drift whenever the RMSE crosses the red line or RMSE is 

higher than the red line after the minimum gap between two 

drift detection, hence the green blobs denote the instances 

when our model detects concept drift. 

 

 
 

Figure 11. Pollution test set after applying all 4 kinds of 

drifts as indicated 
 

We applied our model to detect concept drift while 

predicting on this modified test data but without any retraining, 

the concept drift detection result is as shown in the Figure 12 

graph. 

We can see that whenever a concept drift is faced in the test 

data the model prediction RMSE shoots higher than the 

threshold and remains high thus triggering the concept drift 

detection successfully. 
 

Need of Injecting Artificial Drift: 

· Model Validation: Using artificial drift, you may 

examine how well your models and algorithms respond to 

shifting data patterns. You can check to see if your model 

quickly, accurately, and without raising too many false alarms 

identifies drift. 

·Scenario exploration: You might not always have access 

to historical data with identified drift points in real-world 

applications. You can explore numerous scenarios and 

evaluate how your systems manage different types of drift, 

such as slow or rapid shifts, by injecting false drift. 
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Figure 12. The figure denotes the RMSE of predictions made 

by the Model on the concept drift injected test data for 

Pollution dataset 

 

Methodology for Injecting Artificial Drift: 

Step 1: Target Features: Identify the features in your dataset 

that the artificial drift will have an impact on. It's crucial to 

pick qualities that are pertinent to the issue you're researching. 

Step 2: Selecting Drift Types: Choose the forms of idea 

drift you want to model, such as progressive drift (data that 

changes gradually) or abrupt drift (data that changes suddenly 

and noticeably).  

Step 3: Timing Window: Specify the times or intervals 

during which the artificial drift will take place. Indicate the 

beginning, duration, and end dates of the drift. 

Step 4: Create Drifted Data: Alter the target features within 

the designated time frames in accordance with the selected 

drift type.  

Step 5: Mix with Real Data: To produce a more realistic 

dataset, if at all possible, mix the artificially drifted data with 

real data. This integration makes sure that the simulated drift 

matches the distribution of the actual data. 

Step 6: Run tests: Utilize the dataset that has artificial drift 

injected into it to run tests and assess how well your idea drift 

detection approaches work. Calculate the false positive and 

detection accuracy and time-to-detect rates. 

Step 7: Fine Tune: The concept drift detection methods or 

models should be fine-tuned based on the findings of your 

studies to increase their effectiveness in spotting false drift. 

 

 

7. CONCLUSIONS AND FUTURE WORK 

 

In this paper we discussed about a lightweight RNN based 

model with concept drift detection using a sliding window. 

Since our model with RF based feature selection uses only 

important features, its lightweight compared to other models 

in the literature using full set of features. Detecting concept 

drift helps the model to adapt to it and maintain the model 

performance over the time. It is highly important to keep the 

model performance above expected level. We further showed 

our concept drift detection method on three real world time 

series datasets, and from results it is clear that our method 

successfully detects concept drift in the data stream Hence the 

proposed model is suitable to apply for evolving real world 

time series data streams. This approach improves real-time 

concept drift detection, enabling more effective pollution 

mitigation strategies and optimized energy use, ultimately 

promoting cleaner environments and sustainable energy 

practices. It is the proposed method for selecting relevant 

features in the air quality, pollution, and energy sectors.  

Key Achievements of the Lightweight Model: 

·Efficient resource consumption, making it suited for real-

time or resource-constrained applications. 

·Adaptability to evolving data patterns, decreasing false 

alarms and delays in idea drift detection. 

· Scalability for managing large-scale time series data 

streams. 

·Robust performance in numerous application domains, 

including air quality, pollution, and the energy sector. 

The limitation of Lightweight Model: 

·Potential conflicts between forecast accuracy and model 

simplicity. 

·The need of choosing clustering and statistical methods 

carefully to ensure efficacy. 

·Sensitivity to starting parameters that might need to be 

adjusted for best results. 

·Compared to more complicated models, limited capacity 

to capture complex, non-linear relationships in data. 

In future work, the lightweight method can be improved 

further by combining other techniques with dynamic feature 

section method to reduce time and memory complexity along 

with feature selection. In concept drift detection part, the 

detection can be improved to separate sudden noise from 

actual concept drift more efficiently and furthermore the mode 

can be made aware of the type of concept drift when drift is 

detected by the proposed method which may improve the 

performance further. 
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