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With the proliferation of the Internet of Things (IoT) in various domains, concerns over 

information security and user privacy have exponentially escalated. Numerous smart 

intrusion detection (SID) strategies, primarily based on machine/deep learning techniques, 

have been proposed to counter these security challenges. However, these strategies are 

typically designed with a centralized approach, where IoT devices relay their data to a 

central server for training, potentially exposing the data to a range of security threats and 

privacy vulnerabilities. To address these data security and privacy challenges, a federated 

learning (FL) approach is adopted in this study. In this approach, individual users train their 

local models and transmit only parameter updates to the server. These parameters are then 

aggregated to form the global model. In each FL training cycle, IoT users receive an updated 

global model from the central server, which they further train utilizing their respective local 

datasets. This methodology allows for the preservation of IoT device privacy while 

optimizing the global model. In the context of IoT edge computing, where computational 

load is distributed to network edges for efficient resource utilization, a novel SID approach 

based on federated learning is proposed. The effectiveness of this approach is evaluated 

using three popular deep learning models and three well-established IoT field datasets. This 

thorough evaluation serves to assess the generalizability of the models and validate the 

reliability of the results. Through extensive experiments and comprehensive comparisons 

with other methodologies, this study demonstrates superior performance, achieving an 

impressive 99% accuracy rate. This result underscores the robustness of the proposed 

approach in accurately detecting intrusions within IoT environments, thereby offering a 

promising solution for securing IoT edge computing. 
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1. INTRODUCTION

The Internet of Things (IoT) is a combination of a variety 

of connected objects using all kinds of communication 

technologies, forming ubiquitous computing [1]. The IoT is 

the integration of the Internet with the physical world by 

harnessing Artificial Intelligence (AI) to deliver smarter 

services to the environment [2]. Nowadays, the IoT provides 

an increasing number of applications and services in various 

fields such as: domestic, education, agriculture, energy 

distribution, health, tourism, transport, etc. 

Though the IoT offers many benefits, it also faces many 

difficulties and challenges [3]. Among the major challenges of 

the IoT is to manage a multitude of heterogeneous objects 

connected by heterogeneous communication technologies to a 

variety of applications and users [4]. Added to this is the open 

nature of the IoT and the presence of components with low 

computing capabilities and power, which makes it vulnerable 

to various types of attacks, and most existing security solutions 

become difficult to apply [5]. On the other hand, information 

confidentiality and user privacy are also vulnerable. For 

example, in medical applications, many internet-connected 

sensors embedded into the human body for daily use reveal 

their habits, state of health, geographic location and other 

types of information. Therefore, this critical information must 

be carefully secured from its acquisition to its management 

and use [6]. Consequently, IoT security and privacy have 

become a fundamental problem and a major concern.  

To this end, Intrusion Detection System (IDS) is widely 

used as a security mechanism to detect different kinds of 

attacks on the IoT ecosystem. Depending on the detection 

methods used, IDSs are divided into three main categories: 

signature-based detection, anomaly-based detection, and 

specification-based detection [7]. Signature-based IDS detects 

attacks by comparing its signatures to predefined attack 

models that are already stored in a database [8]. This technique 

is straightforward to employ. Nonetheless, it comes with a 

high cost, especially as the number of attacks grows, requiring 

additional storage space. Moreover, its primary drawback lies 

in its limited scope, as it can only detect attacks that match the 

existing signatures. Consequently, there is a constant need for 

database updates to incorporate new attack signatures. 

Anomaly-based IDS detects new intrusions by comparing new 

entries to its pattern of normal behavior. Any deviation 

exceeding a predefined threshold is marked as an anomaly [9]. 

The primary advantage of this technique is its ability to 

identify new attacks by flagging any deviations from normal 

behavior. Nevertheless, it frequently produces numerous false 

positives because not every deviation from normal behavior 

indicates an actual attack. Specification-based IDS is a hybrid 

method that combines the two previous techniques. This 

technique leverages both techniques to identify new attacks 
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while also reducing false positives. However, implementing 

such mechanisms consumes additional energy and resources. 

In our study, we adopted anomaly-based SID to detect and 

classify different kinds of attacks using deep learning 

techniques, which have proven their efficiency in the security 

domain. 

Learning techniques for the IoT can be classified into three 

categories, namely centralized, distributed and federated 

learning [10]. In the centralized approach, attacks can be 

detected with high accuracy. However, the data transfer cost 

from the IoT network to the server and the latency are high in 

this model due to the large distance between IoT devices and 

the central server. Moreover, this approach does not guarantee 

the confidentiality of user data. Indeed, the sharing of sensitive 

data on the IoT network will make them vulnerable to various 

attacks. Although distributed learning solves the latency 

problem by processing data close to the IoT devices, it also 

does not guarantee data privacy. Federated learning is a new 

paradigm to address the limitations of centralized and 

distributed learning [11], it has been widely used in recent 

years to guarantee the confidentiality of user data and to 

reduce latency. 

Federated learning (FL) for the IoT is essentially composed 

by two components: users and aggregator. Users train on local 

models and then send update parameters to the aggregator 

which aggregates them to generate a new global model. 

Generally, two approaches are commonly used: the edge-

based approach and the cloud-based approach for learning 

model global. In edge-based FL, global model aggregation is 

done on the edge server, while in cloud-based FL, it is done on 

the cloud server. Given the many users located in a large 

distributed area. Cloud-based FL is better suited for training 

more general models than edge-based FL [12].  

In this paper, we propose smart intrusion detection based on 

federated learning for IoT network, using three deep learning 

algorithms, namely DNN, CNN, and LSTM. To evaluate our 

approach, we used three datasets, namely IoTID20, IoT-23 and 

N-BaIoT, which allow us to compare the different models and 

select the best model for the IoT network. The contributions of 

our work are as follows: 

•We proposed a novel approach based on federated learning 

for intrusion detection in IoT systems. This approach 

addresses the data security and privacy concerns associated 

with centralized approaches. 

•We conducted experiments using three deep learning 

models and three popular datasets in the IoT domain to 

evaluate the effectiveness and generalization capability of our 

approach. 

• Through rigorous evaluation and comparisons with 

existing approaches, we demonstrated superior performance in 

terms of accuracy, precision, recall, and F-score. 

•Our approach proved to be efficient, reliable, and capable 

of effectively detecting intrusions in edge IoT systems. 

•The results of our experiments highlight the effectiveness 

and potential of federated learning in the context of intrusion 

detection for IoT systems. 

Finally, our work contributes to advancing the field of IoT 

security by introducing a privacy-preserving approach that 

achieves high detection accuracy and addresses the challenges 

of centralized learning approaches. 

The remaining of this paper is organized as follows: Section 

2 presents related work. Section 3 provides an overview of 

learning techniques. Section 4 details the proposed approach. 

Section 5 presents the data set, evaluation metrics and the 

proposed approach results. Finally, Section 6 concludes the 

paper. 

 

 

2. RELATED WORK 

 

Recently, several IDS works using machine/deep learning 

techniques have been developed to provide better protection 

for the IoT ecosystem. In this section, we discuss some works 

by classifying them into two categories: 

 

2.1 Machine Learning-based approach 

 

Fenanir et al. [5] proposed a lightweight IDS based on an 

elaborate combination of feature selection based on correlation 

and classification techniques. A comparison of seven 

classification algorithms were performed on 3 datasets, 

namely KDD-99, NSL-KDD and UNSW-NB15 datasets. 

Finally, the decision tree algorithm was selected owing to its 

performance on several datasets. 

Moustafa et al. [13] suggested an IDS to identify malicious 

events in IoT networks, based on analysis of DNS flows. To 

evaluate this technique, an Adaptive Boosting ensemble 

learning approach is developed using three algorithms: 

Decision Tree, Naive Bayesian and Neural Network. 

Experimental results using UNSW-NB15 and NIMS botnet 

datasets show that the proposed framework provides good 

performance. 

Verma and Ranga [14] reports a benchmarking study on 

IDS using ML classifiers for IoT networks. The classifiers 

were evaluated on the CIDDS-001, UNSWNB15, and NSL-

KDD datasets. The experimental results show good 

performance, in particular with the regression trees and the 

gradient boosting classifier. 

Kumar et al. [15] proposed an IDS based on the design of 

distributed ensemble using Fog computing. This approach 

combines in the first level, three classifiers, namely K-Nearest 

Neighbors (KNN), eXtreme Gradient Boosting (XGBoost) 

and Naive Bayesian (NB). At the second level, the random 

forest is used for the final classification. UNSW-NB15 and 

DS2OS datasets are used to validate the proposed approach. 

The experimental result shows that the proposed approach 

provides a higher detection rate, especially on the DS2OS 

dataset, where the detection rate can reach 99.99% for most 

attack categories. 

Pajouh et al. [16] proposed an IDS in IoT Backbone 

Networks. This model used two dimension reduction 

techniques: Principal component analysis and linear 

discriminant analysis, and two classification algorithms: K-

Nearest Neighbors and Naïve Bayesian. The proposed 

approach is designed to detect the low frequency attacks using 

the NSL-KDD dataset and two types of attacks: User-to-Root 

and Remote-to-Local attacks. The experiment results of this 

model provide an 84.66% detection rate for binary 

classification. 

Alruhaily and Ibrahim [17] presented a multi-layer IDS for 

WSN, which uses two layers of detection. The first layer uses 

the Naive Bayes algorithm to detect suspicious packets at the 

network edge. The second layer uses a Random Forest 

multiclass classifier to deeply analyze the inspected packets 

located at the cloud. The WSN-DS dataset is used to validate 

the proposed approach. The experiment results give a 

relatively high performance with different evaluation metrics. 

However, the proposed model did not use any feature selection 
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techniques to reduce data dimensionality. Moreover, it uses a 

unique database, which does not allow to effectively evaluate 

the system. 

 

2.2 Deep Learning-based approach 

 

Almogren [18] proposed an IDS to detect intrusions in the 

Edge of things (EoT) network based on the deep belief 

network (DBN). The evaluation of this model is performed 

using the UNSW-NB15 dataset with various DBN structures. 

The experiment results indicate that DBN has the best overall 

performance compared to ANN and SVM algorithms, where 

the detection rate has reached (96.34%). Although the deep 

belief-based approaches give high accuracy, they are not 

efficient in terms of inference time. 

Li et al. [19] presented an IDS based on an industrial IoT 

network using a multi-convolutional neural network. This 

model was evaluated using the unique KDD dataset and 

provided 86.95% accuracy for binary classification and 81.33% 

accuracy for classification multiclass. However, this study was 

limited to only one benchmark dataset, which affects the 

ability to generalize results. 

Li et al. [20] adopted a disagreement learning based IDS in 

real IoT network environments. This method aims to improve 

the detection rate and reduce false alarms. The results show 

good performance using unlabeled datasets. However, its 

efficiency is uncertain with large samples. Moreover, the 

dataset should be updated regularly to keep the learning 

efficiency. 

Abdalgawad et al. [21] implemented two adversarial 

generative deep learning methods, namely Autoencoders and 

Bidirectional GANs to detect attacks in IoT environment. The 

proposed model used the IoT-23 dataset. The experimental 

results showed that the model performs well with an F1 rate of 

up to 0.99. While this model was evaluated using different 

metrics, inference time was not evaluated. 

Fenanir et al. [3] proposed a centralized IDS for IoT 

network, using a semi-supervised learning autoencoder. This 

model was evaluated using the NSL-KDD and CIDDS-001 

datasets. The authors adopted a centralized architecture which 

is less suited to the IoT network given its distributed nature. 

 

Table 1. Summary of related work 

 
Ref. Datasets Classifiers Key Findings 

[3] 
NSL-KDD, 

CIDDS-001 
Deep AutoEncoder 

This paper proposed a centralized IDS for IoT network, using a semi-

supervised learning autoencoder. The authors adopted a centralized 

architecture which is less suited to the IoT network given its distributed nature. 

[5] 

KDD-99, NSL-

KDD, and UNSW-

NB15 

KNN, SVM, Decision Tree, 

Random Forest, Regression 

Logistic, Naive Bayes, MLP 

This paper proposed a lightweight IDS that combined feature selection and 

classification techniques. The decision tree algorithm (DT) is chosen as the 

optimal model. 

[13] 
UNSW-NB15, 

NIMS botnet 

Decision Tree, Naive 

Bayesian, Neural Network 

classifiers 

The authors demonstrate the effectiveness of their approach through an 

experimental evaluation using an ensemble intrusion detection technique based 

on DNS flow analysis to protect Internet of Things (IoT) network traffic. 

[14] 

CIDDS-001, 

UNSWNB15, 

NSL-KDD 

regression trees and gradient 

boosting 

The authors conducted a benchmarking study on IDS for IoT networks, 

highlighting the effectiveness of regression trees and gradient boosting 

classifiers on datasets. 

[15] DS2OS 

K-NN, Gradient Boosting, 

Naive Bayesian, random 

forest. 

This paper proposed a distributed ensemble IDS using Fog computing, with a 

combination of classifiers such as K-Nearest Neighbors, eXtreme Gradient 

Boosting, Naive Bayesian, and random forest. 

[16] NSL-KDD KNN, Naive Bayesian 

The authors developed an IDS for IoT Backbone Networks, utilizing Principal 

Component Analysis and Linear Discriminant Analysis for dimension 

reduction and K-Nearest Neighbors and Naive Bayesian classifiers for low-

frequency attack detection. 

[17] WSN-DS 
Naive Bayes and Random 

Forest 

This paper presented a multi-layer IDS for WSN, employing Naive Bayes and 

Random Forest classifiers for suspicious packet detection. While achieving 

high performance, their model lacked feature selection techniques and relied 

on a unique database for evaluation. 

[18] UNSW-NB15 deep belief networks (DBN) 

The authors introduced an IDS for Edge of Things (EoT) networks based on 

deep belief networks (DBN). The DBN outperformed ANN and SVM 

algorithms, However, DBN models were not efficient in terms of inference 

time. 

[19] KDD 
convolutional neural 

network (CNN) 

The authors developed an IDS for industrial IoT networks using a multi-

convolutional neural network. The study was limited to a single benchmark 

dataset, impacting generalizability. 

[20] Generic Dataset disagreement-based Method 

This paper proposed a disagreement learning-based IDS for real IoT networks, 

demonstrating good performance with unlabeled datasets. However, its 

efficiency with large samples was uncertain, and regular dataset updates were 

necessary for learning efficiency. 

[21] IoT-23 
Autoencoders and 

Bidirectional GANs 

The authors implemented adversarial generative deep learning methods for IoT 

attack detection using the IoT-23 dataset. The model achieved a high F1 score 

of up to 0.99, although inference time was not evaluated. 

[22] - - 

The authors reviewed the application of Federated Learning in the context of 

IDS and highlight the challenges associated with its implementation. The study 

provides insights into the potential benefits and limitations of using Federated 

Learning for IoT intrusion detection, contributing to the advancement of this 

field. 
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Campos et al. [22] conducted a comprehensive review on 

the utilization of Federated Learning for intrusion detection 

in the Internet of Things (IoT) domain. They specifically 

examined the application of Federated Learning in this 

context and shed light on the implementation challenges 

involved. The study offers valuable insights into the potential 

advantages and drawbacks of employing Federated Learning 

for IoT intrusion detection, thereby making a significant 

contribution to the advancement of this field. 

In Table 1, we have compiled a summary of the main 

contributions from similar studies. The table includes 

information such as experiment dataset, classifiers used, and 

key findings. 

Based on previous studies and considering its limitations, 

we proposed a federated learning approach for smart 

intrusion detection in IoT environment. This approach entails 

training models at the edge of IoT devices and consolidating 

their updated parameters at a central server. This method 

ensures the protection of IoT device privacy while 

simultaneously enhancing the performance of the overall 

model. We implemented three deep learning models, namely 

DNN, CNN, and LSTM, to conduct a comparative analysis 

and select the most suitable classifiers. To evaluate our 

approach and assess the generalizability of the models, we 

used three commonly employed datasets in the IoT field: 

IoTID20, IoT23, and N-BaIoT datasets. 

 

 

3. BACKGROUND 

 

In this section, we present a brief introduction to cloud, fog 

and Edge computing paradigm, followed by an overview of 

three ML architectures namely, centralized, distributed, and 

federated learning. 

 

3.1 Cloud computing 

 

Cloud computing is an infrastructure that provides a 

variety of services for storing, gathering and processing data 

using remote servers hosted on the Internet. The main 

services offered by cloud computing are: Software as a 

Service (SaaS), Platform as a Service (PaaS) and 

Infrastructure as a Service (IaaS). 

 

 
 

Figure 1. Conventional cloud computing in IoT 

 

The integration of cloud computing in the IoT provides a 

new data storage area and services for processing, analyzing 

and storing a huge volume of data generated by the IoT [23]. 

The primary goal of cloud computing in IoT is to increase 

efficiency and performance, as well as enable resource 

sharing [24]. However, cloud computing in IoT faces certain 

communication limitations, particularly in terms of 

bandwidth and latency constraints. This is where edge 

computing becomes advantageous, especially in remote 

locations, as it enables data processing and analysis to be 

performed closer to the source of data generation [25]. 

Figure 1 shows the conventional cloud computing in IoT, 

where IoT devices generate data and transfer it to the remote 

cloud via the Internet. The remote cloud then sends a data 

consumption request and receives the result. 

 

3.2 Edge computing 

 

While data processing in the cloud offers greater 

computational power compared to the edge, the increasing 

amount of data generated by the IoT requires a significant 

bandwidth and leads to high latency, which makes cloud 

computing inefficient to manage all this data [26]. In edge 

computing, data processing occurs in data sources that are 

close to end users, providing adequate computing power to 

handle IoT requirements [18]. Thus, there is no need for the 

IoT nodes to send data to the cloud. Instead, the data can be 

processed directly on the nodes, leading to a significant 

reduction in latency. 

 

 
 

Figure 2.  Edge computing in IoT 

 

Figure 2 depicts edge computing in IoT. At the IoT 

network edge, data from devices is received and analyzed 

before being sent to a data center or cloud. 

 

3.3 Fog computing 

 

Fog Computing refers to a decentralized infrastructure, 

which transfers data and services between the cloud and the 

network edge [27]. It addresses the challenges of latency, 

bandwidth consumption, and communication optimization 

between IoT devices and remote cloud services by leveraging 

proximity storage and processing capabilities [28]. By 

bringing computing resources closer to the data source, fog 

computing reduces the reliance on distant cloud servers and 

enables real-time data processing and decision-making. This 

proximity-based approach improves the overall 

responsiveness and reliability of IoT applications. Fog 

computing supports the mobility, scalability, and high 

availability requirements of IoT systems, accommodating the 

dynamic nature of IoT deployments. Furthermore, fog 

computing plays a crucial role in managing the heterogeneity 

of IoT devices and applications. It achieves this through the 

support of interoperability mechanisms and the use of 

application programming interfaces (APIs) that facilitate 

seamless integration and communication between different 
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IoT platforms and protocols. Virtualization technologies are 

also employed in fog computing to enable the efficient 

allocation and utilization of resources across diverse IoT 

devices and services [27]. 

In summary, fog computing offers a decentralized 

infrastructure that optimizes communication, reduces latency, 

and enhances the scalability and interoperability of IoT 

applications. By leveraging proximity-based storage and 

processing, fog computing brings computational capabilities 

closer to the network edge, enabling efficient and reliable 

data processing for a wide range of IoT use cases. 

Figure 3 shows a reference architecture for fog computing. 

At the lowest level are the IoT devices, which collect data 

from the environment and transmit them to the edge layer. 

The edge layer includes edge nodes that serve as a gateway 

to the fog layer. In the fog layer, there are multiple fog nodes 

with some compute and storage capability, which allow them 

to manage, connect, and share resources between the edge 

layer and the cloud layer [29]. The next layer consists of 

cloud services and resources that manage resources and 

process received IoT tasks. The top layer contains IoT 

applications that harness fog layer to offer innovative and 

smart solutions to end users. 

 

 
 

Figure 3. Fog computing architecture 

 

3.4 Centralized learning 

 

Centralized learning for IoT requires transmitting training 

data from each IoT device to the cloud server to create a 

common model [30]. This model will be used by all user 

devices. The main advantage of this centralized learning is 

the ability to generalize from a subset of devices and thus 

perform with other compatible devices. Moreover, the 

centralized learning is computationally efficient because the 

IoT devices are free from intensive computational work that 

requires high computational resources [3]. However, the 

centralized approach applied to the IoT presents difficult 

challenges. In such an approach, the bandwidth is often very 

limited and the data amount sent to the cloud is very large, 

since training of complex tasks usually requires exchanging 

large blocks of data to a central server. Moreover, when there 

is a lot of interaction with services available in the cloud, 

latency due to the round trip to the cloud is often a problem 

for applications running in real time. Additionally, energy 

consumption is a significant concern in this architecture, as it 

can lead to faster battery drain for IoT devices. Frequent data 

transmission to the central server and back can also strain 

network resources. Furthermore, the data exchanged by users 

can be very private, such as personal identification 

information, payment data, protected health information, etc. 

When these private data are shared on the cloud, there is a 

high possibility that user privacy will be compromised by 

eavesdropping attacks [30]. The development trends of this 

approach include: Advancements in Deep Learning, 

particularly with the emergence of larger and more efficient 

neural networks. Additionally, techniques for compressing 

and optimizing models for deployment on edge devices have 

gained prominence, resulting in reduced computational and 

energy requirements for centralized learning. This approach 

is presented in subgraph (a) of Figure 4. 

 

 
 

Figure 4. Machine learning approaches [22] 

 

3.5 Distributed learning 

 

Distributed learning techniques are exploited to solve 

complex algorithmic problems on large-scale data sets by 

assigning the learning task to distributed devices rather than 

a central server [31]. As shown in subgraph (b) of Figure 4, 

each device learns an individual model of its environment 

independently of other devices. The advantages of this 

technique are that the model adapts to changes as they happen, 

learning is not limited by internet connection, and no 

confidential information should be transferred to the cloud. 

However, distributed learning applied to IoT is constrained 

by the limited computing capacity, high energy consumption 

and low battery capacity, which can hinder the effectiveness 

and efficiency of distributed learning algorithms. To 

overcome these limitations, it is crucial to develop 

lightweight learning models specifically designed for IoT 

environments [5]. These lightweight models aim to strike a 

balance between accuracy and resource consumption, 

ensuring that the learning process can be executed efficiently 

on resource-constrained IoT devices. Furthermore, edge 

devices have significantly enhanced their capabilities, 

enabling distributed learning models to autonomously tackle 

more complex tasks at the local level. Consequently, this 

diminishes the need for extensive data transmission and 

centralized processing. 

 

3.6 Federated learning 

 

Federated learning also relies on shifting the training task 

to the IoT devices, and then federating local models and 

learning on the central cloud server. This approach combines 
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the benefits of the two previous approaches, as presented in 

subgraph (c) of Figure 4. The central cloud server distributes 

a generic learning model to the devices. Each device 

independently trains the model using its own local data and 

transmits weight updates to the server. Finally, the server 

calculates the average and aggregates the global model, 

which the devices will use in subsequent training cycles. The 

process will repeat until the desired level of convergence is 

achieved [32]. This architecture can reduce energy 

consumption compared to pure centralized approaches 

because it minimizes the need for frequent, data-intensive 

transmissions. It allows IoT devices to train locally and 

communicate selectively. Due to its advantages over 

competing approaches, federated learning in the IoT has 

garnered a lot of attention lately. However, there are still 

some challenges to overcome, communication issues, 

heterogeneity, and privacy invasions [33].  

 

 

4. PROPOSED METHOD  

 

Among the main challenges we faced was to create a 

lightweight SID that adapts to the limited processing power 

of the IoT devices, respects user privacy, and reduces latency 

and communication costs. Traditional centralized learning 

methods transfer all local datasets to a remote server for 

training, which solves the problem of limited capacity of IoT 

devices [3, 5]. However, this can expose the data to many 

types of attacks without ensuring the protection of users' 

privacy and preventing data leakage. To address these 

concerns, we propose a new federated learning based-

approach to detect intrusions in IoT networks. The benefits 

of this approach is to maximize the learning efficiency by 

spreading the computations and learning over multiple local 

data in the IoT network. It also ensures data sensitivity and 

privacy by protecting device information and simply 

distributing local model updates. 

 

4.1 Proposed model architecture 

 

The proposed approach architecture, shown in Figure 5, 

comprises three layers. The application layer contains IoT 

applications and services that serve to manage resources and 

process tasks to provide innovative and intelligent solutions 

to end users. The next layer includes IoT devices, which 

collect information from the environment for training local 

models. It consists of n users, each user having a local model 

of a single device. At the upper layer there is a central server 

that orchestrates the federated learning process and detects 

intrusions.  

The federated learning process consists of three essential 

steps: training local models, aggregating global models and 

updating local models. The steps of this process are as 

follows: 

Step 1: Initially, the central server in the cloud layer 

initializes the global model by pre-training it with a set of 

initial weights. Subsequently, the global model is distributed 

to the individual users. It is worth noting that certain studies 

have addressed the aspect of user selection, wherein a subset 

of users is chosen based on various criteria, such as device 

status (active/inactive), availability of an unlimited 

connection, battery level, and so on.  

Step 2: Once the local models are obtained from the central 

server, each user in the edge layer trains its local model using 

its training data. In the case of a concrete SID, the training 

process involves utilizing the local network traffic of each 

user. 

Step 3: When the training is finished, the users send their 

updated model parameters/weights to the server. If a user 

exceeds the transfer time specified by the server due to a 

limited connection, insufficient computing power or a huge 

amount of training data, the update parameters of this user 

will be ignored and the process will continue with the updates 

received. 

Step 4: The server aggregates all received parameters/ 

weights to generate a new global model for the next training 

cycle. Various aggregation algorithms are employed in 

federated learning, including the original and widely-used 

Federated Averaging (FedAvg) [34], as well as more recent 

approaches like FedProx [35], which can be considered as an 

extension of FedAvg. 

Step 5: The learning process, spanning from step 1 to step 

5, constitutes a cycle that is iterated repeatedly until the 

desired level of precision or a predetermined number of 

cycles is reached. 

Step 6: Upon completion of the learning process, the 

system becomes capable of detecting new attacks and issuing 

alerts in the event of intrusions. 

 

 
 

Figure 5. Architecture of the proposed approach 

 

4.2 Local learning models 

 

Federated learning is performed with the number of 

available users, and each user has their own training data and 

local learning model. Choosing a less complex and more 

efficient local learning model presents a significant challenge 

and remains a major concern, as IoT devices are known for 

their limited computing capacity and power resources. 

Therefore, the local learning model should be adapted to the 

constraint related to IoT devices. To choose the most suitable 

local learning model that aligns with the limitations of IoT 

devices, we evaluated three deep learning algorithms, namely 

DNN, CNN and LSTM. Here is a brief description of each 

algorithm:  

Deep Neural Networks (DNN): It consists of a set of 

neurons arranged in a multi-layered sequence, which allows 

data to be processed in a complex way, using advanced 

mathematical models. 

Convolutional Neural Networks (CNN): It is composed 

of a set of conventional layers connected in sequence to 

generate an output from the analyzed input. 
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Long Short-Term Memory (LSTM): This type of 

Recurrent Neural Network (RNN) consists of interconnected 

units capable of learning and remembering long-term 

dependencies. It utilizes a memory structure that can retain 

its state over time. 

 

4.3 Federated learning model 

 

As described in section 4.1, the server coordinates with a 

set of users, and it aggregates the updates sent by the users in 

order to generate the global model which will be used in the 

next rounds. To illustrate how to train the FL model, assume 

a set of K users. Each user uk (𝑘 ∈ [1, 𝐾]) has an associated 

model weight 𝑤𝑘, and a local dataset 𝑑𝑘 composed of 𝑠𝑘  data 

samples. Each user updates the local model with their local 

data, using the following gradient descent formula: 

 

𝑤 ← 𝑤 − η∇ℓ(w; b) (1) 

 

where, 𝜂 is the rate of learning and b is the size of the local 

minibatch used for user updates. Then the server calculates 

the weighted average of the local models using the following 

formula: 

 

𝑤 = ∑
𝑠𝑘

𝑆

𝐾

𝑘=1

𝑤𝑘  (2) 

 

where, 𝑆 = ∑ 𝑠𝑘
𝐾
𝑘=1 . 

We have employed an approach introduced by McMahan 

et al. [34], which utilizes the aggregate function FedAvg. The 

complete pseudo-code for this approach is presented in 

Algorithm 1. 

 

Algorithm 1: Federated averaging [12] 

Aggregation Server: 

1. Weight initialization 𝑤𝑡=0     

2. for every round 𝑡 = 1, 2, … do 

3.       m ← max(C.K, 1) 

4.       𝑁𝑡
 ← (Random set of m users) 

5.       for each user 𝑘 ∈  𝑁𝑡 in parallel do 

6.             𝑤𝑘
𝑡 ← 𝑈𝑠𝑒𝑟𝑈𝑝𝑑𝑎𝑡𝑒(k, wt-1) 

7.       end for 

8.       𝑤𝑡 ← ∑
𝑠𝑘

𝑆

𝑁𝑡

𝑘=1  𝑤𝑘
𝑡        

9. end for 

UserUpdate(k, w): 

𝟏𝟎.    𝛽 ← 𝑆𝑝𝑙𝑖𝑡𝑒 𝑑𝑖  𝑖𝑛𝑡𝑜 𝑏𝑎𝑡𝑐ℎ 𝑜𝑓 𝑠𝑖𝑧𝑒 𝐵  
11.  for every local epoch e do  

12.        for every batch 𝑏 ∈ 𝛽 do  

13.               𝑤 ← 𝑤 − η∇ℓ(w; b)         

14.        end for 

15.   end for 

16.   return w  

 

4.4 Detection process 

 

Algorithm 2 provides a detailed description of the 

intrusion detection procedure in our proposed approach. At 

the beginning (t=0), the central server initializes the global 

model 𝑀 and distributes it among all users. Each user has 

their own dataset dk, which is spilled into a train set for local 

model training, and a test set for local model evaluation. 

Before starting the learning procedure, a pre-processing step 

is performed to improve data quality by dealing with missing 

values, inconsistent values, duplicate instances, etc. This is 

followed by a feature selection step which aims at selecting 

the most relevant attributes of a dataset. This procedure 

increases storage efficiency, reduces computational costs, 

and enhance the performance of a ML model [3, 5]. 

 

Algorithm 2: The FL method for intrusion detection 

1.   Input: Local Datasets dk, 

2.               Global model 𝑀 

3.   Output: Final Intrusion Detection Model 

4.   Send Global model M to all users 

5.   for every user 𝑘 ∈  𝑁 do 

6.         Splitting dk into train and test dataset  

7.         Pre-processing and feature selection of dk 

8.   end for 

9.   for every round 𝑡 = 1, 2, … do 

10.         for every user 𝑘 ∈  𝑁 do 

11.              Training and testing on dk 

12.               Sending updated parameters to server 

13.          end for 

14.          with the server 

15.               Local Model Aggregation  

16.               Generating a new model global 

17.               Sending the model global to users 

18.          end with 

19.    end for 

20.    Evaluating Final Model 

21. end algorithm 

 

Once users receive the intrusion detection models from the 

server, each user learns a personalized local model and then 

returns only the update parameters to the server, instead of 

sharing sensitive information that could be vulnerable to theft. 

The server then aggregates the weights obtained from various 

user models to generate the current global model. This model 

is transmitted back to the users for the next round. This 

learning process is repeated until a certain number of rounds 

is completed or a specific level of precision is achieved. At 

the end, the server can identify various types of attacks and 

generate alert in the event of an intrusion. 

 

 

5. EVALUATION RESULTS 

 

In this section, we will present the results of the 

performance evaluation conducted on our proposed model. 

We will start by discussing the dataset that was utilized for 

our experiments, providing relevant details about its 

composition and characteristics. Following that, we will 

provide an overview of the performance metrics that were 

employed to assess the effectiveness of our model. 

Additionally, we will compare our approach with other 

related approaches to showcase its superiority and highlight 

its unique contributions. Finally, we will delve into the 

experimental results obtained, analyzing and interpreting the 

findings to provide a comprehensive understanding of the 

performance and efficacy of our proposed model. 

 

5.1 Dataset 

 

Before starting the evaluation of the model, the selection 

of a suitable dataset is crucial and requires careful 

consideration. To fulfill this objective, we employed three 
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datasets, namely IoTID20 [36], IoT-23 [37] and N-BaIoT [38] 

datasets, which improves the ability to generalize the results 

on the one hand and to effectively evaluate the system on the 

other.  

IoTID20 dataset: This dataset was generated by 

connecting IoT devices to a smart home, resulting in 625,783 

samples with 80 features. Among these samples, 585,710 are 

classified as malicious. Table 2 provides a description of the 

different label classes in this dataset. 

 

Table 2. A description of the IoTID20 dataset 

 
Label Description Sample Count 

Normal 
No suspicious or 

malicious activity 
40,073 

DoS Denial of Service 

attacks 
59,391 

Mirai Mirai botnet attacks 415,677 

MITM 
Man-In-TheMiddle 

attacks 
35,377 

Scan Scan attacks 75,265 

Total  625,783 

 

IoT-23 dataset: This dataset is created by the Stratosphere 

Laboratory. It is based on the network traffic from IoT 

devices and consists of 20 malware captures and 3 benign 

captures. This dataset has 19 features and 325,307,990 

samples of which 294,449,255 are malicious. A summary of 

this dataset is given in Table 3. 

 

Table 3. A summary of the IoT-23 dataset 

 
Label Description Sample Count 

Attack 
Some kind of infection 

attack between devices 
9,398 

Benign No attack 30,858,735 

C&C 
A Command-and-Control 

Attack 
21,995 

DDoS Distributed Denial of 

Service Attack 19,538,713 

File 

Download 

The infected device is 

downloading a file 
71 

Heart Beat 

The C&C server monitors 

the infected host using the 

sent packets 

34,518 

Mirai Mirai botnet attacks 2 

Okiru Okiru botnet attacks 60,990,711 

Part of a 

Horizontal 

Port Scan 

Scanning horizontal ports 

for information to launch 

additional attacks. 

213,853,817 

Torii Torii botnet attacks 30 

Total  325,307,990 

 

Table 4. Sample count for the N-BaIoT dataset 

 
Label BENIGN MIRAI BASHLITE Total 

Device1 49,548 652,100 316,650 1,018,298 

Device2 13,113 512,133 310,630 835,876 

Device3 39,100 - 316,400 355,500 

Device4 175,240 610,714 312,723 1,098,677 

Device5 62,154 436,010 330,096 828,260 

Device6 98,514 429,337 309,040 836,891 

Device7 52,150 - 323,072 375,222 

Device8 46,585 513,248 303,223 863,056 

Device9 19,528 514,860 316,438 850,826 

 

N-BaIoT dataset: The N-BaIoT dataset was collected 

from 9 IoT devices that were infected with 10 different types 

of attacks. These attacks can be categorized into two groups: 

Mirai and BASHLITE. The dataset comprises 116 features 

and a total of 7,062,606 samples, out of which 6,506,674 

samples are classified as malicious. The distribution of 

samples for each device is provided in Table 4. 

 

5.2 Evaluation metrics 

 

To evaluate the performance and compare the results of 

different models, various metrics are used, which are based 

on a confusion matrix consisting of four metric values: True 

Positive (TP), False Positive (FP), True Negative (TN) and 

False Negative (FN).  

The evaluation metrics employed are briefly defined 

below:  

Accuracy is the rate of the true predictions. It is given by 

the formula: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 

 

Precision is the number of successful positive predictions. 

It is calculated by the formula: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

 

Recall is the percentage of positives that is well predicted. 

The calculation formula is as follows: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

 

F1-Score or F1-measure is the harmonic average of the 

precision and recall metrics. It is defined as follows: 
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (6) 

 

5.3 Experimental results 

 

In this section, we discuss the results obtained from 

various experiments conducted on the proposed model. All 

experiments were conducted with 9 users, where each user 

was assigned to one of the 9 devices. The N-BaIoT dataset 

consists of 9 devices, where each device is assigned to a 

single user. On the other hand, the IoT 23 and IoTID20 

datasets were divided into 9 subsets to accommodate the 

user-device assignment. Figure 6 illustrates the distribution 

of classes in the three datasets.  

 

 
 

Figure 6. Distribution of classes in the three datasets 

 

We considered a binary classification problem with 2 

classes: Normal and Attack, present in each dataset. It is 

evident that the class distribution is imbalanced, with the 
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attack class being predominant. This class imbalance may 

impact the performance of the models. However, despite this 

imbalance, these datasets are widely recognized benchmarks 

in recent studies, allowing for meaningful comparisons with 

similar research. 

Before training the DNN, CNN, and LSTM classifiers, the 

datasets are preprocessed accordingly. The hyper-parameters 

used are: binary cross-entropy, ADAM optimizer and 

learning rate with a value of lr=0.001. The learning process 

is performed over 10 rounds. The implementation of the 

model is carried out using the Pytorch deep learning 

framework. For further reference, Table 5 provides the 

specific values of the key hyperparameters employed in our 

proposed approach for the various classifiers. 

Figure 7 displays the accuracy trends in the 9 devices 

following each federated aggregation round. The DNN, CNN, 

and LSTM classifiers are applied to the N-BaIoT dataset for 

this analysis. 

We conducted an evaluation of federated learning 

performance on the N-BaIoT dataset, involving 9 users in the 

model training process. We set 5 training epochs per user and 

performed 10 communication rounds between the users and 

the server. This resulted in a total of 50 epochs for training 

the local models. Each user was allocated a 10% subset of the 

total training dataset for training, while the remaining 10% 

was utilized for model evaluation. 

 

Table 5. The classifier parameter values used in our 

proposed approach 

 
Model Hyperparameter Value 

DNN 

Hidden dimension 

Output dimension 

Local epochs 

Dropout 

128 

2 

10 

0.2 

CNN 

Convolutional layers 

Kernel size 

Activation function 

Local Batch Size 

Dropout 

2 Conv1D 

3 

ReLu 

100 

0.2 

LSTM 

Local Batch Size 

Activation Function 

Hidden dimension 

Output dimension 

Dropout 

100 

ReLu 

128 

2 

0.2 

Global 

Number of Users 

Users selected 

Number of rounds 

Global epochs 

Global Batch size 

Optimization 

Learning rate 

Loss function 

9 

3 

10 

5 

1000 

ADAM 

1e-3 

binary cross-entropy 

 

 

 
 

Figure 7. Accuracy trends of DNN training rounds on the N-BaIoT dataset 

 

The deep learning models exhibited excellent performance 

during training, achieving high accuracy levels of up to 99% 

at the conclusion of the communication cycles. This trend is 

depicted in Figure 8 for all the deep learning models utilized. 

It is worth noting that parallel learning through federated 

learning methodology enables efficient utilization of 

computational resources on end devices, thereby reducing 

overall training time while ensuring data privacy. 

Following the training phase, we proceeded to evaluate the 

global model using the test dataset over 10 rounds. As 
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previously mentioned, we employed three deep learning 

algorithms: DNN, CNN, and LSTM. The performance of these 

models on the three datasets is compared in Figure 8.  

 

 
(a) On the IoTID20 dataset 

 
(b) On the IoT23 dataset 

 
(c) On the N-BaIoT dataset 

 

Figure 8. Performance comparison between the DNN, CNN, 

and CNN federated models 

 

We can see that on the IoTID20 dataset, as demonstrated in 

subgraph (a) of Figure 8, the LSTM model demonstrated the 

highest performance across all metrics. It achieved the highest 

accuracy, precision, recall, and F1-score among the three 

models. The DNN model performed slightly worse than the 

LSTM model but still showed strong results, with high 

accuracy and recall values. The CNN model had the lowest 

accuracy but still exhibited good precision, recall, and F1-

score values. 

On the IoT23 dataset, as demonstrated in subgraph (b) of 

Figure 8, the LSTM model outperformed the DNN and CNN 

models in terms of accuracy, precision, recall, and F1-score. It 

achieved the highest accuracy and F1-score among the three 

models, while also maintaining high precision and recall 

values. The DNN model performed slightly worse than the 

LSTM model but still achieved good results. The CNN model 

had the lowest accuracy, precision, and F1-score, indicating 

that it may not be as effective as the other models for this 

particular dataset. 

Finally, on the N-BaIoT datasets, as demonstrated in 

subgraph (c) of Figure 8, the LSTM model still performed well 

compared to the DNN and CNN models. It achieved high 

accuracy, precision, recall, and F1-score values, with the 

highest recall and F1-score among the three models. The DNN 

model achieved slightly higher accuracy, precision, recall, and 

F1-score than the LSTM model, indicating strong performance. 

The CNN model performed slightly worse than the LSTM and 

DNN models but still exhibited high accuracy and precision. 

Overall, the LSTM model consistently demonstrated strong 

performance across all three datasets, outperforming or closely 

competing with the other models in terms of accuracy, 

precision, recall, and F1-score. The DNN and CNN models 

also exhibited good performance but generally fell behind the 

LSTM model in various metrics. 

Finally, it is important to note that IoT data often involves 

time series information, and LSTM is well suited to handle 

such sequential data, making it an ideal candidate for intrusion 

detection tasks in IoT environments. The Ability of LSTM to 

model and remember long-term dependencies in time series 

data could have allowed it to identify subtle patterns and 

anomalies in the IoT dataset more effectively than DNN and 

CNN, which may have struggle to capture these temporal 

nuances. 

 

5.4 Comparison and discussion 

 

Table 6 presents a comparison between the effectiveness of 

our approach and other IDS approaches. The comparison 

focuses on various aspects, including datasets, techniques 

employed, ML classifiers utilized, and the results obtained. 

 

Table 6. Comparison of proposed model and related works 

 

Ref. 
Learning 

Type 
Dataset Used Classifiers Accuracy 

[39] Centralized CICIDS2017 
CNN, 

LSTM 

up to 

97% 

[40] Centralized 

CIC-

IDS2017, 

CSE-

CICIDS2018 

CNN 
up to 

99% 

[41] Distributed CICIDS2017 
CNN, 

LSTM 

up to 

97% 

[42] Distributed UNSW-NB15 MLP 
up to 

96% 

[43] Federated 

NSL-KDD, 

DS2OS, 

Gas Pipeline 

KNN, RF, 

MLP 

up to 

94% 

[44] Federated MODBUS GRU 
up to 

90% 

Our 

Work 
Federated 

IoTID20, 

IoT23, N-

BaIoT 

DNN, 

CNN, 

LSTM 

up to 

99% 

 

Our proposed FL-based SID approach for IoT networks 

offers several advantages compared to other approaches:  

Firstly, by adopting federated learning, our approach 

ensures that the training process takes place locally on the user 

devices, preserving data privacy and security. Unlike 

centralized approaches where all data is sent to a central server, 

federated learning allows users to keep their data locally while 

still contributing to the model training.  
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Secondly, our approach leverages the power of deep 

learning models such as DNN, CNN, and LSTM, which have 

shown great success in various machine learning tasks. These 

models have the capability to capture complex patterns and 

relationships in the data, leading to improved accuracy in 

intrusion detection.  

Furthermore, the use of FL enables distributed model 

training and aggregation, which reduces the communication 

overhead between users and the server. Instead of sending raw 

data, users only transmit their update parameters, reducing the 

risk of sensitive information being exposed or intercepted.  

In terms of performance, our experiments have shown that 

the LSTM model, in particular, outperformed the DNN and 

CNN models, achieving a higher accuracy rate of up to 99% 

on the evaluated datasets. 

Compared to traditional centralized intrusion detection 

approaches, our FL-based SID approach offers improved data 

privacy, enhanced scalability, and the ability to train robust 

models using distributed resources. These advantages make 

our approach well-suited for IoT environments where data 

privacy and resource constraints are critical considerations. 

 

 

6. CONCLUSION 

 

This study proposed a Federated Learning-based Intrusion 

Detection (FL-based SID) approach for IoT networks. The aim 

was to address the challenges of data privacy, resource 

constraints, and scalability in intrusion detection systems for 

IoT environments.  

The proposed approach leveraged the power of deep 

learning models, including DNN, CNN, and LSTM, to capture 

complex patterns and relationships in IoT network data. By 

adopting federated learning, the training process was 

decentralized, allowing users to keep their data locally while 

contributing to the model training.  

Experimental evaluations were conducted using popular 

IoT datasets, namely IoTID20, IoT-23, and N-BaIoT. The 

results demonstrated the effectiveness of the FL-based SID 

approach, with the LSTM model outperforming the DNN and 

CNN models, achieving a significant accuracy rate of up to 

99%. 

The advantages of the FL-based SID approach included data 

privacy preservation, reduced communication overhead, and 

improved scalability. By distributing the model training and 

aggregation process, the approach mitigated the risks 

associated with sending sensitive data to a central server, while 

utilizing the computing resources available on IoT devices. 

Finally, the FL-based SID approach presented in this study 

contributes to the development of efficient and privacy-

preserving intrusion detection systems for IoT networks, 

addressing the unique challenges posed by these environments.  

In future work, we intend to explore the use of other deep 

learning models in the FL-based SID framework. Additionally, 

we are considering the deployment of a federated learning 

architecture integrated with Blockchain technology to enhance 

the security and transparency of the system. 
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