
Smart Intrusion Detection in IoT Edge Computing Using Federated Learning

Samir Fenanir1* , Fouzi Semchedine2

1 Department of Computer Science, Faculty of Sciences, University of Sétif 1, Sétif 19000, Algeria
2 Mechatronics Laboratory, Optics and Precision Mechanics Institute, University of Sétif 1, Sétif 19000, Algeria

Corresponding Author Email: samir.fenanir@univ-setif.dz

https://doi.org/10.18280/ria.370505 ABSTRACT

Received: 30 June 2023

Revised: 1 September 2023

Accepted: 9 September 2023

Available online: 31 October 2023

With the proliferation of the Internet of Things (IoT) in various domains, concerns over

information security and user privacy have exponentially escalated. Numerous smart

intrusion detection (SID) strategies, primarily based on machine/deep learning techniques,

have been proposed to counter these security challenges. However, these strategies are

typically designed with a centralized approach, where IoT devices relay their data to a

central server for training, potentially exposing the data to a range of security threats and

privacy vulnerabilities. To address these data security and privacy challenges, a federated

learning (FL) approach is adopted in this study. In this approach, individual users train their

local models and transmit only parameter updates to the server. These parameters are then

aggregated to form the global model. In each FL training cycle, IoT users receive an updated

global model from the central server, which they further train utilizing their respective local

datasets. This methodology allows for the preservation of IoT device privacy while

optimizing the global model. In the context of IoT edge computing, where computational

load is distributed to network edges for efficient resource utilization, a novel SID approach

based on federated learning is proposed. The effectiveness of this approach is evaluated

using three popular deep learning models and three well-established IoT field datasets. This

thorough evaluation serves to assess the generalizability of the models and validate the

reliability of the results. Through extensive experiments and comprehensive comparisons

with other methodologies, this study demonstrates superior performance, achieving an

impressive 99% accuracy rate. This result underscores the robustness of the proposed

approach in accurately detecting intrusions within IoT environments, thereby offering a

promising solution for securing IoT edge computing.

Keywords:

Internet of Things (IoT), smart intrusion

detection (SID), deep learning, federated

learning (FL), Edge Computing, fog

computing

1. INTRODUCTION

The Internet of Things (IoT) is a combination of a variety

of connected objects using all kinds of communication

technologies, forming ubiquitous computing [1]. The IoT is

the integration of the Internet with the physical world by

harnessing Artificial Intelligence (AI) to deliver smarter

services to the environment [2]. Nowadays, the IoT provides

an increasing number of applications and services in various

fields such as: domestic, education, agriculture, energy

distribution, health, tourism, transport, etc.

Though the IoT offers many benefits, it also faces many

difficulties and challenges [3]. Among the major challenges of

the IoT is to manage a multitude of heterogeneous objects

connected by heterogeneous communication technologies to a

variety of applications and users [4]. Added to this is the open

nature of the IoT and the presence of components with low

computing capabilities and power, which makes it vulnerable

to various types of attacks, and most existing security solutions

become difficult to apply [5]. On the other hand, information

confidentiality and user privacy are also vulnerable. For

example, in medical applications, many internet-connected

sensors embedded into the human body for daily use reveal

their habits, state of health, geographic location and other

types of information. Therefore, this critical information must

be carefully secured from its acquisition to its management

and use [6]. Consequently, IoT security and privacy have

become a fundamental problem and a major concern.

To this end, Intrusion Detection System (IDS) is widely

used as a security mechanism to detect different kinds of

attacks on the IoT ecosystem. Depending on the detection

methods used, IDSs are divided into three main categories:

signature-based detection, anomaly-based detection, and

specification-based detection [7]. Signature-based IDS detects

attacks by comparing its signatures to predefined attack

models that are already stored in a database [8]. This technique

is straightforward to employ. Nonetheless, it comes with a

high cost, especially as the number of attacks grows, requiring

additional storage space. Moreover, its primary drawback lies

in its limited scope, as it can only detect attacks that match the

existing signatures. Consequently, there is a constant need for

database updates to incorporate new attack signatures.

Anomaly-based IDS detects new intrusions by comparing new

entries to its pattern of normal behavior. Any deviation

exceeding a predefined threshold is marked as an anomaly [9].

The primary advantage of this technique is its ability to

identify new attacks by flagging any deviations from normal

behavior. Nevertheless, it frequently produces numerous false

positives because not every deviation from normal behavior

indicates an actual attack. Specification-based IDS is a hybrid

method that combines the two previous techniques. This

technique leverages both techniques to identify new attacks

Revue d'Intelligence Artificielle
Vol. 37, No. 5, October, 2023, pp. 1133-1145

Journal homepage: http://iieta.org/journals/ria

1133

https://orcid.org/0000-0003-0767-8140
https://orcid.org/0000-0003-4375-1077
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370505&domain=pdf

while also reducing false positives. However, implementing

such mechanisms consumes additional energy and resources.

In our study, we adopted anomaly-based SID to detect and

classify different kinds of attacks using deep learning

techniques, which have proven their efficiency in the security

domain.

Learning techniques for the IoT can be classified into three

categories, namely centralized, distributed and federated

learning [10]. In the centralized approach, attacks can be

detected with high accuracy. However, the data transfer cost

from the IoT network to the server and the latency are high in

this model due to the large distance between IoT devices and

the central server. Moreover, this approach does not guarantee

the confidentiality of user data. Indeed, the sharing of sensitive

data on the IoT network will make them vulnerable to various

attacks. Although distributed learning solves the latency

problem by processing data close to the IoT devices, it also

does not guarantee data privacy. Federated learning is a new

paradigm to address the limitations of centralized and

distributed learning [11], it has been widely used in recent

years to guarantee the confidentiality of user data and to

reduce latency.

Federated learning (FL) for the IoT is essentially composed

by two components: users and aggregator. Users train on local

models and then send update parameters to the aggregator

which aggregates them to generate a new global model.

Generally, two approaches are commonly used: the edge-

based approach and the cloud-based approach for learning

model global. In edge-based FL, global model aggregation is

done on the edge server, while in cloud-based FL, it is done on

the cloud server. Given the many users located in a large

distributed area. Cloud-based FL is better suited for training

more general models than edge-based FL [12].

In this paper, we propose smart intrusion detection based on

federated learning for IoT network, using three deep learning

algorithms, namely DNN, CNN, and LSTM. To evaluate our

approach, we used three datasets, namely IoTID20, IoT-23 and

N-BaIoT, which allow us to compare the different models and

select the best model for the IoT network. The contributions of

our work are as follows:

•We proposed a novel approach based on federated learning

for intrusion detection in IoT systems. This approach

addresses the data security and privacy concerns associated

with centralized approaches.

•We conducted experiments using three deep learning

models and three popular datasets in the IoT domain to

evaluate the effectiveness and generalization capability of our

approach.

• Through rigorous evaluation and comparisons with

existing approaches, we demonstrated superior performance in

terms of accuracy, precision, recall, and F-score.

•Our approach proved to be efficient, reliable, and capable

of effectively detecting intrusions in edge IoT systems.

•The results of our experiments highlight the effectiveness

and potential of federated learning in the context of intrusion

detection for IoT systems.

Finally, our work contributes to advancing the field of IoT

security by introducing a privacy-preserving approach that

achieves high detection accuracy and addresses the challenges

of centralized learning approaches.

The remaining of this paper is organized as follows: Section

2 presents related work. Section 3 provides an overview of

learning techniques. Section 4 details the proposed approach.

Section 5 presents the data set, evaluation metrics and the

proposed approach results. Finally, Section 6 concludes the

paper.

2. RELATED WORK

Recently, several IDS works using machine/deep learning

techniques have been developed to provide better protection

for the IoT ecosystem. In this section, we discuss some works

by classifying them into two categories:

2.1 Machine Learning-based approach

Fenanir et al. [5] proposed a lightweight IDS based on an

elaborate combination of feature selection based on correlation

and classification techniques. A comparison of seven

classification algorithms were performed on 3 datasets,

namely KDD-99, NSL-KDD and UNSW-NB15 datasets.

Finally, the decision tree algorithm was selected owing to its

performance on several datasets.

Moustafa et al. [13] suggested an IDS to identify malicious

events in IoT networks, based on analysis of DNS flows. To

evaluate this technique, an Adaptive Boosting ensemble

learning approach is developed using three algorithms:

Decision Tree, Naive Bayesian and Neural Network.

Experimental results using UNSW-NB15 and NIMS botnet

datasets show that the proposed framework provides good

performance.

Verma and Ranga [14] reports a benchmarking study on

IDS using ML classifiers for IoT networks. The classifiers

were evaluated on the CIDDS-001, UNSWNB15, and NSL-

KDD datasets. The experimental results show good

performance, in particular with the regression trees and the

gradient boosting classifier.

Kumar et al. [15] proposed an IDS based on the design of

distributed ensemble using Fog computing. This approach

combines in the first level, three classifiers, namely K-Nearest

Neighbors (KNN), eXtreme Gradient Boosting (XGBoost)

and Naive Bayesian (NB). At the second level, the random

forest is used for the final classification. UNSW-NB15 and

DS2OS datasets are used to validate the proposed approach.

The experimental result shows that the proposed approach

provides a higher detection rate, especially on the DS2OS

dataset, where the detection rate can reach 99.99% for most

attack categories.

Pajouh et al. [16] proposed an IDS in IoT Backbone

Networks. This model used two dimension reduction

techniques: Principal component analysis and linear

discriminant analysis, and two classification algorithms: K-

Nearest Neighbors and Naïve Bayesian. The proposed

approach is designed to detect the low frequency attacks using

the NSL-KDD dataset and two types of attacks: User-to-Root

and Remote-to-Local attacks. The experiment results of this

model provide an 84.66% detection rate for binary

classification.

Alruhaily and Ibrahim [17] presented a multi-layer IDS for

WSN, which uses two layers of detection. The first layer uses

the Naive Bayes algorithm to detect suspicious packets at the

network edge. The second layer uses a Random Forest

multiclass classifier to deeply analyze the inspected packets

located at the cloud. The WSN-DS dataset is used to validate

the proposed approach. The experiment results give a

relatively high performance with different evaluation metrics.

However, the proposed model did not use any feature selection

1134

techniques to reduce data dimensionality. Moreover, it uses a

unique database, which does not allow to effectively evaluate

the system.

2.2 Deep Learning-based approach

Almogren [18] proposed an IDS to detect intrusions in the

Edge of things (EoT) network based on the deep belief

network (DBN). The evaluation of this model is performed

using the UNSW-NB15 dataset with various DBN structures.

The experiment results indicate that DBN has the best overall

performance compared to ANN and SVM algorithms, where

the detection rate has reached (96.34%). Although the deep

belief-based approaches give high accuracy, they are not

efficient in terms of inference time.

Li et al. [19] presented an IDS based on an industrial IoT

network using a multi-convolutional neural network. This

model was evaluated using the unique KDD dataset and

provided 86.95% accuracy for binary classification and 81.33%

accuracy for classification multiclass. However, this study was

limited to only one benchmark dataset, which affects the

ability to generalize results.

Li et al. [20] adopted a disagreement learning based IDS in

real IoT network environments. This method aims to improve

the detection rate and reduce false alarms. The results show

good performance using unlabeled datasets. However, its

efficiency is uncertain with large samples. Moreover, the

dataset should be updated regularly to keep the learning

efficiency.

Abdalgawad et al. [21] implemented two adversarial

generative deep learning methods, namely Autoencoders and

Bidirectional GANs to detect attacks in IoT environment. The

proposed model used the IoT-23 dataset. The experimental

results showed that the model performs well with an F1 rate of

up to 0.99. While this model was evaluated using different

metrics, inference time was not evaluated.

Fenanir et al. [3] proposed a centralized IDS for IoT

network, using a semi-supervised learning autoencoder. This

model was evaluated using the NSL-KDD and CIDDS-001

datasets. The authors adopted a centralized architecture which

is less suited to the IoT network given its distributed nature.

Table 1. Summary of related work

Ref. Datasets Classifiers Key Findings

[3]
NSL-KDD,

CIDDS-001
Deep AutoEncoder

This paper proposed a centralized IDS for IoT network, using a semi-

supervised learning autoencoder. The authors adopted a centralized

architecture which is less suited to the IoT network given its distributed nature.

[5]

KDD-99, NSL-

KDD, and UNSW-

NB15

KNN, SVM, Decision Tree,

Random Forest, Regression

Logistic, Naive Bayes, MLP

This paper proposed a lightweight IDS that combined feature selection and

classification techniques. The decision tree algorithm (DT) is chosen as the

optimal model.

[13]
UNSW-NB15,

NIMS botnet

Decision Tree, Naive

Bayesian, Neural Network

classifiers

The authors demonstrate the effectiveness of their approach through an

experimental evaluation using an ensemble intrusion detection technique based

on DNS flow analysis to protect Internet of Things (IoT) network traffic.

[14]

CIDDS-001,

UNSWNB15,

NSL-KDD

regression trees and gradient

boosting

The authors conducted a benchmarking study on IDS for IoT networks,

highlighting the effectiveness of regression trees and gradient boosting

classifiers on datasets.

[15] DS2OS

K-NN, Gradient Boosting,

Naive Bayesian, random

forest.

This paper proposed a distributed ensemble IDS using Fog computing, with a

combination of classifiers such as K-Nearest Neighbors, eXtreme Gradient

Boosting, Naive Bayesian, and random forest.

[16] NSL-KDD KNN, Naive Bayesian

The authors developed an IDS for IoT Backbone Networks, utilizing Principal

Component Analysis and Linear Discriminant Analysis for dimension

reduction and K-Nearest Neighbors and Naive Bayesian classifiers for low-

frequency attack detection.

[17] WSN-DS
Naive Bayes and Random

Forest

This paper presented a multi-layer IDS for WSN, employing Naive Bayes and

Random Forest classifiers for suspicious packet detection. While achieving

high performance, their model lacked feature selection techniques and relied

on a unique database for evaluation.

[18] UNSW-NB15 deep belief networks (DBN)

The authors introduced an IDS for Edge of Things (EoT) networks based on

deep belief networks (DBN). The DBN outperformed ANN and SVM

algorithms, However, DBN models were not efficient in terms of inference

time.

[19] KDD
convolutional neural

network (CNN)

The authors developed an IDS for industrial IoT networks using a multi-

convolutional neural network. The study was limited to a single benchmark

dataset, impacting generalizability.

[20] Generic Dataset disagreement-based Method

This paper proposed a disagreement learning-based IDS for real IoT networks,

demonstrating good performance with unlabeled datasets. However, its

efficiency with large samples was uncertain, and regular dataset updates were

necessary for learning efficiency.

[21] IoT-23
Autoencoders and

Bidirectional GANs

The authors implemented adversarial generative deep learning methods for IoT

attack detection using the IoT-23 dataset. The model achieved a high F1 score

of up to 0.99, although inference time was not evaluated.

[22] - -

The authors reviewed the application of Federated Learning in the context of

IDS and highlight the challenges associated with its implementation. The study

provides insights into the potential benefits and limitations of using Federated

Learning for IoT intrusion detection, contributing to the advancement of this

field.

1135

Campos et al. [22] conducted a comprehensive review on

the utilization of Federated Learning for intrusion detection

in the Internet of Things (IoT) domain. They specifically

examined the application of Federated Learning in this

context and shed light on the implementation challenges

involved. The study offers valuable insights into the potential

advantages and drawbacks of employing Federated Learning

for IoT intrusion detection, thereby making a significant

contribution to the advancement of this field.

In Table 1, we have compiled a summary of the main

contributions from similar studies. The table includes

information such as experiment dataset, classifiers used, and

key findings.

Based on previous studies and considering its limitations,

we proposed a federated learning approach for smart

intrusion detection in IoT environment. This approach entails

training models at the edge of IoT devices and consolidating

their updated parameters at a central server. This method

ensures the protection of IoT device privacy while

simultaneously enhancing the performance of the overall

model. We implemented three deep learning models, namely

DNN, CNN, and LSTM, to conduct a comparative analysis

and select the most suitable classifiers. To evaluate our

approach and assess the generalizability of the models, we

used three commonly employed datasets in the IoT field:

IoTID20, IoT23, and N-BaIoT datasets.

3. BACKGROUND

In this section, we present a brief introduction to cloud, fog

and Edge computing paradigm, followed by an overview of

three ML architectures namely, centralized, distributed, and

federated learning.

3.1 Cloud computing

Cloud computing is an infrastructure that provides a

variety of services for storing, gathering and processing data

using remote servers hosted on the Internet. The main

services offered by cloud computing are: Software as a

Service (SaaS), Platform as a Service (PaaS) and

Infrastructure as a Service (IaaS).

Figure 1. Conventional cloud computing in IoT

The integration of cloud computing in the IoT provides a

new data storage area and services for processing, analyzing

and storing a huge volume of data generated by the IoT [23].

The primary goal of cloud computing in IoT is to increase

efficiency and performance, as well as enable resource

sharing [24]. However, cloud computing in IoT faces certain

communication limitations, particularly in terms of

bandwidth and latency constraints. This is where edge

computing becomes advantageous, especially in remote

locations, as it enables data processing and analysis to be

performed closer to the source of data generation [25].

Figure 1 shows the conventional cloud computing in IoT,

where IoT devices generate data and transfer it to the remote

cloud via the Internet. The remote cloud then sends a data

consumption request and receives the result.

3.2 Edge computing

While data processing in the cloud offers greater

computational power compared to the edge, the increasing

amount of data generated by the IoT requires a significant

bandwidth and leads to high latency, which makes cloud

computing inefficient to manage all this data [26]. In edge

computing, data processing occurs in data sources that are

close to end users, providing adequate computing power to

handle IoT requirements [18]. Thus, there is no need for the

IoT nodes to send data to the cloud. Instead, the data can be

processed directly on the nodes, leading to a significant

reduction in latency.

Figure 2. Edge computing in IoT

Figure 2 depicts edge computing in IoT. At the IoT

network edge, data from devices is received and analyzed

before being sent to a data center or cloud.

3.3 Fog computing

Fog Computing refers to a decentralized infrastructure,

which transfers data and services between the cloud and the

network edge [27]. It addresses the challenges of latency,

bandwidth consumption, and communication optimization

between IoT devices and remote cloud services by leveraging

proximity storage and processing capabilities [28]. By

bringing computing resources closer to the data source, fog

computing reduces the reliance on distant cloud servers and

enables real-time data processing and decision-making. This

proximity-based approach improves the overall

responsiveness and reliability of IoT applications. Fog

computing supports the mobility, scalability, and high

availability requirements of IoT systems, accommodating the

dynamic nature of IoT deployments. Furthermore, fog

computing plays a crucial role in managing the heterogeneity

of IoT devices and applications. It achieves this through the

support of interoperability mechanisms and the use of

application programming interfaces (APIs) that facilitate

seamless integration and communication between different

1136

IoT platforms and protocols. Virtualization technologies are

also employed in fog computing to enable the efficient

allocation and utilization of resources across diverse IoT

devices and services [27].

In summary, fog computing offers a decentralized

infrastructure that optimizes communication, reduces latency,

and enhances the scalability and interoperability of IoT

applications. By leveraging proximity-based storage and

processing, fog computing brings computational capabilities

closer to the network edge, enabling efficient and reliable

data processing for a wide range of IoT use cases.

Figure 3 shows a reference architecture for fog computing.

At the lowest level are the IoT devices, which collect data

from the environment and transmit them to the edge layer.

The edge layer includes edge nodes that serve as a gateway

to the fog layer. In the fog layer, there are multiple fog nodes

with some compute and storage capability, which allow them

to manage, connect, and share resources between the edge

layer and the cloud layer [29]. The next layer consists of

cloud services and resources that manage resources and

process received IoT tasks. The top layer contains IoT

applications that harness fog layer to offer innovative and

smart solutions to end users.

Figure 3. Fog computing architecture

3.4 Centralized learning

Centralized learning for IoT requires transmitting training

data from each IoT device to the cloud server to create a

common model [30]. This model will be used by all user

devices. The main advantage of this centralized learning is

the ability to generalize from a subset of devices and thus

perform with other compatible devices. Moreover, the

centralized learning is computationally efficient because the

IoT devices are free from intensive computational work that

requires high computational resources [3]. However, the

centralized approach applied to the IoT presents difficult

challenges. In such an approach, the bandwidth is often very

limited and the data amount sent to the cloud is very large,

since training of complex tasks usually requires exchanging

large blocks of data to a central server. Moreover, when there

is a lot of interaction with services available in the cloud,

latency due to the round trip to the cloud is often a problem

for applications running in real time. Additionally, energy

consumption is a significant concern in this architecture, as it

can lead to faster battery drain for IoT devices. Frequent data

transmission to the central server and back can also strain

network resources. Furthermore, the data exchanged by users

can be very private, such as personal identification

information, payment data, protected health information, etc.

When these private data are shared on the cloud, there is a

high possibility that user privacy will be compromised by

eavesdropping attacks [30]. The development trends of this

approach include: Advancements in Deep Learning,

particularly with the emergence of larger and more efficient

neural networks. Additionally, techniques for compressing

and optimizing models for deployment on edge devices have

gained prominence, resulting in reduced computational and

energy requirements for centralized learning. This approach

is presented in subgraph (a) of Figure 4.

Figure 4. Machine learning approaches [22]

3.5 Distributed learning

Distributed learning techniques are exploited to solve

complex algorithmic problems on large-scale data sets by

assigning the learning task to distributed devices rather than

a central server [31]. As shown in subgraph (b) of Figure 4,

each device learns an individual model of its environment

independently of other devices. The advantages of this

technique are that the model adapts to changes as they happen,

learning is not limited by internet connection, and no

confidential information should be transferred to the cloud.

However, distributed learning applied to IoT is constrained

by the limited computing capacity, high energy consumption

and low battery capacity, which can hinder the effectiveness

and efficiency of distributed learning algorithms. To

overcome these limitations, it is crucial to develop

lightweight learning models specifically designed for IoT

environments [5]. These lightweight models aim to strike a

balance between accuracy and resource consumption,

ensuring that the learning process can be executed efficiently

on resource-constrained IoT devices. Furthermore, edge

devices have significantly enhanced their capabilities,

enabling distributed learning models to autonomously tackle

more complex tasks at the local level. Consequently, this

diminishes the need for extensive data transmission and

centralized processing.

3.6 Federated learning

Federated learning also relies on shifting the training task

to the IoT devices, and then federating local models and

learning on the central cloud server. This approach combines

1137

the benefits of the two previous approaches, as presented in

subgraph (c) of Figure 4. The central cloud server distributes

a generic learning model to the devices. Each device

independently trains the model using its own local data and

transmits weight updates to the server. Finally, the server

calculates the average and aggregates the global model,

which the devices will use in subsequent training cycles. The

process will repeat until the desired level of convergence is

achieved [32]. This architecture can reduce energy

consumption compared to pure centralized approaches

because it minimizes the need for frequent, data-intensive

transmissions. It allows IoT devices to train locally and

communicate selectively. Due to its advantages over

competing approaches, federated learning in the IoT has

garnered a lot of attention lately. However, there are still

some challenges to overcome, communication issues,

heterogeneity, and privacy invasions [33].

4. PROPOSED METHOD

Among the main challenges we faced was to create a

lightweight SID that adapts to the limited processing power

of the IoT devices, respects user privacy, and reduces latency

and communication costs. Traditional centralized learning

methods transfer all local datasets to a remote server for

training, which solves the problem of limited capacity of IoT

devices [3, 5]. However, this can expose the data to many

types of attacks without ensuring the protection of users'

privacy and preventing data leakage. To address these

concerns, we propose a new federated learning based-

approach to detect intrusions in IoT networks. The benefits

of this approach is to maximize the learning efficiency by

spreading the computations and learning over multiple local

data in the IoT network. It also ensures data sensitivity and

privacy by protecting device information and simply

distributing local model updates.

4.1 Proposed model architecture

The proposed approach architecture, shown in Figure 5,

comprises three layers. The application layer contains IoT

applications and services that serve to manage resources and

process tasks to provide innovative and intelligent solutions

to end users. The next layer includes IoT devices, which

collect information from the environment for training local

models. It consists of n users, each user having a local model

of a single device. At the upper layer there is a central server

that orchestrates the federated learning process and detects

intrusions.

The federated learning process consists of three essential

steps: training local models, aggregating global models and

updating local models. The steps of this process are as

follows:

Step 1: Initially, the central server in the cloud layer

initializes the global model by pre-training it with a set of

initial weights. Subsequently, the global model is distributed

to the individual users. It is worth noting that certain studies

have addressed the aspect of user selection, wherein a subset

of users is chosen based on various criteria, such as device

status (active/inactive), availability of an unlimited

connection, battery level, and so on.

Step 2: Once the local models are obtained from the central

server, each user in the edge layer trains its local model using

its training data. In the case of a concrete SID, the training

process involves utilizing the local network traffic of each

user.

Step 3: When the training is finished, the users send their

updated model parameters/weights to the server. If a user

exceeds the transfer time specified by the server due to a

limited connection, insufficient computing power or a huge

amount of training data, the update parameters of this user

will be ignored and the process will continue with the updates

received.

Step 4: The server aggregates all received parameters/

weights to generate a new global model for the next training

cycle. Various aggregation algorithms are employed in

federated learning, including the original and widely-used

Federated Averaging (FedAvg) [34], as well as more recent

approaches like FedProx [35], which can be considered as an

extension of FedAvg.

Step 5: The learning process, spanning from step 1 to step

5, constitutes a cycle that is iterated repeatedly until the

desired level of precision or a predetermined number of

cycles is reached.

Step 6: Upon completion of the learning process, the

system becomes capable of detecting new attacks and issuing

alerts in the event of intrusions.

Figure 5. Architecture of the proposed approach

4.2 Local learning models

Federated learning is performed with the number of

available users, and each user has their own training data and

local learning model. Choosing a less complex and more

efficient local learning model presents a significant challenge

and remains a major concern, as IoT devices are known for

their limited computing capacity and power resources.

Therefore, the local learning model should be adapted to the

constraint related to IoT devices. To choose the most suitable

local learning model that aligns with the limitations of IoT

devices, we evaluated three deep learning algorithms, namely

DNN, CNN and LSTM. Here is a brief description of each

algorithm:

Deep Neural Networks (DNN): It consists of a set of

neurons arranged in a multi-layered sequence, which allows

data to be processed in a complex way, using advanced

mathematical models.

Convolutional Neural Networks (CNN): It is composed

of a set of conventional layers connected in sequence to

generate an output from the analyzed input.

1138

Long Short-Term Memory (LSTM): This type of

Recurrent Neural Network (RNN) consists of interconnected

units capable of learning and remembering long-term

dependencies. It utilizes a memory structure that can retain

its state over time.

4.3 Federated learning model

As described in section 4.1, the server coordinates with a

set of users, and it aggregates the updates sent by the users in

order to generate the global model which will be used in the

next rounds. To illustrate how to train the FL model, assume

a set of K users. Each user uk (𝑘 ∈ [1, 𝐾]) has an associated

model weight 𝑤𝑘, and a local dataset 𝑑𝑘 composed of 𝑠𝑘 data

samples. Each user updates the local model with their local

data, using the following gradient descent formula:

𝑤 ← 𝑤 − η∇ℓ(w; b) (1)

where, 𝜂 is the rate of learning and b is the size of the local

minibatch used for user updates. Then the server calculates

the weighted average of the local models using the following

formula:

𝑤 = ∑
𝑠𝑘

𝑆

𝐾

𝑘=1

𝑤𝑘 (2)

where, 𝑆 = ∑ 𝑠𝑘
𝐾
𝑘=1 .

We have employed an approach introduced by McMahan

et al. [34], which utilizes the aggregate function FedAvg. The

complete pseudo-code for this approach is presented in

Algorithm 1.

Algorithm 1: Federated averaging [12]

Aggregation Server:

1. Weight initialization 𝑤𝑡=0

2. for every round 𝑡 = 1, 2, … do

3. m ← max(C.K, 1)

4. 𝑁𝑡
 ← (Random set of m users)

5. for each user 𝑘 ∈ 𝑁𝑡 in parallel do

6. 𝑤𝑘
𝑡 ← 𝑈𝑠𝑒𝑟𝑈𝑝𝑑𝑎𝑡𝑒(k, wt-1)

7. end for

8. 𝑤𝑡 ← ∑
𝑠𝑘

𝑆

𝑁𝑡

𝑘=1 𝑤𝑘
𝑡

9. end for

UserUpdate(k, w):

𝟏𝟎. 𝛽 ← 𝑆𝑝𝑙𝑖𝑡𝑒 𝑑𝑖 𝑖𝑛𝑡𝑜 𝑏𝑎𝑡𝑐ℎ 𝑜𝑓 𝑠𝑖𝑧𝑒 𝐵
11. for every local epoch e do

12. for every batch 𝑏 ∈ 𝛽 do

13. 𝑤 ← 𝑤 − η∇ℓ(w; b)

14. end for

15. end for

16. return w

4.4 Detection process

Algorithm 2 provides a detailed description of the

intrusion detection procedure in our proposed approach. At

the beginning (t=0), the central server initializes the global

model 𝑀 and distributes it among all users. Each user has

their own dataset dk, which is spilled into a train set for local

model training, and a test set for local model evaluation.

Before starting the learning procedure, a pre-processing step

is performed to improve data quality by dealing with missing

values, inconsistent values, duplicate instances, etc. This is

followed by a feature selection step which aims at selecting

the most relevant attributes of a dataset. This procedure

increases storage efficiency, reduces computational costs,

and enhance the performance of a ML model [3, 5].

Algorithm 2: The FL method for intrusion detection

1. Input: Local Datasets dk,

2. Global model 𝑀

3. Output: Final Intrusion Detection Model

4. Send Global model M to all users

5. for every user 𝑘 ∈ 𝑁 do

6. Splitting dk into train and test dataset

7. Pre-processing and feature selection of dk

8. end for

9. for every round 𝑡 = 1, 2, … do

10. for every user 𝑘 ∈ 𝑁 do

11. Training and testing on dk

12. Sending updated parameters to server

13. end for

14. with the server

15. Local Model Aggregation

16. Generating a new model global

17. Sending the model global to users

18. end with

19. end for

20. Evaluating Final Model

21. end algorithm

Once users receive the intrusion detection models from the

server, each user learns a personalized local model and then

returns only the update parameters to the server, instead of

sharing sensitive information that could be vulnerable to theft.

The server then aggregates the weights obtained from various

user models to generate the current global model. This model

is transmitted back to the users for the next round. This

learning process is repeated until a certain number of rounds

is completed or a specific level of precision is achieved. At

the end, the server can identify various types of attacks and

generate alert in the event of an intrusion.

5. EVALUATION RESULTS

In this section, we will present the results of the

performance evaluation conducted on our proposed model.

We will start by discussing the dataset that was utilized for

our experiments, providing relevant details about its

composition and characteristics. Following that, we will

provide an overview of the performance metrics that were

employed to assess the effectiveness of our model.

Additionally, we will compare our approach with other

related approaches to showcase its superiority and highlight

its unique contributions. Finally, we will delve into the

experimental results obtained, analyzing and interpreting the

findings to provide a comprehensive understanding of the

performance and efficacy of our proposed model.

5.1 Dataset

Before starting the evaluation of the model, the selection

of a suitable dataset is crucial and requires careful

consideration. To fulfill this objective, we employed three

1139

datasets, namely IoTID20 [36], IoT-23 [37] and N-BaIoT [38]

datasets, which improves the ability to generalize the results

on the one hand and to effectively evaluate the system on the

other.

IoTID20 dataset: This dataset was generated by

connecting IoT devices to a smart home, resulting in 625,783

samples with 80 features. Among these samples, 585,710 are

classified as malicious. Table 2 provides a description of the

different label classes in this dataset.

Table 2. A description of the IoTID20 dataset

Label Description Sample Count

Normal
No suspicious or

malicious activity
40,073

DoS Denial of Service

attacks
59,391

Mirai Mirai botnet attacks 415,677

MITM
Man-In-TheMiddle

attacks
35,377

Scan Scan attacks 75,265

Total 625,783

IoT-23 dataset: This dataset is created by the Stratosphere

Laboratory. It is based on the network traffic from IoT

devices and consists of 20 malware captures and 3 benign

captures. This dataset has 19 features and 325,307,990

samples of which 294,449,255 are malicious. A summary of

this dataset is given in Table 3.

Table 3. A summary of the IoT-23 dataset

Label Description Sample Count

Attack
Some kind of infection

attack between devices
9,398

Benign No attack 30,858,735

C&C
A Command-and-Control

Attack
21,995

DDoS Distributed Denial of

Service Attack 19,538,713

File

Download

The infected device is

downloading a file
71

Heart Beat

The C&C server monitors

the infected host using the

sent packets

34,518

Mirai Mirai botnet attacks 2

Okiru Okiru botnet attacks 60,990,711

Part of a

Horizontal

Port Scan

Scanning horizontal ports

for information to launch

additional attacks.

213,853,817

Torii Torii botnet attacks 30

Total 325,307,990

Table 4. Sample count for the N-BaIoT dataset

Label BENIGN MIRAI BASHLITE Total

Device1 49,548 652,100 316,650 1,018,298

Device2 13,113 512,133 310,630 835,876

Device3 39,100 - 316,400 355,500

Device4 175,240 610,714 312,723 1,098,677

Device5 62,154 436,010 330,096 828,260

Device6 98,514 429,337 309,040 836,891

Device7 52,150 - 323,072 375,222

Device8 46,585 513,248 303,223 863,056

Device9 19,528 514,860 316,438 850,826

N-BaIoT dataset: The N-BaIoT dataset was collected

from 9 IoT devices that were infected with 10 different types

of attacks. These attacks can be categorized into two groups:

Mirai and BASHLITE. The dataset comprises 116 features

and a total of 7,062,606 samples, out of which 6,506,674

samples are classified as malicious. The distribution of

samples for each device is provided in Table 4.

5.2 Evaluation metrics

To evaluate the performance and compare the results of

different models, various metrics are used, which are based

on a confusion matrix consisting of four metric values: True

Positive (TP), False Positive (FP), True Negative (TN) and

False Negative (FN).

The evaluation metrics employed are briefly defined

below:

Accuracy is the rate of the true predictions. It is given by

the formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3)

Precision is the number of successful positive predictions.

It is calculated by the formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4)

Recall is the percentage of positives that is well predicted.

The calculation formula is as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5)

F1-Score or F1-measure is the harmonic average of the

precision and recall metrics. It is defined as follows:

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (6)

5.3 Experimental results

In this section, we discuss the results obtained from

various experiments conducted on the proposed model. All

experiments were conducted with 9 users, where each user

was assigned to one of the 9 devices. The N-BaIoT dataset

consists of 9 devices, where each device is assigned to a

single user. On the other hand, the IoT 23 and IoTID20

datasets were divided into 9 subsets to accommodate the

user-device assignment. Figure 6 illustrates the distribution

of classes in the three datasets.

Figure 6. Distribution of classes in the three datasets

We considered a binary classification problem with 2

classes: Normal and Attack, present in each dataset. It is

evident that the class distribution is imbalanced, with the

1140

attack class being predominant. This class imbalance may

impact the performance of the models. However, despite this

imbalance, these datasets are widely recognized benchmarks

in recent studies, allowing for meaningful comparisons with

similar research.

Before training the DNN, CNN, and LSTM classifiers, the

datasets are preprocessed accordingly. The hyper-parameters

used are: binary cross-entropy, ADAM optimizer and

learning rate with a value of lr=0.001. The learning process

is performed over 10 rounds. The implementation of the

model is carried out using the Pytorch deep learning

framework. For further reference, Table 5 provides the

specific values of the key hyperparameters employed in our

proposed approach for the various classifiers.

Figure 7 displays the accuracy trends in the 9 devices

following each federated aggregation round. The DNN, CNN,

and LSTM classifiers are applied to the N-BaIoT dataset for

this analysis.

We conducted an evaluation of federated learning

performance on the N-BaIoT dataset, involving 9 users in the

model training process. We set 5 training epochs per user and

performed 10 communication rounds between the users and

the server. This resulted in a total of 50 epochs for training

the local models. Each user was allocated a 10% subset of the

total training dataset for training, while the remaining 10%

was utilized for model evaluation.

Table 5. The classifier parameter values used in our

proposed approach

Model Hyperparameter Value

DNN

Hidden dimension

Output dimension

Local epochs

Dropout

128

2

10

0.2

CNN

Convolutional layers

Kernel size

Activation function

Local Batch Size

Dropout

2 Conv1D

3

ReLu

100

0.2

LSTM

Local Batch Size

Activation Function

Hidden dimension

Output dimension

Dropout

100

ReLu

128

2

0.2

Global

Number of Users

Users selected

Number of rounds

Global epochs

Global Batch size

Optimization

Learning rate

Loss function

9

3

10

5

1000

ADAM

1e-3

binary cross-entropy

Figure 7. Accuracy trends of DNN training rounds on the N-BaIoT dataset

The deep learning models exhibited excellent performance

during training, achieving high accuracy levels of up to 99%

at the conclusion of the communication cycles. This trend is

depicted in Figure 8 for all the deep learning models utilized.

It is worth noting that parallel learning through federated

learning methodology enables efficient utilization of

computational resources on end devices, thereby reducing

overall training time while ensuring data privacy.

Following the training phase, we proceeded to evaluate the

global model using the test dataset over 10 rounds. As

1141

previously mentioned, we employed three deep learning

algorithms: DNN, CNN, and LSTM. The performance of these

models on the three datasets is compared in Figure 8.

(a) On the IoTID20 dataset

(b) On the IoT23 dataset

(c) On the N-BaIoT dataset

Figure 8. Performance comparison between the DNN, CNN,

and CNN federated models

We can see that on the IoTID20 dataset, as demonstrated in

subgraph (a) of Figure 8, the LSTM model demonstrated the

highest performance across all metrics. It achieved the highest

accuracy, precision, recall, and F1-score among the three

models. The DNN model performed slightly worse than the

LSTM model but still showed strong results, with high

accuracy and recall values. The CNN model had the lowest

accuracy but still exhibited good precision, recall, and F1-

score values.

On the IoT23 dataset, as demonstrated in subgraph (b) of

Figure 8, the LSTM model outperformed the DNN and CNN

models in terms of accuracy, precision, recall, and F1-score. It

achieved the highest accuracy and F1-score among the three

models, while also maintaining high precision and recall

values. The DNN model performed slightly worse than the

LSTM model but still achieved good results. The CNN model

had the lowest accuracy, precision, and F1-score, indicating

that it may not be as effective as the other models for this

particular dataset.

Finally, on the N-BaIoT datasets, as demonstrated in

subgraph (c) of Figure 8, the LSTM model still performed well

compared to the DNN and CNN models. It achieved high

accuracy, precision, recall, and F1-score values, with the

highest recall and F1-score among the three models. The DNN

model achieved slightly higher accuracy, precision, recall, and

F1-score than the LSTM model, indicating strong performance.

The CNN model performed slightly worse than the LSTM and

DNN models but still exhibited high accuracy and precision.

Overall, the LSTM model consistently demonstrated strong

performance across all three datasets, outperforming or closely

competing with the other models in terms of accuracy,

precision, recall, and F1-score. The DNN and CNN models

also exhibited good performance but generally fell behind the

LSTM model in various metrics.

Finally, it is important to note that IoT data often involves

time series information, and LSTM is well suited to handle

such sequential data, making it an ideal candidate for intrusion

detection tasks in IoT environments. The Ability of LSTM to

model and remember long-term dependencies in time series

data could have allowed it to identify subtle patterns and

anomalies in the IoT dataset more effectively than DNN and

CNN, which may have struggle to capture these temporal

nuances.

5.4 Comparison and discussion

Table 6 presents a comparison between the effectiveness of

our approach and other IDS approaches. The comparison

focuses on various aspects, including datasets, techniques

employed, ML classifiers utilized, and the results obtained.

Table 6. Comparison of proposed model and related works

Ref.
Learning

Type
Dataset Used Classifiers Accuracy

[39] Centralized CICIDS2017
CNN,

LSTM

up to

97%

[40] Centralized

CIC-

IDS2017,

CSE-

CICIDS2018

CNN
up to

99%

[41] Distributed CICIDS2017
CNN,

LSTM

up to

97%

[42] Distributed UNSW-NB15 MLP
up to

96%

[43] Federated

NSL-KDD,

DS2OS,

Gas Pipeline

KNN, RF,

MLP

up to

94%

[44] Federated MODBUS GRU
up to

90%

Our

Work
Federated

IoTID20,

IoT23, N-

BaIoT

DNN,

CNN,

LSTM

up to

99%

Our proposed FL-based SID approach for IoT networks

offers several advantages compared to other approaches:

Firstly, by adopting federated learning, our approach

ensures that the training process takes place locally on the user

devices, preserving data privacy and security. Unlike

centralized approaches where all data is sent to a central server,

federated learning allows users to keep their data locally while

still contributing to the model training.

1142

Secondly, our approach leverages the power of deep

learning models such as DNN, CNN, and LSTM, which have

shown great success in various machine learning tasks. These

models have the capability to capture complex patterns and

relationships in the data, leading to improved accuracy in

intrusion detection.

Furthermore, the use of FL enables distributed model

training and aggregation, which reduces the communication

overhead between users and the server. Instead of sending raw

data, users only transmit their update parameters, reducing the

risk of sensitive information being exposed or intercepted.

In terms of performance, our experiments have shown that

the LSTM model, in particular, outperformed the DNN and

CNN models, achieving a higher accuracy rate of up to 99%

on the evaluated datasets.

Compared to traditional centralized intrusion detection

approaches, our FL-based SID approach offers improved data

privacy, enhanced scalability, and the ability to train robust

models using distributed resources. These advantages make

our approach well-suited for IoT environments where data

privacy and resource constraints are critical considerations.

6. CONCLUSION

This study proposed a Federated Learning-based Intrusion

Detection (FL-based SID) approach for IoT networks. The aim

was to address the challenges of data privacy, resource

constraints, and scalability in intrusion detection systems for

IoT environments.

The proposed approach leveraged the power of deep

learning models, including DNN, CNN, and LSTM, to capture

complex patterns and relationships in IoT network data. By

adopting federated learning, the training process was

decentralized, allowing users to keep their data locally while

contributing to the model training.

Experimental evaluations were conducted using popular

IoT datasets, namely IoTID20, IoT-23, and N-BaIoT. The

results demonstrated the effectiveness of the FL-based SID

approach, with the LSTM model outperforming the DNN and

CNN models, achieving a significant accuracy rate of up to

99%.

The advantages of the FL-based SID approach included data

privacy preservation, reduced communication overhead, and

improved scalability. By distributing the model training and

aggregation process, the approach mitigated the risks

associated with sending sensitive data to a central server, while

utilizing the computing resources available on IoT devices.

Finally, the FL-based SID approach presented in this study

contributes to the development of efficient and privacy-

preserving intrusion detection systems for IoT networks,

addressing the unique challenges posed by these environments.

In future work, we intend to explore the use of other deep

learning models in the FL-based SID framework. Additionally,

we are considering the deployment of a federated learning

architecture integrated with Blockchain technology to enhance

the security and transparency of the system.

REFERENCES

[1] Weiser, M. (1991). The Computer for the 21st Century.

Scientific American, 265(3): 94-105.

[2] De, S., Barnaghi, P.M., Bauer, M.P., Meissner, S. (2011).

Service modelling for the Internet of Things. In 2011

Federated Conference on Computer Science and

Information Systems (FedCSIS), Szczecin, Poland, pp.

949-955.

[3] Fenanir, S., Semchedine, F., Harous, S., Baadache, A.

(2020). A semi-supervised deep auto-encoder based

intrusion detection for IoT. Ingénierie Des Systèmes d

Information, 25(5): 569-577.

https://doi.org/10.18280/isi.250503

[4] Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S.,

Sundmaeker, H., Bassi, A., Jubert, I.S., Mazura, M.,

Harrison, M., Eisenhauer, M., Doody, P. (2022). Internet

of Things strategic research roadmap. Internet of Things

- Global Technological and Societal Trends from Smart

Environments and Spaces to Green Ict.

https://doi.org/10.1201/9781003338604-2

[5] Fenanir, S., Semchedine, F., Baadache, A. (2019). A

machine learning-based lightweight intrusion detection

system for the Internet of Things. Revue d’Intelligence

Artificielle, 33(3): 203-211.

https://doi.org/10.18280/ria.330306

[6] Bertino, E., Choo, K.K.R., Georgakopolous, D., Nepal,

S. (2016). Internet of Things (IoT) smart and secure

service delivery. ACM Transactions on Internet

Technology (TOIT), 16(4): 22.

https://doi.org/10.1145/3013520

[7] Mitchell, R., Chen, I.R. (2014). A survey of intrusion

detection techniques for cyber-physical systems. ACM

Computing Surveys, 46(4): 55.

https://doi.org/10.1145/2542049

[8] Ioulianou, P., Vasilakis, V., Moscholios, I., Logothetis,

M. (2018). A signature-based intrusion detection system

for the Internet of Things. Information and

Communication Technology Form, 11-13.

https://eprints.whiterose.ac.uk/133312/.

[9] Damopoulos, D., Menesidou, S.A., Kambourakis, G.,

Papadaki, M., Clarke, N., Gritzalis, S. (2011). Evaluation

of anomaly-based IDS for mobile devices using machine

learning classifiers. Security and Communication

Networks, 5(1): 3-14. https://doi.org/10.1002/sec.341

[10] Attota, D.C., Mothukuri, V., Parizi, R.M., Pouriyeh, S.

(2021). An ensemble multi-view federated learning

intrusion detection for IoT. IEEE Access, 9: 117734

117745.

https://doi.org/10.1109/ACCESS.2021.3107337

[11] Aledhari, M., Razzak, R., Parizi, R.M., Saeed, F. (2020).

Federated learning: a survey on enabling technologies,

protocols, and applications. IEEE Access, 8: 140699-

140725.

https://doi.org/10.1109/ACCESS.2020.3013541

[12] Khan, L.U., Pandey, S.R., Tran, N.H., Saad, W., Han, Z.,

Nguyen, M.N.H., Hong, C.S. (2020). Federated learning

for edge networks: Resource optimization and incentive

mechanism. IEEE Communications Magazine, 58(10):

88 93. https://doi.org/10.1109/MCOM.001.1900649.

[13] Moustafa, N., Turnbull, B., Choo, K.K.R. (2018). An

ensemble intrusion detection technique based on

proposed statistical flow features for protecting network

traffic of internet of things. IEEE Internet of Things

Journal, 6(3): 4815-4830.

https://doi.org/10.1109/JIOT.2018.2871719

[14] Verma, A., Ranga, V. (2019). Machine learning based

intrusion detection systems for IoT applications.

Wireless Personal Communications, 111(4): 2287-2310.

1143

https://doi.org/10.1007/s11277-019-06986-8

[15] Kumar, P., Gupta, G.P., Tripathi, R. (2020). A distributed

ensemble design based intrusion detection system using

fog computing to protect the internet of things networks.

Journal of Ambient Intelligence and Humanized

Computing, 12(10): 9555-9572.

https://doi.org/10.1007/s12652-020-02696-3

[16] Pajouh, H.H., Javidan, R., Khayami, R., Dehghantanha,

A., Choo, K.K.R. (2019). A two-layer dimension

reduction and two-tier classification model for anomaly-

based intrusion detection in IoT backbone networks.

IEEE Transactions on Emerging Topics in Computing,

7(2): 314-323.

https://doi.org/10.1109/tetc.2016.2633228

[17] Alruhaily, N.M., Ibrahim, D.M. (2021). A multi-layer

machine learning-based intrusion detection system for

wireless sensor networks. International Journal of

Advanced Computer Science and Applications, 12(4):

281-288. https://doi.org/10.14569/ijacsa.2021.0120437

[18] Almogren, A.S. (2020). Intrusion detection in Edge-of-

Things computing. Journal of Parallel and Distributed

Computing, 137: 259-265.

https://doi.org/10.1016/j.jpdc.2019.12.008

[19] Li, Y., Xu, Y., Liu, Z., Hou, H., Zheng, Y., Xin, Y., Zhao,

Y., Cui, L. (2020). Robust detection for network

intrusion of industrial IoT based on multi-CNN fusion.

Measurement, 154: 107450.

https://doi.org/10.1016/j.measurement.2019.107450

[20] Li, W.J., Meng, W.Z., Au, M.H. (2020). Enhancing

collaborative intrusion detection via disagreement-based

semi-supervised learning in IoT environments. Journal of

Network and Computer Applications, 161: 102631.

https://doi.org/10.1016/j.jnca.2020.102631

[21] Abdalgawad, N., Sajun, A., Kaddoura, Y., Zualkernan,

I.A., Aloul, F. (2022). Generative deep learning to detect

cyberattacks for the IoT-23 dataset. IEEE Access, 10:

6430-6441.

https://doi.org/10.1109/access.2021.3140015

[22] Campos, E.M., Saura, P.F., González-Vidal, A.,

Hernández-Ramos, J.L., Bernabé, J.B., Baldini, G.,

Skarmeta, A. (2022). Evaluating federated learning for

intrusion detection in Internet of Things: Review and

CHALLENGES. Computer Networks, 203: 108661.

https://doi.org/10.1016/j.comnet.2021.108661

[23] Kumar, P., Silambarasan, K. (2019). Enhancing the

performance of healthcare service in IoT and cloud using

optimized techniques. IETE Journal of Research, 68(2):

1475-1484.

https://doi.org/10.1080/03772063.2019.1654934

[24] Gadasin, D.V., Koltsova, A.V., Gadasin, D.D. (2021).

Algorithm for building a cluster for implementing the

“memory as a service” service in the IoT concept. In

2021 Systems of Signals Generating and Processing in

the Field of on Board Communications, Moscow, Russia,

pp. 1-6.

https://doi.org/10.1109/ieeeconf51389.2021.9416112

[25] Li, W., Shen, G., Zhang, J., Liu, D., Choi, C. (2021). A

LoRaWAN monitoring system for large buildings based

on embedded edge computing in indoor environment.

Concurrency and Computation: Practice and Experience,

35(16): e6306. https://doi.org/10.1002/cpe.6306

[26] Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L. (2016). Edge

computing: Vision and challenges. IEEE Internet of

Things Journal, 3(5): 637-646.

https://doi.org/10.1109/JIOT.2016.2579198

[27] Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K.,

Buyya, R. (2016). Fog computing: Principles,

architectures, and applications. Internet of Things, 61-75.

https://doi.org/10.1016/b978-0-12-805395-9.00004-6

[28] Prabavathy, S., Sundarakantham, K., Shalinie, S.M.

(2018). Design of cognitive fog computing for intrusion

detection in Internet of Things. Journal of

Communications and Networks, 20(3): 291-298.

https://doi.org/10.1109/jcn.2018.000041

[29] Atlam, H.F., Walters, R.J., Wills, G.B. (2018). Fog

computing and the internet of things: A review. Big Data

and cognitive Computing, 2(2): 10.

https://doi.org/10.3390/bdcc2020010

[30] AbdulRahman, S., Tout, H., Ould-Slimane, H., Mourad,

A., Talhi, C., Guizani, M. (2020). A survey on federated

learning: The journey from centralized to distributed on-

site learning and beyond. IEEE Internet of Things

Journal, 8(7): 5476-5497.

https://doi.org/10.1109/JIOT.2020.3030072

[31] Drainakis, G., Katsaros, K.V., Pantazopoulos, P., Sourlas,

V., Amditis, A. (2020). Federated vs. centralized

machine learning under privacy-elastic users: A

comparative analysis. 2020 IEEE 19th International

Symposium on Network Computing and Applications

(NCA), Cambridge, MA, USA, pp. 1-8.

https://doi.org/10.1109/nca51143.2020.9306745

[32] Asad, M., Moustafa, A., Ito, T. (2021). Federated

learning versus classical machine learning: A

convergence comparison. arXiv preprint

arXiv:2107.10976.

https://doi.org/10.48550/arXiv.2107.10976

[33] Mothukuri, V., Parizi, R.M., Pouriyeh, S., Huang, Y.,

Dehghantanha, A., Srivastava, G. (2021). A survey on

security and privacy of federated learning. Future

Generation Computer Systems, 115: 619-640.

https://doi.org/10.1016/j.future.2020.10.007

[34] McMahan, B., Moore, E., Ramage, D., Hampson, S.,

Arcas, B.A. (2017). Communication-efficient learning of

deep networks from decentralized data. PMLR, 54:

1273-1282.

[35] Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar,

A., Smith, V. (2020). Federated optimization in

heterogeneous networks. Proceedings of Machine

Learning and Systems, 2: 429-450.

[36] Ullah, I., Mahmoud, Q.H. (2020). A scheme for

generating a dataset for anomalous activity detection in

IoT networks. In 33rd Canadian Conference on Artificial

Intelligence, Canadian AI 2020, Ottawa, ON, Canada, pp.

508-520. https://doi.org/10.1007/978-3-030-47358-7_52

[37] Garcia, S., Parmisano, A., Erquiaga, M.J. (2020). IoT-23:

A labeled dataset with malicious and benign IoT network

traffic. Zenodo. https://doi.org/10.5281/zenodo.4743746

[38] Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y.,

Shabtai, A., Breitenbacher, D., Elovici, Y. (2018). N-

BaIoT-network-based detection of IoT botnet attacks

using deep autoencoders. IEEE Pervasive Computing,

17(3): 12-22.

https://doi.org/10.1109/MPRV.2018.03367731

[39] Elnakib, O., Shaaban, E., Mahmoud, M., Emara, K.

(2023). EIDM: Deep learning model for IoT intrusion

detection systems. The Journal of Supercomputing, 79:

13241-13261. https://doi.org/10.1007/s11227-023-

05197-0

1144

[40] Okey, O.D., Melgarejo, D.C., Saadi, M., Rosa, R.L.,

Kleinschmidt, J.H., Rodriguez, D.Z. (2023). Transfer

learning approach to IDS on cloud IoT devices using

optimized CNN. IEEE Access, 11: 1023-1038.

https://doi.org/10.1109/access.2022.3233775

[41] Roopak, M., Tian, G., Chambers, J. (2019). Deep

learning models for cyber security in IoT networks. In

2019 IEEE 9th Annual Computing and Communication

Workshop and Conference (CCWC), Las Vegas, NV,

USA, pp. 452-457.

https://doi.org/10.1109/CCWC.2019.8666588

[42] Hoang, T.M., Thi, T.L.L., Quy, N.M. (2023). A novel

distributed machine learning model to detect attacks on

edge computing network. Journal of Advances in

Information Technology, 14(1): 153-159.

https://doi.org/10.12720/jait.14.1.153-159

[43] Chatterjee, S., Hanawal, M.K. (2022). Federated learning

for intrusion detection in IoT security: A hybrid

ensemble approach. International Journal of Internet of

Things and Cyber-Assurance, 2(1): 62-86.

https://doi.org/10.1504/IJITCA.2022.124372

[44] Mothukuri, V., Khare, P., Parizi, R.M., Pouriyeh, S.,

Dehghantanha, A., Srivastava, G. (2021). Federated-

learning-based anomaly detection for IoT security

attacks. IEEE Internet of Things Journal, 9(4): 2545-

2554. https://doi.org/10.1109/JIOT.2021.3077803

1145

