
 
 

 

 

1. INTRODUCTION 

 

The heat transfer mechanism and the fluid flow in porous 

media are of crucial importance in many industrial and 

engineering fields such as chemical and petroleum 

engineering [1]. 

Understanding this phenomenon requires unrelentingly 

solving partial differential equations (PDE) (Navier-Stokes 

equations (NS)). The simulation is on three scales. For 

macroscopic one many methods of CFD are available such as 

finite difference (FDM). The microscopic scale is based on 

molecular dynamic. Recently lattice Boltzmann method 

(LBM) has appeared as an alternative computationally potent 

tool to simulate a Newtonian fluid flow especially in complex 

geometries [2, 3]. The basic idea of LBM is the kinetic theory 

of fluid motion; it's derived from the Boltzmann transport 

equation. In fact, the LBM simulation consists of registering 

the evolution of fluid particle in discretized space, speed and 

time. LBM received considerable attention thanks to many 

advantages: the convection operator of the kinetic equation is 

linear. It’s adapted to parallel processes computing and 

solving the Laplace equation is not necessary at each time 

step to satisfy the continuity equation. The Lattice Boltzmann 

method is used to model flow behavior in complex 

geometries thanks to its easy implementation under complex 

fluid–solid boundary conditions. In comparison with 

conventional CFD methods, the LBM has simple calculation 

procedure [4, 5]. The main advantage of this method is the 

simple implementation of boundary conditions. These 

benefits motive the simulation of non-compressible fluid 

flow in porous media. In fact, two models of LBM are 

proposed: Simplified lattice Boltzmann equation (SLBE) 

accounts of the viscous stress influence. It is based on 

Brinkman coefficient. This correction is valid for high 

porosity where the effect of Forchheimer term is undefined. 

Thus, studying non-compressible fluid flow according to the 

only Brinkman modification does not generate good 

agreement with the experimental results also ignoring the 

impact of Brinkman is not adequate for all conditions [6]. It 

is necessary to combine the two coefficients to obtain 

equation that contains inertial and viscous effect. So the 

second model generalized lattice Boltzmann equation 

(GLBE) emerges. It is founded on the Brinkman-Forcheimer 

equation. This model considers the linear and nonlinear drag 

forces resulting of solid matrix in addition to viscous stress 

due to solid boundaries [7]. Several researches were 

interested on the heat transfer in porous media and around 

obstacle. Indeed, the heat transfer and fluid flow in porous 
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media bounded by two isothermal parallel plates was studied 

[8]. The effect of parameters such as porosity, Reynolds and 

thermal diffusivity were investigated [9-13]. We are 

interested on the convection in a porous channel with fixed 

wall containing hot square due to its appearance in many 

scientific and industrial fields such as water filtration, 

catalytic converter and petroleum exploration and production. 

In the present paper the lattice Boltzmann method is 

applied to study heat transfer in complex structure. Indeed, a 

new numerical code is developed to treat fluid flow and heat 

transfer in porous media. The paper contains three sections. 

Firstly, the computational method is defined. The theory 

aspect of the thermal D2Q9 model is described. The second 

part is devoted to the mathematical formalism modeling the 

fluid flow and the heat transfer in porous channel. The third 

part can be divided on subsection. The first one concerns the 

validation of the numerical code, which is done by the study 

of Poiseuille flow. The analysis of the root mean square error 

shows good agreement between the LBM results and the 

benchmark case. Then, we use the SLBE and GLBE to 

simulate the thermal injected fluid flow in porous channel. 

The third subsection is interested on the comparison of the 

LBM approaches. It is effectuated at different positions and 

for different dynamics parameters. For small Darcy and 

Reynolds number the two models coincide. We use the 

GLBE to study heat transfer and fluid behavior in porous 

plate. The streamline and the isotherms are shown at different 

thermodynamic parameters. Also, the temperature and the 

velocity profiles are treated. 

Finally, we dealt the convection and the fluid behavior 

post obstacle placed inside porous media. The isotherms, the 

velocity field, the streamline and the pressure are studied for 

different parameters. The effect of the obstacle position and 

dimension is presented. The document describes the lattice 

Boltzmann approaches and shows its ability to treat easily 

complex problems. It offers a full study of convection and 

fluid flow in porous media which is important for several 

applications. 

 

 

2. LATTICE BOLTZMANN METHOD 

 

The fundamental equation of the lattice Boltzmann method 

is clearly presented in many papers such as [5, 14] by: 

 

𝑓(𝑥 + 𝛿𝑡 𝑐𝑖 , 𝑡 + 𝑑𝑡)𝑖 − 𝑓(𝑥, 𝑡)𝑖

=
𝑓(𝑥, 𝑡)𝑖 − 𝑓(𝑥, 𝑡)

𝑒𝑞

Γ𝜈
+ 𝛿𝑡𝐹𝑖                   (1) 

 

The relaxation time is Γν. It designs the time between two 

successive collisions. On the lattice space, it is defined 

as Γν =
3u0ny

Re
. ny is the lattice number on the characteristic 

length. For two dimensional, the nine-speed (D2Q9) LBE 

model is widely used. The discrete velocities and the weight 

are given by [14, 15]. The equilibrium distribution functions 

are given by the following equation [15]: 

 

𝑓𝑖
𝑒𝑞
= 𝜔𝑖𝜌 [1 +

3𝑐𝑖𝑢

𝑐2
+
9(𝑐𝑖𝑢)

2

2𝜀4
−
3𝑢2

2𝜀𝑐2
]                             (2) 

 

The origin lattice is at rest and the others moving in 

different directions with different speed. The velocity vector 

indicates a lattice per unit step. Throughout the flow domain 

the particle mass is taken as unity uniformly. The 

macroscopic quantities are related to the distribution 

functions in many references such as [16]. We assume that 

the viscous heat dissipation and the compression work 

generated by the pressure are negligible. The temperature is 

described by [14]:  

 

𝑔(𝑥 + 𝑐𝑖𝛿𝑡, 𝑡 + 𝛿𝑡)𝑖 − 𝑔(𝑥, 𝑡)𝑖

= −
𝑔(𝑥, 𝑡)𝑖 − 𝑔(𝑥, 𝑡)𝑖

𝑒𝑞

Γ𝑐
                                                              (3) 

 

The thermal equilibrium distribution function is given by 

[6]: 

 

{
  
 

  
 𝑔0

𝑒𝑞
= −

2𝜌Σ𝑢2

3𝑐2

𝑔𝑖=1,4
𝑒𝑞

=
𝜌Σ

9
[
3

2
+
3𝑐𝑖𝑢

2𝑐2
+
9(𝑐𝑖𝑢)

2

2𝑐4
−
3𝑢2

2𝑐2
]

𝑔𝑖=5,8
𝑒𝑞

=
𝜌Σ

36
[3 +

6𝑐𝑖𝑢

𝑐2
+
9(𝑐𝑖𝑢)

2

2𝑐4
−
3𝑢2

2𝑐2
]

                            (4) 

 

The temperature using the D2Q9 LBE model, is given by 

this equation 

 

𝑇(𝑥, 𝑡) =
1

𝜌
∑𝑔(𝑥, 𝑡)𝑖

8

𝑖=0

                                                              (5) 

 

 

3. MATHEMATICAL EQUATIONS AND LBM 

IMPLEMENTATION 

 

In porous media the equations are given in the 

representative elementary volume approach (REV). The 

Boussinesq approximation is applied. Indeed, the generalized 

model for non-compressible fluid flow and heat transfer is 

governed by the following equations [6, 17, 18]:  

Continuity equation 

 

𝛻. 𝑢 = 0                                                                                          (6) 
 

Momentum equation 

 
𝜕𝑢

𝜕𝑡
+ (𝑢. ∇) (

𝑢

𝜀
) = −

1

𝜌
∇(𝜀𝑝) + 𝜐𝑒∇

2𝑢 + 𝐹                          (7) 

 

Energy equation: 

 

 𝜎
𝜕𝑇

𝜕𝑡
+ ∇. (𝑢𝑇) = 𝛼∇2𝑇                                                            (8) 

 

The relation between 𝜎 and 𝛼 is 𝛼 =  𝜎 𝑐𝑠
2(Γ𝑐 − 0.5). The 

bulk average pressure 𝑃 is expressed by: 

 

𝑃 =
𝜌𝑐2

3𝜀
                                                                                        (9) 

 

The effective viscosity 𝜐𝑒  is assumed to be equal to the 

viscosity 𝜐 , and 𝐹  represents the total external body force 

containing porous media resistance. The 𝐹 general expression 

is: 
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𝐹 = −
𝜀𝜐

𝐾
𝑢 −

𝜀𝐹𝜀

√𝐾
|𝑢|𝑢 + 𝜀𝐺                                                   (10) 

 

The geometric function is Fε =
1.75

√150ε3
. The Brinkman term 

υe∇
2u  includes the viscous stress introduced by solid 

boundaries [5]. This term is essential for flow with heat 

transfer and thin boundary layer. This restriction is called the 

Darcy-Brinkman extension. It defines the simplified lattice 

Boltzmann equation (SLBE) [7]. The term  
εFε

√K
|u|u refers to 

the nonlinear drag engendered by the solid matrix. It is the 

Forchheimer correction. This expression leads to generalized 

lattice Boltzmann equation. The forcing term is given by [6]. 

To avoid the problem of the non-linearity we define a 

temporal velocity by the following relation [5, 6, 7, 16]. 

 

u =
v

c0 + √c0
2 + c1|v|

                                                              (11) 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 code validation: Poiseuille flow 

The Poiseuille flow consists of a steady state flow in 2D 

channel of length 𝐿  and width 𝐻  filled with porous media 

characterized with porosity 𝜀 . The velocity  𝑢  verifies the 

following equation: 

 

𝜐𝑒
𝜀

𝜕2𝑢

𝜕𝑦2
+ 𝐺𝑥 −

𝜐

𝐾
𝑢 −

𝐹𝜀

√𝐾
𝑢2 = 0                                           (12) 

 

The velocities on the walls (u(x, 0) and u(x, H)) and the 

lateral velocity component is taken zero all over the domain. 

The bounce back and the periodic conditions are applied. 

They are respectively expressed as follow: 

 

𝑓𝑖 = 𝑓−𝑖   , 𝑓(𝑥1, 𝑡)𝑖 = 𝑓(𝑥𝑛, 𝑡)𝑖                                                (13) 
 

The inlet and the outlet positions are respectively x1 and 

xnThe Reynolds number of Poiseuille flow  Re is given by 

Re =
Hu0

υ
 where u0  refers to the peak velocity of the flow 

along the centerline of the channel [5-7]. The Darcy number 

is defined by 𝑎 =
K

H2
 . The porosity is fixed to 0.1 and the 

Rayleigh number is equal to 0.1. Initially the velocity field is 

zero at each node. The resolution of equation (12) is made by 

applying the second order finite difference scheme with a 

uniform mesh (FDM). The grid size dependence is studied at 

different Reynolds number. The maximum velocity and 

pressure are compared. The results are shown in the Table1. 

The maximum change of using finer mesh is about 1.2%. The 

results are grid independent.  In the Figures 1 and 2 the 

velocity profiles for different values of Reynolds and Darcy 

are compared with Seta numerical results. These results are 

also verified by the FDM solutions. The Figure shows an 

agreement between the present results and the Seta work [6]. 

For more accuracy the root mean square error (RMSE) is 

calculated by the following equation: 

 

√
∑ (MLBM −Mθ)

2z
1

z
                                                                   (14) 

Figure 1 and figure 2 present a good agreement with Seta 

results for different Reynolds number and Darcy number of 

the velocity for poiseuille flow. 

 

 
 

Figure 1. Velocity profile of the Poiseuille flow for different 

Reynolds number 

 

Table 1. Grid dependence at different Reynolds number 

 

Reynolds 

Number 

Grids 

Size 

Max 

Horizontal 

Velocity 

Max 

Vertical 

Velocity 

Max 

pressure 

1 80 × 80 0.891 9.78E-06 0.1111 

 100× 

100 

0.893 3.24E-05 0.1111 

 120×120 0.895 3.21E-05 0.1111 

10 80 × 80 0.966 4.33E-04 0.1123 

 100× 

100 

0.967 2.70E-04 0.1123 

 120×120 0.969 3.95E-04 0.1123 

0.01 80×80 0.561 1.96E-07 0.11111 

 100×100 0.5686 1.43E-07 0.11111 

 120×120 0.5687 7.64E-08 0.11111 

 

 
 

Figure 2. Velocity profile of the Poiseuille flow for different 

Darcy number 

 

The Table 2 gives the RMSE between the LBM results 

and the Seta work at different Reynolds.  

 

Table 2. The RMSE at different Reynolds number 

 

Reynolds Number Root Mean Square Error 

0,01 0,0164 

1 0,0138 

10 0,0425 

 

The Table 3 gives the RMSE between the LBM results 

and the Seta work at different Darcy number. 

 

Table 3. The root mean square error at different Darcy 

number 

 

Darcy Number Root Mean Square Error 

0,001 0,019238 

0,0001 0,029742 

0,00001 0,029593 
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4.2 Thermal injected flows 

The second case is a hot fluid sheared in a porous channel. 

It was injected normal to the shearing direction. The upper 

and lower plates are fixed and kept at a constant temperature 

respectively  Th and Tc. On the inlet and the upper side the 

Zou and He work are applied to calculate the dynamic 

boundary. In the inlet, the unknown functions and the density 

are: 

 

𝜌𝑖𝑛 =
1

1 − 𝑢𝑖𝑛
[𝑓0 + 𝑓2 + 𝑓4 + 2(𝑓3 + 𝑓6 + 𝑓7)]                 (15) 

{
 
 

 
 𝑓1 = 𝑓3 +

2

3
𝜌𝑖𝑛𝑢𝑖𝑛

𝑓7 = 𝑓5 −
1

2
(𝑓2 − 𝑓4) +

1

6
𝜌𝑖𝑛𝑢𝑖𝑛 +

1

2
𝜌𝑖𝑛𝑣𝑖𝑛

𝑓8 = 𝑓6 +
1

2
(𝑓2 − 𝑓4) +

1

6
𝜌𝑖𝑛𝑢𝑖𝑛 +

1

2
𝜌𝑖𝑛𝑣𝑖𝑛

                   (16) 

On the bottom we use the bounce back conditions. For The 

thermal boundary conditions we resort to the Direchlet 

condition given by the following equation: 

 

𝑔𝑖 = 𝑇𝑘(𝜔𝑖 + 𝜔𝑖+2) − 𝑔𝑖+2                                                   (17)  
 

If the Forchheimer term is neglected the flow is governed 

at steady state by: 

 

𝜐𝑒
𝜀

𝜕2𝑢

𝜕𝑦2
+ 𝐺𝑥 −

𝜐

𝐾
𝑢 = 0                                                           (18) 

 

Where 𝐺𝑥 = −𝑔0𝛽(𝑇 − 𝑇𝑚) + 𝑎𝑦 

The term 𝑎𝑦 is: 

  𝑎𝑦 =
𝜐

𝐾
𝑣0 − 𝑔0𝛽Δ𝑇 [

𝑒𝑥𝑝 (
𝑦𝑣0
𝛼
) − 1

𝑒𝑥𝑝 (
𝐻𝑣0
𝛼
) − 1

]                             (19) 

The temperature satisfies the energy equation (equation 

(8)). At steady state the analytics solutions for velocity and 

temperature are expressed as follows:  
 

𝑢 = 𝑢0 𝑒𝑥𝑝 [𝑟 (
𝑦

𝐻
− 1)] 

𝑠ℎ(
𝐶𝑦

𝐻
)

𝑠ℎ(𝑐)
                                             (20)  

 

𝑇 = 𝑇ℎ + ∆𝑇
𝑒𝑥𝑝 (

𝑃𝑟 ∗ 𝑅𝑒 ∗ 𝑦
𝐻

) − 1

𝑒𝑥𝑝(𝑃𝑟 ∗ 𝑅𝑒) − 1
                                   (21) 

 

𝑟, 𝐶  and ∆𝑇  are respectively given by 𝑟 =
𝑅𝑒

2𝜀
 𝐶 =

1

2𝜀
√𝑅𝑒2 +

4𝜀

𝐷𝑎
 and ∆𝑇 = 𝑇ℎ − 𝑇𝑐  

 

The Rayleigh and Prandlt numbers are respectively 100 

and 1. The porosity is equal to 0.7. The Darcy number is 

chosen to be 0.1 and the Reynolds number changes from 1 to 

50. The grid independence of the results is established for 

different Reynolds numbers. The magnitude of the maximum 

𝑥 and 𝑦 -velocity along the horizontal centerline and the 

maximum of pressure with changing grid size are shown in 

the Table 4. 

 

Table 4. Grid dependence at different Reynolds number 

Reynolds 

number 

Grid size Velocity 

(Y=0.98) 

Temperature 

(Y=0.98) 

10 330×92 0.96 0.95 

 330×100 0.959 0.947 

20 330×92 0.897 0.88 

 330×100 0.899 0.87 

 

 
(a) Velocity profile 

 

 
(b) Temperature profile 

 

Figure 3. Velocity and temperature profiles for different 

Reynolds number, SLBE and analytical simulations 

 

The Figure 3(a) proves that when Re increases the porous 

media resistance to velocity fields becomes more important. 

The velocity layer thickness decreases by approaching to the 

moving wall. The Figure 3(b) shows that the increment of 

Reynolds number generates the decline of temperature. This 

is due to the strength convection in the channel when Re is 

large. More heat will be taken away by the flow. 

The figure 3(b) presents a good agreement with asymptotic 

solution. For different Reynolds number the velocity and the 

temperature RMSE between the LBM results and the 

analytical values are established. The results are given in 

Table 5. 

 

Table 5. Velocity and temperature root mean square error 

 

Reynolds 

Number 

Velocity Root 

Mean Square 

Error 

Temperature  

Root Mean 

Square Error 

1 0,029655 0,024606 

5 0,049384 0,024375 

10 0,037766 0,054756 

20 0,029198 0,028888 

50 0,030654 0,014704 

 

Analytical results
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(a)                                   (b)                                         

 

 
(c)                                      (d) 

 

Figure 4. Velocity and temperature profiles for different 

Darcy number and porosity, the solid lines are SLBE results 

and the symbols are analytical solutions; (a, c) velocity 

profile (b, d) temperature profile 

 

The Figure 4(a) shows that the increment of Da  is 

accompanied by the rise of the flow velocity. The flow 

attitude tends towards that of a free media. The velocity 

profile becomes more linear. The Figure 4(b) shows that 

there is an infinitesimal difference between the temperature 

profiles. This is interpreted by the negligible effect of 

horizontal flow. The heat transfer is vertical from bottom to 

top. For Reynolds and Darcy equal to 5 and 10-2, the porosity 

changes from 0.3 to 0.99. The Figure 4(c) shows that the 

porosity increment allows fluid flow readily. The porous 

medium drags decreases. The Figure 4(d) proves that the 

porosity change didn’t engender notified difference on the 

temperature profile. 

The Table 6 describes the velocity and the temperature 

root mean square error between LBM results and the analytic 

values  

 

Table 6. Root mean square at different porosity 

 

Porosity Velocity  Root 

Mean Square 

Error 

Temperature  

Root Mean 

Square Error  

0,99 0,024326 0,030568 

0,5 0,032159 0,028316 

0,3 0,036061 0,030438 

 

4.3 GLBE and SLBE comparison 

 

The inertia drags is modulated by Forchheimer term. Its 

effect on fluid flow and heat transfer is studied. So the 

previous study is performed using the GLBE We follow for 

each parameter the evolution of velocity and temperature 

values at a lattice node and the cross section (X=0.5). The 

GLBE and SLBE results are compared. The Figure 5 shows 

the velocity and temperature results at different dynamic 

parameter for a lattice node. 

 

    
 

Figure 5. GLBE and SLBE results for different porosity, 

Reynolds and Darcy 

 

The Figures 6 shows the velocity and temperature profiles 

at the lattice cross section 𝑋 = 0.5. The results are given at 

different Reynolds and Darcy number. Through the above 

Figures, the 𝐷𝑎 or 𝑅𝑒 increment hinders the flow and the heat 

transfer. This is caused by the nonlinear drag force. This is 

observed also if the porosity decreases. Therefore, for small 

Darcy and Reynolds number the simulation can be restricted 

to the SLBE approach. For large value the Forchheimer term 

should not be neglected. The RMSE between the GLBE and 

SLBE determine the critical Reynolds and Darcy number for 

the selection of GLBE. Indeed, when 𝑅𝑀𝑆𝐸 ≤ 10−3  the 

SLBE is sufficient. In this case, the comparison shows that 

the critical values of respectively the Reynolds and Darcy 

number are less than 1 and 10-2. 

 

 
(a)                                      (b) 

 

 
 (c)                                      (d) 

 

Figure 6. Velocity and temperature profile using GLBE and 

SLBE for different Reynolds and for Darcy=0.1, (a, c) 

velocity profile (b, d) temperature profile 

 

4.4 Thermal flow in porous plate with fixed wall 

The geometry of the problem consists in a hot fluid forced 

to flow into a planar channel filled with porous media. The 
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upper and lower plates are fixed and kept at a constant 

temperature   𝑇𝑐 . On the left the distribution functions are 

established thanks to Zou and He conditions [19]. In the 

upper and lower solid wall, the distribution functions are 

given by the no slip boundary conditions. For the thermal 

boundary, we resort to Dirichlet expressions (Eq(17)). The 

GLBE model is chosen for simulation. The velocity and the 

temperature profiles are plotted for different Reynolds 

number (Figure 7). The dynamic and thermal flow behavior 

inside the channel is described. The velocity and the 

temperature are plotted at different sections. 

 

 
       (a)                                  (b)                                           

 
 (c)                                      (d) 

 

Figure 7. Velocity and temperature profiles for different 

Reynolds in different cross section, (a, d) velocity profile (b, 

c) temperature profile 

 

The variation of Darcy number affects the velocity and the 

temperature. The results are presented in the Figure 8. When 

𝐷𝑎  is equal to 10-3 the flow is followed inside the porous 

channel. The temperature and the velocity at different cross 

sections are presented. 

 

 
(a) Velocity profile 

 
(b) Temperature profile 

 

Figure 8. Velocity and temperature profiles for different 

Darcy number and at different cross sections, (a, c) velocity 

profile (b, d) temperature profile 

Table 7. The evolution of the average Nusselt number and 

permeability at different porosity 

 

Reynolds 

number 

Darcy 

number 

porosity Average 

Nu 

Perme-

ability  

5 10-2 0.99 0.876 437.281 

0.7 0.750 0.1717 

0.5 0.631 0.022 

0.1 0.516 0.00005 

 

In these models, the solid fraction determines the local 

permeability at each node. Here, we measure the 

permeability of the different models by applying a pressure 

differential across a domain filled with nodes of a single solid 

fraction. The isotropic (thus scalar) intrinsic permeability 𝐾 

is calculated from Darcy’s law. 

 

𝐾 =
𝜀3𝑑𝑝

2

150(1 − 𝜀)2
                                                                      (22) 

 

𝑑𝑝: The solid particle diameter. 

 

4.5 Heat transfer and fluid flow in porous media 

containing hot obstacle 

The problem consists of a hot fluid flow in porous channel 

containing hot obstacle Figure 9. 

 

 
 

Figure 9. Scheme of flow in the porous channel 

 

The presence of the hot block requires the use of the 

Dirichlet boundaries for thermal conditions. For the dynamic 

conditions the Bounce back boundaries are applied. For all 

the simulation the previous circumstances are kept. The 

results at different factors are given by the following Figures.  

The Figure 10 reports the sensibility to the porosity 

variation. For lower porosity the temperature of the fluid 

increases. This can be explained by the increment of the 

thermal conductivity by the porosity decrease. The increment 

of the porosity leads to a slight rise of velocity at the top and 

bottom of the block. The increment of the porosity makes 

easier for the fluid to vary its paths to the upper and bottom 

wall. Thus the velocity increases on the walls. 

 

 
(a)                                (b)                                        
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 (c)                                (d) 

 

Figure 10. Temperature and velocity contours for different 

porosity respectively 0.5 and 0.9 at 6000 time step; (a, c) 

temperature (b, d) velocity contours 

 

 
(a)                                    (b)      

                                    

 
 (c)                                      (d) 

 

Figure 11. Temperature and velocity contours for different 

Darcy number respectively 10-4 and 10-5 at 8000 time step; 

(a, c) temperature (b, d) velocity contours 

 

Secondly the sensibility of the Darcy number is studied 

(Figure 11). Through this Figure, the Darcy variation affects 

the heat transfer and especially the velocity field. Their 

independence is due to constant properties of the flow. The 

increment of the Darcy generates an infinitesimal increase of 

the fluid temperature and the heat transfer. The velocity field 

increases due to the large permeability values.The velocity 

and temperature contours for different Reynolds number are 

plotted in Figure 12. As the Reynolds number increases the 

velocity of the flow increases. Consequently, the convective 

coefficient and the magnitude of heat transfer increase. For 

high Reynolds number the medium temperature wanes due to 

the decrease in the heat transfer process. 

 

  
(a)                                        (b)     

   

 
 

(c)                                       (d) 

 

Figure 12. Temperature and velocity contours for different 

Reynolds number respectively 5 and 20 at 8000 time step; (a, 

c) temperature (b, d) velocity contours 

 

 
 

Figure 13. Pressure contours at different Reynolds number 

respectively 20 and 5 

 

The Figure 13 shows the pressure distribution in the 

porous medium at different Reynolds number. The high 

pressure region is significantly increased in upstream zone, 

which extends over obstacle. The velocity vector fields at 

different Reynolds number is given by the Figure 14. These 

results indicate that the obstacle strength plays an important 

role to increase the intensity of velocity magnitude in the 

obstacle bottom and top zone. 

 

 
 

Figure 14. Velocity vectors field and vortices for different 

Reynolds number respectively 20 and 5 
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(a)                                           (b)   

                                     

 
  (c)                                         (d) 

 

Figure 15. Temperature and velocity contours at different 

Reynolds number respectively 5 and 20 at 8000 time step; (a, 

c) temperature (b, d) velocity contours 

 

It is clear from the velocity vector plots in Figure 14 that 

the zone near obstacle will be a region of strong axial 

vortices, at least in cross flow, adjacent the obstacle there are 

small regions of concentrated vortices. The effect of the 

obstacle dimension and the position is studied for different 

Reynolds number. The length and width are 20 cm. It is 

placed in the channel center. Figure 15 shows the isotherms 

and the velocity contours. The obstacle suitable distances 

from the wall. Hence, the boundaries conditions do not affect 

the flow. The influence of the obstacle is well appeared. As a 

result, the dimensionless temperature and velocity contours 

are significantly different for these two cases with different 

obstacle dimensions 

 

 

5. CONCLUSIONS 

 

To overcome the insufficient of the Darcy equation at high 

speed two approaches are advanced. The Brinkman 

correction modulates the viscous stresses introduced by the 

solid boundary. Since convection is a boundary phenomenon 

this extension is significant. The other correction is the 

Forchheimer one. It introduces the nonlinear drags due to the 

solid matrix. The SLBE model is applied to simulate mixed 

convection with moving walls. Indeed, it is used to analyze 

the effect of dynamic parameter on velocity and temperature 

profiles. The flow is tracked at a lattice node and in a cross 

section. The results show an agreement with the analytic 

solution. SLBE allows also plotting the streamlines and the 

isotherms. The comparison, between GLBE and SLBE 

results, indicates that for small Reynolds and Darcy number 

we can limit to SLBE model. However, for large value the 

Forchheimer term should be incorporated and the GLBE is 

more suitable for simulation. The GLBE model is adopted to 

study the mixed convection in porous channel with fixed 

walls at different parameters. It’s also applied to reveal fluid 

flow and heat transfer over a hot solid block placed inside the 

channel. The temperature and the velocity contours at 

different parameters are plotted. This model can be 

developed to simulate convoluted phenomena in many 

industrial fields such as civil and mechanical engineering. 
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NOMENCLATURE 

 

𝑐 Lattice spacing  

𝑐𝑖 Discrete velocity for D2Q9 model 

𝑐0 Coefficient for temporal velocity 

𝑐1 Coefficient for temporal velocity 

𝑓 Density distribution function 

𝑓𝑒𝑞  Density equilibrium distribution function                                                                                                                                                   

𝐹 Total body force          

𝐹𝜀 Geometric factor 

𝐺 An external force 

𝑔0 Gravity acceleration 

𝑔 Thermal distribution function    

𝑔𝑒𝑞  Thermal equilibrium distribution function                                                                                                                    

𝑖 Lattice index in the x direction 

𝑗 Lattice index in the y direction 

𝐾 Permeability (m2) 

𝑘 Effective thermal conductivity 

M Simulation value 

𝑛 The position on the right boundary 

𝑝 Pressure 

𝑃𝑟 Prandlt number 

𝑇 Fluid temperature 

𝑇𝐾  The temperature  

𝑇𝑚 Average temperature 

𝑢 Fluid velocity  

𝑢𝑖𝑛 X- Component velocity in the inlet 

𝑉0 Top wall velocity                                                                              

𝜈0 Intial velocity               

z Total number of simulation value 

 

Greek letters 

 

𝛼 Thermal diffusivity 

𝛽 Thermal expansion 

Γ𝑐 Thermal relaxation time 

𝛿𝑡 Time step 

𝜃 Analytic or benchmark values                                                                                            

𝜐 Viscosity (m2/s)  

𝜐𝑒 Effective viscosity                                                                                                                                                                                                                                                         

𝜌 Density  of medium (kg/m3) 

𝜌𝑖𝑛 Inlet density 

𝜌𝑁 Density of the upper plate   

𝜎 The ratio between 𝑐𝑝𝑠(𝐽. 𝑘𝑔
−1. 𝐾−1) and 𝑐𝑝𝑓 

Σ Internal energy 

𝜔𝑖 The weight coefficient 𝑖 in the direction  

 

Subscripts 

 

𝑖 Discrete velocity direction 

𝑖𝑛 Inlet 

 

Superscript 

 

𝑒𝑞 Equilibrium 
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