
Performance Analysis of a Generic Modular Adder via RTL Programming and IP Modeling

Techniques on FPGA

Tukur Gupta* , Gaurav Verma , Shamim Akhter

Department of ECE, Jaypee Institute of Information Technology (JIIT), Noida 201307, India

Corresponding Author Email: tukur306@gmail.com

https://doi.org/10.18280/isi.280514 ABSTRACT

Received: 25 May 2023

Revised: 29 August 2023

Accepted: 9 October 2023

Available online: 31 October 2023

The modular adder, a critical arithmetic component for residue calculations, is explored in

this study through its implementation on a field programmable gate array (FPGA),

specifically targeting the Xilinx Zynq-7000 family device. Recent literature reveals an

innovative combination of parallel prefix addition and flagged prefix addition techniques

for the design of the modular adder. The parallel prefix addition, an evolution of the carry

look-ahead addition, utilizes the prefix operation, whereas the flagged prefix addition

generates a novel set of intermediate outputs, namely flag bits, to execute the increment

operation. This paper extends this innovative combination by demonstrating the FPGA

implementation of the existing design via two distinct strategies. The first strategy employs

a register-transfer level (RTL) description of the design using the very high-speed integrated

circuit hardware description language (VHDL), while the second strategy deploys user-

defined intellectual property (IP) blocks for the design implementation. FPGA area and

power reports are subsequently generated using VIVADO IDE. The RTL approach

illustrates an average savings of 14.30% in slice look-up tables (LUTs) utilization and

1.91% in slice flip-flops (FFs) utilization, suggesting its superiority for applications that

prioritize area-efficiency. However, the IP modeling approach emerges as crucial for

managing the perpetually increasing complexity of system-on-chip (SoC) designs.

Keywords:

IP modeling, RTL, area, power, FPGA,

modular adder

1. INTRODUCTION

The modular adder serves as a foundational element in

residue number system (RNS) processors, facilitating swift,

precise computations [1]. The RNS operates by disassembling

a number into components and executing arithmetic operations

in parallel, considerably reducing the breadth of carry

propagation. Consequently, RNS arithmetic has been

proposed as an efficient solution for augmenting the

performance of arithmetic hardware. Implementing such

intricate designs of very large-scale integration (VLSI) circuits

can be realized through various methodologies.

The need for integrating millions of gates in contemporary

VLSI systems, operating within the Giga-Hertz (GHz) range,

has necessitated the reuse of intellectual property (IP) for

circuit design [2]. This need stems from the substantial

reduction in design complexity and design time, and

consequently, time to market, when pre-designed and tested

IPs are integrated. IPs can be conceptualized as blocks of logic

utilized in a semiconductor chip to create field-programmable

gate arrays (FPGAs) and application-specific integrated

circuits (ASICs). Whereas an FPGA is a reprogrammable

integrated circuit, an ASIC is a specialized kind of integrated

circuit tailored for a specific application.

Within the semiconductor industry, an IP core is a reusable

unit of logic or functionality, a module, or a layout scheme

often created with the intention of licensing to multiple

vendors for use as building blocks in various chip designs.

These IP blocks, optimized for area and power in an FPGA

driven by specific technology, follow a definite process for

generation, enabling their use as reusable components. The

adoption of IP modeling methodology enables the integration

and reuse of IP components at any stage of the design process,

allowing the validation of system functionality and its

characteristics at each stage.

Contrastingly, register-transfer level (RTL) design is

predicated on generating hardware description language (HDL)

descriptions for the complete design, followed by simulation

and synthesis. Here, complex hardware specifications are

translated into VHDL or Verilog. The target circuit is

accurately and formally described using a hardware

description language, enabling automatic analysis and

modeling of an electronic circuit. Functional verification is

conducted in addition to the digital implementation to ensure

that the RTL design is in accordance with the specifications.

The RTL is transformed into a gate-level netlist once all the

blocks have been implemented and confirmed.

This paper aims to execute the FPGA design and

implementation of the generic modular adder using both the

aforementioned design approaches. The architecture of the

generic modular adder explored in this paper has been recently

presented in the study of Gupta and Akhter [3]. This work

expands upon the idea of implementing a similar architecture

on the latest Zynq family FPGA device using two different

approaches, namely, RTL programming and IP modeling. By

replicating and synthesizing the design on an available FPGA

chip, the authors affirm the originality of this paper. In contrast,

the same design was synthesized using unit gate models and

electronic design automation (EDA) tools based on the ASIC

design processes in the published study of Gupta and Akhter

Ingénierie des Systèmes d’Information
Vol. 28, No. 5, October, 2023, pp. 1255-1263

Journal homepage: http://iieta.org/journals/isi

1255

https://orcid.org/0000-0003-3853-7068
https://orcid.org/0000-0001-7350-0813
https://orcid.org/0000-0002-1010-6816
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280514&domain=pdf

[3].

The paper is structured into five main sections. Section 2

reviews relevant existing literature. Section 3 provides a

detailed account of the design of the generic modular adder,

which is subsequently implemented on FPGA using RTL

programming and IP modeling approaches in Section 4.

Section 5 presents a comparative analysis of FPGA resource

utilization and total power dissipation for both cases. This is

followed by the conclusion and future scope in Section 6.

Figure 1 illustrates the sequence of the events undertaken in

this paper.

Figure 1. Roadmap of the proposed work

2. LITERATURE REVIEW

Extensive research has been undertaken on various digital

systems for their field-programmable gate array (FPGA)

implementation, as well as for the estimation of FPGA area

and power. A selection of these significant contributions is

discussed herein. The state of the art relating to the FPGA

implementation of various digital systems is described in

several pieces of literature [4-18], and a summary is provided

in Table 1.

Rogawski et al. [4] employed four different FPGA devices

to implement novel designs of parallel prefix adders and

modular adders. The area and delay results for all four devices

were analyzed. Concurrently, Kharadkar et al. [5]

implemented a specific modular adder on the Spartan-III

FPGA device, examining three vital parameters: area, power,

and delay for the adder designs. In both instances, the register-

transfer level (RTL) coding methodology was utilized for the

design.

A Montgomery algorithm-based modular multiplier was

implemented on a Virtex-6 FPGA device using embedded IP

cores by Yang et al. [6]. Similarly, Ajit et al. [7] used a Virtex-

6 FPGA device to implement RTL coding-based designs of

several popular adder topologies. In this instance, the trade-

offs between area, power, and delay were studied.

Several pieces of literature discuss the IP core-based

designing of essential digital systems and their

implementation on contemporary FPGA devices [8-12].

Billmann et al. [8] conducted a comprehensive evaluation of

the available open-source crypto IP cores. Yaman et al. [9]

presented a real-time edge detecting system based on custom

IP cores, implemented on a Digilent Basys3 FPGA board. The

algorithm principle of RSA was studied in detail by Liu [10],

and an FPGA implementation of an RSA IP core was verified

on the latest Zynq family device. Additionally, the resource

utilization and throughput of the target designs were analyzed.

Tolba et al. [11] presented Memristor IP cores synthesized

and validated on an Artix-7 FPGA device. Singh et al. [12]

proposed IP modeling-based power models for a 4-tap FIR

filter, with designs synthesized and validated on the latest

Zynq family FPGA device.

Akhil et al. [13] implemented an 8-point radix-2 DIT FFT

1256

on a Zynq family FPGA device, using the conventional

approach of RTL coding. Singh et al. [14, 15] proposed

additional IP core-based digital systems, with designs

synthesized and validated on the latest Zynq family FPGA

devices. Modulation systems and ADC IP cores were

implemented by Singh et al. [14, 15] respectively.

Coliban [16] made a significant contribution to the field of

Montgomery multiplication, using the RTL coding

methodology. In a similar vein to the study of Singh et al. [12],

Singh et al. [17] proposed IP modeling-based power models

for DSP blocks. Lastly, Huang [18] proposed a novel design

and implementation of an IIC interface IP core, claiming

reduced resource utilization with a complete range of

functions, compared to existing similar IP cores.

Table 1. Investigation of State-of-the-Art FPGA implementation of diverse digital circuits designed using RTL programming and

IP modeling methodologies

S.

No.

[Reference]

(Year)
Target FPGA Device

Design

Methodology Used

(RTL Code/ IP

Core)

Target Blocks/

Circuits

Design/

Performance

Metrics

Investigated

Significant Findings

1
[4]

(2014)

65nm Altera Stratix III, Xilinx

Virtex 5, 40nm Altera Cyclone

IV, 45nm Xilinx Spartan 6

RTL coding

Parallel prefix

network adders &

Modular adders

Area, delay

Proposed low-latency family

of high-radix Parallel Prefix

Network adders and modular

adders outperform the traditional

PPN adders in terms of all

performance measures

2
[5]

(2015)

Xilinx Spartan3-xc3s1000

FPGA device
RTL coding

modulo

(231-1) adder

architecture

Area, power ,

delay

The proposed architecture offers

savings in area & power, and

improves speed

3
[6]

(2016)
Virtex-6 FPGA device IP core

Modular

multiplication

design

Delay, resource

utilization

The proposed scheme can achieve

256 ×256 bits multiplication using

available multiplier IP cores

4
[7]

(2019)
Virtex-6 FPGA device RTL coding

Different adder

topologies
Area, power, delay

Trade-offs between area, power

and delay vary with different adder

topologies

5
[8]

(2019)
Zynq-Z7010 chip IP core

Open-source

Crypto IP cores

Bandwidth,

resource

utilization

Available cryptographic IP cores

are analysed

6
[9]

(2019)

Digilent Basys3

FPGA board
IP core Sobel Filter design

Resource

utilization

The proposed design offers high

accuracy and low area resource

utilization

7
[10]

(2019)

Zynq family xc7vx485 FPGA

device
IP core RSA IP

Resource

utilization,

throughput

The proposed IP core offers

savings in area and claims higher

throughput

8
[11]

(2019)

Nexys 4 Artix-7 FPGA

XC7A100T
IP core Memristor models

Resource

utilization,

frequency,

throughput

Designed IP core offers low area

utilization and high speed with

higher degree of controllability

9
[12]

(2020)

Zynq family (xc7z020clg484-

1) FPGA device
IP core 4-tap FIR filter Power

Proposed power models

outperforms as compared to the

most competitive work in literature

10
[13]

(2020)
ZYNQ board RTL coding

8-point Radix-2

DIT (Decimation

In Time) FFT

Area, delay

8-point FFT (Using Floating point

multiplier incorporated

with CORDIC multiplier and KSA)

is the most optimized combination

11
[14]

(2021)

Zynq family (xc7z020clg484-

1) FPGA device
IP core

QPSK & BPSK

Modulation

systems

Power

Proposed

power models outperforms in

power estimation of complete

systems

12
[15]

(2021)

Zynq family

(XC7Z045FFG900-0I) FPGA

device

IP core ADC soft IP core
Throughput,

accuracy

Developed IP supports multiple

configurations

13
[16]

(2022)
Virtex-7 FPGA device RTL coding

radix-2

Montgomery

multiplication

architecture

Time, area

Notable improvement in

multiplication time, throughput and

maximum operating frequency

14
[17]

(2022)

Zynq family (xc7z020clg484-

1) FPGA device
IP core DSP Blocks Power

Power models of individual IPs are

created

15
[18]

(2023)
All FPGA devices IP core

IIC (Inter-

Integrated Circuit)

Interface

(No parameters

analysed)
IIC Interface IP core is designed

16 Proposed
Zynq family (xc7z020clg484-

1) FPGA device

Both RTL code &

IP core

Modulo adder with

modulus of form
(2n − K)

Area, Power

A novel work presenting the

comparison of both the design

methodologies

1257

An extensive body of literature covers the FPGA

implementation and subsequent analysis of performance

parameters, either in isolation or in combination, such as area,

power, and delay [4-18]. In addition, the literature is rich with

studies on modular adders targeting standard cell ASICs [19-

22]. Nevertheless, a direct comparison with these studies is

beyond the purview of this work, given the considerable

diversity of the digital systems they explore.

Notably, no resources within the literature surveyed in the

present work provide an empirical comparison of different

design methodologies adopted for system-on-chip (SOC)

implementations. This paper, however, extends the preceding

work found in the study of Gupta et al. [3] by designing a

modulo 2n-K adder using two distinct methodologies and

implementing the resultant design on an FPGA.

In a novel approach, this paper also conducts a comparative

analysis of both methodologies in terms of FPGA resource

utilization and power dissipation of the designed modular

adder. These analyses are comprehensively detailed in

Sections 4 and 5. This contribution fills a recognized gap in

the existing body of knowledge by providing empirical

comparisons between different SOC design methodologies, an

aspect that was previously unaddressed in the literature.

3. GENERIC MODULAR ADDER DESIGN

In the following discussion, a brief overview of the digital

circuit, presented in previous work [3] is given, thereby

forming a sufficient background to understand the investigated

digital system i.e., generic modular adder. Gupta and Akhter

[3] discussed a novel design of generic modulo adder for

moduli of the form (2n − K) where K is any integer in the

range 3 ≤ 𝐾 ≤ (2n−1). The adder design uses parallel prefix

addition in first stage and flagged prefix addition in second

stage. One of the quickest adders is the parallel prefix adder

(PPA), which is a modified version of the carry lookahead

(CLA) adder. High performance arithmetic processors employ

a tree structure, which is the foundation for PPAs. The PPA

structure's addition operation is completed with three steps;

pre-processing, prefix and post-processing operation [23].

Flagged prefix adder is obtained by incorporating basic

hardware for calculating a new set of bits termed flag bits [24].

As claimed by the authors, the presented design of modulo

adder offers reduced area and power dissipation when

compared with the most recent and competitive literature.

Both the addition techniques are briefly reviewed in following

subsection.

To begin with, it is important to understand the concept of

modular addition, specifically for the moduli of the form
(2n − K), as mentioned above.

Modular addition i.e., 〈𝑥 + 𝑦〉𝑚 where x and y are two

numbers (lying between 0 and m-1) and m is the modulus of

any form, is given by the expression in Eq. (1) [25]:

 if

 if
m

x y x y m
x y

x y m x y m

+ +  
 +  =  

+ − +  
 (1)

Modular adders, according to the form of moduli are

broadly classified as specific modular adders and generic

modular adders. Using generic moduli forms in modular

adders allows higher level of parallelism in arithmetic

structures and thereby claiming improved performance of

RNS processors over specific moduli based systems. The

previous work [3] and the present paper focus on the generic

modulo adder with moduli of the form (2𝑛 − 𝐾) . The

expression for the target modular addition is given by

Mod mS A B=  +  (2)

where, 𝑚 = (2𝑛 − 𝐾) and 3 ≤ 𝐾 ≤ 2𝑛−1.

Expanding and rearranging the terms in above expression

Eq. (2) gives

out 2

Mod

out 2

 if 0

 if 1

n

n

A B C
S

A B K C

 +  =  
=  

 + +  =  
 (3)

Output carry, 𝐶𝑜𝑢𝑡 is the resultant carry obtained by

computing (𝐴 + 𝐵 + 𝐾).

Gupta and Akhter [3] have implemented the expression Eq.

(3) in two stages where first stage uses parallel prefix addition

followed by flagged prefix addition in second stage. These two

are the classic approaches which have been revised and

applied in the adder design [24-26]. However, literature [3] is

confined to design flow based EDA tools rather than using

more flexible and reconfigurable FPGA technology.

The novelty in the present work lies in the fact that above

modular adder design has been reproduced and synthesized

using latest FPGA device from Zynq family. Also two

different design methodologies, namely RTL Programming

and IP modeling are adopted and analyzed for the same

architecture as discussed in subsequent sections. The

acquisition and usage of IP Cores has replaced the design of

HDL modules as the primary focus of contemporary FPGA

development. System on Chip (SoC) designs frequently

incorporate IP Cores because they may be used as building

blocks to accelerate development while lowering risk. Since

the year 2000, the use of IP Cores in chip design has grown

significantly. Today, there are over 100 businesses that create

and market IP cores for use in analog, digital, RF, and other

fields. Hence, both the methodologies need to be explored for

design prospects.

4. DIFFERENT APPROACHES OF LOGIC

DESIGNING

This paper extends the work presented in recent literature

by employing IP modeling approach to design the modular

adder along with the conventional method of RTL

programming [3]. Both the methodologies have been detailed

in this section.

4.1 RTL (Register-Transfer Level) description based

design

A number of tactics can be followed to write an HDL code

for implementing a specific design on FPGA. Every FPGA has

fixed hardware specification including number of memory

elements, input-output banks and configurable logic blocks

(CLBs) comprising of look-up tables (LUTs), flip-flops (FFs)

and multiplexers [26]. Therefore, number of resources used by

a design depends on the way of implementing the logic

supporting the design, i.e., the HDL coding strategy followed

to implement the design. RTL description methodology

presents conventional design approach as demonstrated in

Figure 2.

1258

Figure 2. RTL programming approach of design creation

using Vivado design suite

This approach starts with functional specification followed

by HDL code generation (Very High-Speed Hardware

Description Language i.e. VHDL in the present work) for the

complete design under consideration. This code undergoes

simulation for functional verification. After this step, synthesis

(with timing constraints) is performed to estimate the resource

utilization. Finally, FPGA implementation takes place, where

post-implementation area and power reports can be obtained.

In this paper, using this methodology, generic modular adder

i.e. modulo (2n − k) adder is implemented for input vector

length, n = 7, 9, 11, 13, 15 [3]. The RTL schematic for RTL

programming based 7-bit modular adder design is shown in

Figure 3.

Figure 3. RTL schematic of RTL programming based design

of 7-bit modulo (2n − K) adder

4.2 IP (Intellectual Property) core based design

As mentioned in previous section, IP cores or IP blocks are

predesigned, independent and reusable modules or subcircuits

that can be used to implement larger designs. The IP Packager

by Vivado featuring design reuse allows Vivado end user to

package the design at any desired level of design flow. With

the provision of IP-centric design flow by Vivado Design Suite,

any designs and algorithms can be turned into reusable IPs. In

Vivado IP catalog, IPs can be consolidated from different

sources including Xilinx IPs, third party IPs and end-user

designs based IPs. Therefore, IPs can be classified under two

broad categories, i.e., embedded IPs, available in vendor

library and user-defined IPs. Embedded IPs is another name

for built-in IP made available in the library or repository by

the vendor. However, programmers can design their own IPs

according to the target design and reuse them for designing the

complex architectures with ease. Such IPs are termed as user-

defined IPs. In this paper, modulo adder has been designed

using user-defined IPs at RTL level. The process starting from

creation and packaging of IPs to creation of full design and

estimation of performance parameters has been divided into

two phases as shown in Figure 4(a) and Figure 4(b) [10].

(a) Phase-I demonstrating IP creation and packaging

(b) Phase-II demonstrating complete design creation using

IPs created in phase-I

Figure 4. Two-phase IP modeling approach of design

creation using Vivado design suite

1259

Figure 5. User-defined IP blocks created and packaged using

Vivado design suite

Figure 6. Created block design of the 7-bit modulo (2n − K)

adder using user-defined IPs

Figure 7. RTL Schematic of IP modeling based design of 7-

bit modulo (2n − K) adder

Phase-I explains the flow of IP packaging, which is shown

in Figure 4(a). Functional specification is determined for each

IP module followed by project initialization. VHDL is used to

generate code for user-defined IPs. Code for IP is simulated

for functional verification using commercial tool i.e., Vivado

Design Suite. Design synthesis is performed to estimate

resource utilization if required. Finally, Vivado IP packager is

used to create and package IP. In this paper, using the

methodology adopted in phase-I, seven IP blocks have been

created and packaged as shown in Figure 5. Phase-II

demonstrates the process of full design creation using desired

user-defined IPs created in phase I. The flow of design creation

is shown in Figure 4(b). During this phase, under the tab

‘Create Block Design’ of Vivado Design Suite, desired IPs are

instantiated in the window and target design is created by

making interconnections according to the design. Using HDL

Wrapper, HDL code is automatically generated according to

created design. This code is then simulated and functionality

is verified. After this, synthesis is performed followed by

implementation (including timing and implementation

constraints). Finally, area and power reports can be obtained

for implemented design.

The user-defined IPs created in this work for the target

design of modular adder are shown in Figure 5. In total, seven

IP blocks are created namely, preprocess_v1_0,

grey_cell_v1_0, black_cell_v1_0, Rhombas_cell_v1_0,

Flag_generate_v1_0, Carry_out_v1_0 and Final_sum_v1_0.

In this paper, using these IPs, generic modular adder i.e.

modulo (2n − K) adder is designed for input vector length, n

= 7, 9, 11, 13, 15 [3]. The complete block design of 7-bit

generic modular adder created using user-defined IPs is shown

in Figure 6. The corresponding RTL schematic for the IP

modeling based 7-bit modular adder design is shown in Figure

7.

5. IMPLEMENTATION RESULTS AND DISCUSSIONS

Section 4 in this paper illustrates the designing of modulo

(2n-K) adder using two different methodologies, i.e. RTL

programming and IP modeling. After describing complete

designs using VHDL for input vector length ranging from 7

bits to 31 bits, designs are synthesized and implemented on

FPGA targeted to latest device (xc7z020clg484-1) from Zynq

family using Vivado tool. Area reports and power reports of

the implemented designs are extracted from Vivado tool.

Information about hardware specifications of the target FPGA

device have been tabulated in Table 2, which helps in

understanding the percentage utilization of FPGA resources by

the designs under investigation. The proposed work considers

a generic modular adder. The use of generic moduli permits

lower word length channels, resulting in better parallelism and

quicker operations. However, the proposed investigation is

confined to the moduli of the form (2n-K). The fact that any

moduli may be expressed using this form gives this class of

modulo adders a clear benefit. Any advancement in this family

of adders opens the door to higher order moduli sets, which

boosts parallelism in RNS applications. This study presented

in the proposed work can be applied to others other forms of

generic modulo adders too.

Significant findings from area report include information on

number of LUTs and FFs. These form the basic building

blocks of FPGA and hence determine the resource utilization

or in other words, total chip area occupied by the implemented

1260

design. Factors affecting the power consumption of FPGAs

include circuit complexity, clock frequency, interconnects,

supply voltage, switching frequency and load capacitance.

Frequency considered for this work is 125 MHz. Total on-chip

power is obtained by the summation of static power and

dynamic power. Static power, i.e., the leakage power is fixed

for a particular FPGA family (120 mW in case of zynq family

considered for this work). Dynamic power is determined by

aggregation of input/output power, signal power, logic power

and clock power, where first power segment is the function of

LUTs and FFs, while other three segments are not reliant on

the area occupancy.

Significant findings from area and power reports have been

recorded in Table 3. Also, table gives major insights into the

difference between these reports for two design methodologies

adopted in this paper for designing modular adder. It is evident

from the table that differences may be observed between

number of slice LUTs, number of slice FFs and total on-chip

power when both the methodologies (RTL programming and

IP modeling) are compared. It can be observed from the table

3 that RTL methodology offers an average of 14.30% savings

in slice LUTs utilization and 1.91% savings in slice FFs

utilization. Though not significant, however perceivable

savings are offered in case of total on-chip power as well. This

comparison can be better understood from the Figures 8-10.

Table 2. Hardware specification of FPGA used for

implementing designs

S. No. FPGA Features Hardware Description

1 FPGA Used

Zed Board Zynq Evaluation

and Development Kit

(xc7z020clg484-1)

2
No. of Slice LUTs

(available)
53200

3
No. of Slice Registers

(available)
106400

4 No. of IO (available) 202

5
No. of Clocking

(available)
32

6
No. of DSPs

(available)
220

Table 3. Comparison of RTL programming and IP modeling approaches for proposed modular adder design in terms of FPGA

resource utilization and total on-chip power

Input Vector

Length

(Modulus)

n (2n-K)

Number of Slice LUTs Number of Slice FFs Total On-Chip Power (mW)

RTL Description

Based Design

IP Modeling

Based Design

RTL Description

Based Design

IP Modeling

Based Design

RTL Description

Based Design

IP Modeling

Based Design

7 (83) 51 60 64 66 128 128

9 (264) 72 84 90 92 131 131

11 (1170) 90 105 113 115 133 134

13 (5181) 111 129 139 141 136 137

15 (17767) 129 150 162 164 138 139

Figure 8. Number of slice LUTs utilized by modular adder

designed using RTL and IP modeling approach

Figure 9. Number of slice FFs utilized by modular adder

designed using RTL and IP modeling approach

Figure 10. Total on-chip power consumed by modular adder

designed using RTL and IP modeling approach

With an aim to present more clear view of the comparative

analysis performed, differences between both the approaches

are graphically presented in terms of LUTs, FFs and total

power dissipation in Figures 8-10 respectively. This provides

a better perception for presented methodologies. The reduction

in FPGA resource utilization and total power in case of RTL

approach owes to the fact that designing any target architecture

using predefined IP blocks introduces certain redundancy in

terms of slice FFs and LUTs in order to accommodate

redundant logic functions. While designing the architecture

using conventional RTL programming approach, designers or

programmers may get an extra scope of preventing

unnecessary redundancy being introduced in the design. This

is because any efficient strategy can be followed to write HDL

1261

code for implementing the logic and FPGA resource allocation

vary with this logic supporting the target design. RTL

approach may sometimes seem complex because it demands

exhaustive knowledge of the components functionality and

interconnections. However, it prevents hardware redundancy

and hence reduces FPGA resources utilization. This in turn

effects the total on-chip power as well. Therefore, RTL

methodology of designing is a promising candidate for area

and power efficient applications such as modulo adders for

RNS based designs. However, chip development cycles are

short in today's competitive climate. Hence, design teams

often reuse semiconductor IP cores to shorten time to market.

In the semiconductor sector, locating IP reuse techniques and

possibilities is frequently a top business objective since it may

improve processes and save needless rework.

6. CONCLUSION

FPGAs and SoCs have made significant advancements

during the past two decades. The first cause is the introduction

of new silicon process nodes, which allowed engineers to pack

more transistor into a given space, and the second is the

development of improved EDA tools, which enabled designers

to create complicated and massive designs and translate them

into SOCs effectively. Furthermore, there was a rise in demand

for chips with greater features. As a result, the circuit design

flow grew lengthier and more complex, placing a significant

load on designers. Therefore, reusable logic blocks i.e., IP

cores were designed to address the issues of complicated ICs

and lengthier design cycles so that engineers could concentrate

their efforts on their core creative technology, which is what

truly matters. This work presents implementation and analysis

of two design methodologies i.e., RTL programming and IP

modeling. Generic modular adder design i.e., modulo
(2n − K) adder, existing in the recent literature forms the

perfect base for the practical investigation performed in this

work [3]. RTL approach prevents any hardware redundancy

from being introduced in the design and thereby reducing area

and power. Modulo (2n − K) adder, when designed using

RTL approach offers average savings of 14.30%, 1.91% and

0.5% in LUTs, FFs and total on-chip power respectively as

compared to IP blocks based designs. However, the later

approach reduces the design complexity for designers by

providing reusable IPs and hence reduces time-to-market.

Therefore, this paper presents a novel work of investigation on

design approaches, providing comparable results, which forms

the strong basis for the further research to be carried out in the

field of efficient modular adder designs.

However, in the proposed work, study of both the design

methodologies has been narrowed to the generic modular

adder with moduli of the form (2n − K). Any improvement to

this class of adders promotes the parallelism of RNS

applications by enabling higher order moduli sets with

improved moduli balancing. There is, nevertheless, a dearth of

literature on generic moduli adders. The generic moduli-based

adder designs that are now in use have a lot of room for study

and development. As a result, significant efforts must be made

to improve generic moduli-based modular adder designs.

Hence, there is a scope of research in design techniques as

discussed in the present work. Also, apart from the design

approaches discussed in the present work, another design

technique i.e., high-level synthesis (HLS), also known as C

synthesis, is an automated design process that takes an abstract

behavioral specification of a digital system and finds a

register-transfer level structure that realizes the given behavior.

By increasing the level of abstraction, it can assist in reducing

the design time and cost of VLSI systems. HLS may also adapt

the system to a variety of restrictions, including size, power

and performance. Hence, high level synthesis has scope of

research and investigation for achieving improved circuit

design flow.

REFERENCES

[1] Omondi, A.R., Premkumar, A.B. (2007). Residue

Number Systems: Theory and Implementation (Vol. 2).

World Scientific.

[2] Chen, W., Ray, S., Bhadra, J., Abadir, M., Wang, L.C.

(2017). Challenges and trends in modern SoC design

verification. IEEE Design & Test, 34(5): 7-22.

https://doi.org/10.1109/MDAT.2017.2735383

[3] Gupta, T., Akhter, S. (2021) Design and implementation

of area-power efficient generic modular adder using

flagged prefix addition approach. In International

Conference on Signal Processing and Communication

(ICSC), Noida, India, pp. 302-307.

https://doi.org/10.1109/ICSC53193.2021.9673363

[4] Rogawski, M., Homsirikamol, E., Gaj, K. (2014). A

novel modular adder for one thousand bits and more

using fast carry chains of modern FPGAs. In:

International Conference on Field Programmable Logic

and Applications (FPL), Munich, Germany, pp. 1-8.

https://doi.org/10.1109/FPL.2014.6927493

[5] Kharadkar, R.D., Hulle, N.B. (2015). FPGA

Implementation of Modulo (231-1) Adder. In

International Conference on Emerging Trends in

Engineering & Technology (ICETET), Kobe, Japan. pp.

85-90. https://doi.org/10.1109/ICETET.2015.23

[6] Yang, Y., Wu, C., Li, Z., Yang, J. (2016). Efficient

FPGA implementation of modular multiplication based

on Montgomery algorithm. Microprocessors and

Microsystems, 47(A): 2019-215.

https://doi.org/10.1016/j.micpro.2016.07.008

[7] Ajit, A., Arathi, P.V., Haridas, K., Nambiar, N.M., Devi,

S. (2019). FPGA based performance comparison of

different basic adder topologies with parallel processing

adder. In International Conference on Electronics,

Communication and Aerospace Technology (ICECA),

Coimbatore, India, pp. 87-92.

https://doi.org/10.1109/ICECA.2019.8821925

[8] Billmann, M., Werner, S., Höller, R., Praus, F., Puhm, A.,

Kerö, N. (2019). Open-source crypto ip cores for fpgas–

overview and evaluation. In 2019 Austrochip Workshop

on Microelectronics (Austrochip), Vienna, Austria, pp.

47-54. https://doi.org/10.1109/Austrochip.2019.00020

[9] Yaman, S., Karakaya, B., Erol, Y. (2019). Real time edge

detection via IP-core based Sobel filter on FPGA. In

International Conference on Applied Automation and

Industrial Diagnostics (ICAAID), Elazig, Turkey, pp. 1-

4. https://doi.org/10.1109/ICAAID.2019.8934964

[10] Liu, B. (2020). Research and implementation of RSA IP

core based on FPGA. In Data Processing Techniques and

Applications for Cyber-Physical Systems (DPTA 2019),

pp. 1311-1319. https://doi.org/10.1007/978-981-15-

1468-5_154

[11] Tolba, M.F., Fouda, M.E., Hezayyin, H.G., Madian, A.H.,

1262

Radwan, A.G. (2018). Memristor FPGA IP core

implementation for analog and digital applications. IEEE

Transactions on Circuits and Systems II: Express Briefs,

66(8): 1381-1385.

https://doi.org/10.1109/TCSII.2018.2882496

[12] Singh, N., Verma, G., Khare, V. (2020) Power

Estimation of FIR Filter based on IP Modeling for DSP

and Communication Applications. In: Global

Conference on Wireless and Optical Technologies

(GCWOT), Malaga, Spain, pp. 1-7.

https://doi.org/10.1109/GCWOT49901.2020.9391608

[13] Akhil, R., Koleti, J.R., Bhaskar, A.V., Sathish, V., Goud,

B.A. (2020). Delay and Area analysis of hardware

implementation of FFT using FPGA. In 2020 IEEE

International Conference on Electronics, Computing and

Communication Technologies (CONECCT), Bangalore,

India, pp. 1-6.

https://doi.org/10.1109/CONECCT50063.2020.9198617

[14] Singh, N., Verma, G., Khare, V. (2021). Power

estimation of QPSK and BPSK modulation systems for

FPGAS based on IP modeling for wireless applications.

https://doi.org/10.21203/rs.3.rs-538571/v1

[15] Suresh, A., Shyama, S., Srivastava, S., Ranjan, N. (2021)

Multichannel ADC IP Core on Xilinx SoC FPGA. In:

CS&IT Conference proceedings, 11(23): 341-353.

https://doi.org/10.5121/csit.2021.112326

[16] Coliban, R.M. (2022). Fast Radix-2 Montgomery

modular multiplication on FPGA using ternary adder. In

2022 International Conference on Computing,

Electronics & Communications Engineering (iCCECE),

Southend, United Kingdom, pp. 1-5,

https://doi.org/10.1109/iCCECE55162.2022.9875097

[17] Singh, N., Verma, G., Khare, V. (2022) Accurate power

estimation identity for DSP blocks targeted to FPGAs.

Ingénierie des Systèmes d’Information, 27(4): 539-548.

https://doi.org/10.18280/isi.270403

[18] Huang, J. (2023) Design and Implementation of IIC

Interface IP Core. Academic Journal of Science and

Technology, 5: 208-211.

https://doi.org/10.54097/ajst.v5i1.5634

[19] Jaberipur, G., Parhami, B., Nejati, S. (2011). On building

general modular adders from standard binary arithmetic

components. In 2011 Conference Record of the Forty

Fifth Asilomar Conference on Signals, Systems and

Computers (ASILOMAR), Pacific Grove, CA, USA, pp.

6-9. https://doi.org/10.1109/ACSSC.2011.6189975

[20] Matutino, P.M., Pettenghi, H., Chaves, R., Sousa, L.

(2012). RNS Arithmetic Units for Modulo {2^ n+-k}. In

2012 15th Euromicro Conference on Digital System

Design, Cesme, Turkey, pp. 795–802.

https://doi.org/10.1109/DSD.2012.114

[21] Ma, S., Hu, J.H., Wang, C.H. (2013). A novel modulo 2n-

2k-1 adder for residue number system. IEEE Transactions

on Circuits and Systems I: Regular Papers, 60(11): 2962-

2972. https://doi.org/10.1109/tcsi.2013.2252639

[22] Hiasat, A. (2018). General modular adder designs for

residue number system applications. IET Circuits,

Devices & Systems, 12(4): 424-431.

https://doi.org/10.1049/iet-cds.2017.0470

[23] Bayoumi, M., Jullien, G., Miller, W. (1987). A VLSI

implementation of residue adders. IEEE Transactions on

Circuits and Systems, 34(3): 284-288.

https://doi.org/10.1109/TCS.1987.1086130

[24] Kang, S.M., Leblebici, Y. (2003). CMOS Digital

Integrated Circuits. New York: MacGraw-Hill.

[25] Brent, Kung. (1982). A regular layout for parallel adders.

IEEE Transactions on Computers, 100(3): 260-264.

https://doi.org/10.1109/TC.1982.1675982

[26] Dave, V., Oruklu, E., Sanii, J. (2006) Design and

synthesis of flagged binary adders with constant addition.

In 2006 49th IEEE International Midwest Symposium on

Circuits and Systems, San Juan, PR, USA, pp. 23-27.

https://doi.org/10.1109/MWSCAS.2006.381985

1263

https://doi.org/10.1109/GCWOT49901.2020.9391608
https://doi.org/10.1049/iet-cds.2017.0470

